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The dynamic Maxwell equations with a strictly dissipative bound-
ary condition is considered. Sharp trace regularity for the electric
and the magnetic field are established for both: weak and differ-
entiable solutions. As an application a shape optimization problem
for Maxwell’s equations is considered. In order to characterize the
shape derivative as a solution to a boundary value problem, the
aforementioned sharp regularity of the boundary traces is critical.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main result

Let Ω ⊂ R3 be an open, bounded, and connected set with a Lipschitz boundary Γ = ∂Ω . The
evolution of the electric field e = e(t, x) and the magnetic field h = h(t, x) in the space–time cylinder
Q = (0, T ) × Ω is given by Maxwell’s equations

∂t(εe) − ∇ × h = f1

∂t(µh) + ∇ × e = f2
in Q = (0, T ) × Ω. (1.1)

Here ε = ε(t, x) is the electric permittivity, µ = µ(t, x) is the magnetic permeability which are both
positive definite Hermitian 3 × 3 matrices. The functions f1, f2 represent current densities, ∇× de-
notes the curl operator, ∂t is the differentiation with respect to t , and the final time T can be infinity.
We add the boundary condition
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ν × e − αhτ = g in Σ = (0, T ) × ∂Ω (1.2)

and the initial conditions

e|t=0 = e0 and h|t=0 = h0 in Ω (1.3)

where ν is the exterior unit normal vector along Γ , ν × e is the cross product of the vectors ν and e,
α = α(t, x) is a positive function, and hτ = (ν × h) × ν = h − (h · ν)ν is the tangential component of
the vector h on Γ . The boundary condition (1.3) is an absorbing boundary condition, see for example
Section 7.12 in [7]. If α ≡ 1 this is the Silver–Müller boundary condition. The quantity α represents
the inverse of the surface conductivity on Γ and the function g is an external surface current density.

Maxwell’s system is known to be symmetric hyperbolic. Indeed with

A0 =
[
ε 0
0 µ

]
, A j∂ j =

[
0 −∇×

∇× 0

]
, w =

[
e
h

]
, f =

[
f1
f2

]
(1.4)

Maxwell’s equations (1.1) can be written as

∂t
(

A0 w
)
+ A j∂ j w = f (1.5)

where ∂ j = ∂/∂x j and the summation convention is used. The boundary condition (1.3) is an ex-
ample of a strictly dissipative boundary condition. Note that the boundary Σ is characteristic, i.e.
det(A jν j) = 0. Maxwell’s equation are strictly hyperbolic only in the isotropic case, that is if ε = κµ
for some scalar function κ .

In the sequel the linear space of Lebesgue measurable functions on the open set X ⊂ Rn with
absolutely integrable power p is denoted by L p(X). We write L p(X)N for the linear space of vector-
valued functions with N components with each component in L p(X). For the scalar product in L2(X)N

we will use the notation (·,·)X , i.e.

(w1, w2)X =
∫

X

w1 · w2 dX

and the corresponding norm is ∥w∥X = √
(w, w)X . The L2-based Sobolev spaces will be denoted by

Hs(X) for s ∈ R and the linear space of k times continuously differentiable functions on the closure
of X is denoted by Ck(X). By Ck([0, T ], Y ) we denote the linear space of k times continuously differ-
entiable functions with values in the linear space Y . Furthermore, let

H(X) =
{
(e,h) ∈ L2(X)6: ∇ · (εe) = ∇ · (µh) = 0

}

where ∇ · (εe) = ∂ j(ε jkek). If A is a Hermitian positive definite matrix we write A > 0. The transpose
of an m × n matrix A is AT and the Hermitian transpose AH .

There is a wealth of results regarding the solutions to boundary value problems for Maxwell’s
system. However, there are only few results which discuss a non-homogeneous boundary condition
and establish regularity of boundary traces. The existence, uniqueness and regularity of weak solutions
are established in the following proposition.

Proposition 1.1. Let ε,µ, ∂tε, ∂tµ ∈ L∞(Q ), α ∈ L∞(Σ) be such that ε,µ > c > 0 almost everywhere on Q
and α > c > 0 almost everywhere on Σ . Given f ∈ L2(Q )6 , g ∈ L2(Σ)3 with ν · g = 0 and (e0,h0) ∈ L2(Ω)6

there exists a unique weak solution (e,h) ∈ C([0, T ], L2(Ω)6) such that (eτ ,hτ )|Σ ∈ L2(Σ)6 . Moreover, there
exists a constant γ0 such that
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∥∥e−γ T (e,h)(T )
∥∥2

Ω
+ γ

∥∥e−γ t(e,h)
∥∥2

Q +
∥∥e−γ t(eτ ,hτ )

∥∥2
Σ

6̃
∥∥(

e0,h0)∥∥2
Ω

+ 1
γ

∥∥e−γ t f
∥∥2

Q +
∥∥e−γ t g

∥∥2
Σ

for γ > γ0 .

Here and henceforth a 6̃ b means a 6 Cb for some constant C which depends only on Ω , ε, µ,
and α. Note that we do not obtain regularity of the normal components of the fields e and h. In the
isotropic case, this proposition is a corollary of Theorem 1.12 [9]. In the case of time-independent
coefficients, this result can be found in the book by Lagnese and Leugering [8, Chapter 7].

Our first result shows how to obtain regularity results for the normal components of e and h on Σ .
Define the functions

ρ1(t, x) =
t∫

0

∇ · f1(s, x)ds + ∇ ·
(
ε(t, x)e0(x)

)
,

ρ2(t, x) =
t∫

0

∇ · f2(s, x)ds + ∇ ·
(
µ(t, x)h0(x)

)
, (1.6)

which are known as charge densities.

Theorem 1.2. Assume that Γ is of class C2 and let ε,µ ∈ C1(Q ) and let α ∈ L∞(Σ) be such that α > c > 0
almost everywhere on Σ . Furthermore, let g ∈ L2(Σ)3 with ν · g = 0, f ∈ L2(Q )6 , (e0,h0) ∈ L2(Ω)6 .

If ρ1,ρ2 ∈ L2(Q ), there exists a unique weak solution (e,h) ∈ C([0, T ], L2(Ω)6) to (1.1)–(1.3) such that
(e,h)|Σ ∈ L2(Σ)6 . Moreover, there exists a positive constant γ0 such that

∥∥e−γ T (e,h)(T )
∥∥2

Ω
+ γ

∥∥e−γ t(e,h)
∥∥2

Q +
∥∥e−γ t(e,h)

∥∥2
Σ

6̃
∥∥(

e0,h0)∥∥2
Ω

+ 1
γ

∥∥e−γ t( f ,ρ)
∥∥2

Q +
∥∥e−γ t g

∥∥2
Σ

for γ > γ0 .

Our second result discusses differentiable solutions to the initial–boundary value problem (1.1)–
(1.3). To our best knowledge, the only result concerning differentiable solutions for a symmetric
hyperbolic system with characteristic boundary can be found in the paper by Majda and Osher
[9, Theorem 3]. This result is only valid for the strictly hyperbolic case. Nevertheless, Theorem 3 in [9]
shows that the step from the weak solution to a differentiable solution is a non-trivial matter in the
presence of a characteristic boundary.

We will show that additional regularity assumptions on the functions ρ1,ρ2 will produce a differ-
entiable solution. To formulate the related estimate, we need to introduce some weighted Hk-norms.
Define

∥u∥2
1,γ ,Q = γ 2∥∥e−γ t u

∥∥2
Q +

∥∥e−γ t∂t u
∥∥2

Q +
∥∥e−γ t∇u

∥∥2
Q ,

∥∥u(t)
∥∥2

1,γ ,Ω
= γ 2∥∥u(t)

∥∥2
Ω

+
∥∥e−γ t∇u(t)

∥∥2
Ω

,

∥u∥2
1,γ ,Σ = γ 2∥∥e−γ t u

∥∥2
Σ

+
∥∥e−γ t∂t u

∥∥2
Σ

+
∥∥e−γ t∇τ u

∥∥2
Σ

(1.7)
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for γ > 0. Here ∇u = (∂x1 u, ∂x2 u, ∂x3 u) is the gradient of u and ∇τ u j = (ν ×∇u j)×ν is the tangential
gradient of u j along Γ .

Theorem 1.3. Suppose that Γ is of class C2 and let ε,µ ∈ C1(Q ) and α ∈ C1(Σ). Consider the initial–
boundary value problem (1.1)–(1.3) with g ∈ H1(Σ)3 with ν · g = 0 on Σ , f ∈ H1(Q )6 , (e0,h0) ∈ H1(Ω)6

subject to the compatibility condition

g(0) = ν × e0 − α(0)h0
τ in L2(Ω).

If ρ1,ρ2 ∈ H1(Q ), there exists a unique differentiable solution (e,h) ∈ C([0, T ], H1(Ω)6) ∩ C1([0, T ],
L2(Ω)6) such that (e,h)|Σ ∈ H1(Σ)6 and (∂νe, ∂νh)|Σ ∈ L2(Σ)6 . Furthermore, there exists a positive con-
stant γ0 such that

∥∥(e,h)(T )
∥∥2

1,γ ,Ω
+ γ

∥∥(e,h)
∥∥2

1,γ ,Q +
∥∥(e,h)

∥∥2
1,γ ,Σ

+
∥∥e−γ t(∂νe, ∂νh)

∥∥2
Σ

6̃
∥∥(

e0,h0)∥∥2
1,γ ,Q + 1

γ

∥∥( f ,ρ)
∥∥2

1,γ ,Q + ∥g∥2
1,γ ,Σ

for γ > γ0 . Here ∂νe and ∂νh are the exterior normal derivatives of e and h, respectively.

Note that the boundary regularity results obtained in Proposition 1.1 and Theorems 1.2 and 1.3
cannot be inferred from the interior regularity of the solutions and the trace theorem in Sobolev
spaces. Hence, these boundary regularity results for hyperbolic problems are referred to as “hidden
regularity”.

Now we turn our attention to the following optimization problem. Minimize the functional

J (Ω) = 1
2

∫

Q

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
dt dx (1.8)

over a collection of bounded, open and connected sets Ω ⊂ R3 that are subsets of a fixed bounded,
open and connected set D ⊂ R3. Here (e,h) = (e,h)(Ω) is a solution to the initial–boundary value
problem (1.1)–(1.3), (E, H) is a desired target state and (e − E)Hε(e − E) = ε jk(e − E) j(e − E)k .

In order to discuss the derivative of this functional with respect to Ω , perturbations of the set Ω in
direction of a vector field V are introduced in [3,11]. Let O be the collections of open, connected sets
Ω ⊂ D whose boundary Γ = ∂Ω is of class C2. For some small positive number S > 0 we consider
a vector field V ∈ C([0, S]; C2(D)3) which is tangential on the boundary ∂ D , i.e. V · ν∂ D = 0 for all
x ∈ ∂ D . The flow Fs(x) of this vector field is the solution of the ODE

∂ Fs(x)
∂s

= V
(
s, Fs(x)

)
.

We summarize some results concerning the existence, uniqueness and regularity of Fs [11, The-
orem 2.16]: For S sufficiently small this differential equation augmented by the initial condition
F0(x) = x for all x ∈ D has a unique solution Fs(x) for all s ∈ [0, S]. Furthermore, the solution
is of class C1([0, S]; C2(D)3) and is one-to-one and onto. The inverse mapping is also of class
C1([0, S]; C2(D)3). In the sequel we will assume that S > 0 is chosen sufficiently small to guaran-
tee these results.

Given Ω ∈ O we obtain a family of perturbed domains Ωs(V ) = {Fs(x): x ∈ Ω} which are also
in O. The exterior unit normal vector of Ωs along ∂Ωs = Γs is denoted by νs . We denote by Q s =
(0, T ) × Ωs the perturbed cylinder and by Σs = (0, T ) × Γs the perturbed lateral boundary.
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Now we can state our result regarding the differentiability of the shape functional above. For
simplicity we focus on the case with constant coefficients, vanishing right-hand sides and divergence
free initial data.

Theorem 1.4. Assume that ε,µ are constant, Hermitian positive definite matrices and let α be a positive
constant. Furthermore, let f ≡ 0, g ≡ 0 and (e0,h0) ∈ H1(D)6 ∩ H(D) and (E, H) ∈ H1((0, T ) × D) ∩
H((0, T ) × D).

Then, the shape functional is Fréchet differentiable at Ω ∈O in direction of the vector field V with Fréchet
derivative

d J (Ω, V ) = ℜ
∫

Σ

[
q ·

{
∂νe × ν + α[∂νh]τ

}
+ curlΓ (eνq) − α divΓ (hνq)

]
Vν dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ (1.9)

where Vν = V (0) ·ν , eν = e ·ν , hν = h ·ν , divΓ is the surface divergence, curlΓ is the surface curl, and (p,q)
is the solution to the backward adjoint initial–boundary value problem

ε∂t p − ∇ × q = ε(e − E), µ∂tq + ∇ × q = µ(h − H) in Q ,

p|t=T = 0, q|t=T = 0 in Ω,

ν × p + αqτ = 0 in Σ. (1.10)

According to Theorem 1.3 the solution of the primal problem satisfies (e,h) ∈ H1(Q )6, (e,h)|Σ ∈
H1(Σ)6, (∂νe, ∂νh) ∈ L2(Σ)6 and the solution to the adjoint problem satisfies q|Σ ∈ H1(Σ)3. Hence,
the expression for the Fréchet derivative (1.9) is well defined. The function

G = ℜq ·
{
∂νe × ν + α[∂νh]τ

}
+ curlΓ (eνq) − α divΓ (hνq)

+ 1
2
(e − E)Hε(e − E) + 1

2
(h − H)Hµ(h − H)

is the shape gradient of J (Ω) in direction of V . Theorem 1.3 implies G ∈ L1(Σ).
Theorem 1.2 and Theorem 1.3 will be proved in Section 2. Since the boundary Σ is characteristic

for Maxwell’s equation we will not work with Maxwell’s system directly. A priori estimates will be
established for a larger 8 × 8 symmetric hyperbolic system for which Σ is non-characteristic. The
existence, uniqueness and regularity of weak and differentiable solutions follow from the a priori
estimates as explained in the book by Chazarain and Piriou [2, Chapter 7]. After that, sharp trace
regularity results are established through a multiplier identity.

The technique developed in Section 2 can be used to establish existence, uniqueness, and regularity
of solutions with higher regularity. If Γ ∈ Ck+1, ε,µ,α, are of class Ck and f ,ρ, e0,h0, g ∈ Hk where
k is a positive integer and corresponding compatibility conditions are met, then there exists a unique
solution (e,h) ∈ Cl([0, T ]; Hk−l(Ω)6) and (∂ l

νe, ∂ l
νh)|Σ ∈ Hk−l(Σ)6 for 0 6 l 6 k. The corresponding

estimate is

∥∥(e,h)(T )
∥∥2

k,γ ,Ω
+ γ

∥∥(e,h)
∥∥2

k,γ ,Q +
k∑

j=0

∥∥(
∂

j
νe,∂ j

νh
)∥∥2

k− j,γ ,Σ

6̃
∥∥(

e0,h0)∥∥2
k,γ ,Q + 1

γ

∥∥( f ,ρ)
∥∥2

k,γ ,Q + ∥g∥2
k,γ ,Σ

where the norms are weighted norms in Hk defined as in (1.7), see [10].



Author's personal copy

J. Cagnol, M. Eller / J. Differential Equations 250 (2011) 1114–1136 1119

Moreover, our results are valid in the case of a more general boundary condition of the form

ν × e − (I + S)−1(I − S)hτ = g

where S = S(t, x) is a 3 × 3 matrix with spectral norm uniformly less than one on Σ and with
Sν = S T ν = 0. In the case of an isotropic medium, i.e. if ε and µ are scalar functions, the restriction
on S can be weakened from spectral norm uniformly less than one to spectral radius of S uniformly
less than one [9, Section 2]. However it is not clear whether this boundary condition will work in the
generic anisotropic case. We conjecture that in the case of an anisotropic medium the strictly dissi-
pative boundary conditions coincide with the boundary conditions that satisfy the Kreiss–Sakamoto
condition (uniform Lopatinskii condition).

Theorem 1.4 is proved in Section 3 which contains the shape sensitivity analysis of Maxwell’s
equation. We will show that the initial–boundary value problem (1.1)–(1.3) is shape differentiable.
In order to characterize the shape derivative as a solution to an initial–boundary value problem the
boundary regularity for the differentiable solution from Theorem 1.3 will be necessary. This situation
is similar to the shape derivative of the Dirichlet problem for the wave equation, studied earlier by
Cagnol and Zolésio [3]. On the other hand we like to point out that our analysis is valid for the
anisotropic Maxwell equations which cannot be reduced to vector wave equations.

Finally, in Section 4 we discuss the case α ≡ 0. From the viewpoint of applications this may be
the most interesting case. It models the boundary Γ as a prefect conductor. We discuss the boundary
value problem in this case and establish weaker regularity results for some boundary traces. Those
results will suffice to show that the shape functional (1.8) is Fréchet differentiable even if α ≡ 0. Here
our work complements a recent paper by Zolésio where shape differentiability for a shape functional
different from (1.8) in the case of the isotropic Maxwell system is established [12].

2. Proof of Theorem 1.2 and Theorem 1.3

We introduce the linear operator L : H1(Q )8 → L2(Q )8 defined by

L(∂t,∂x)u =

⎡

⎢⎣

∂t(εu1) − ∇ × u3 − ε∇u4
∂t u2 + ∇ · (µu3)

∂t(µu3) + ∇ × u1 + µ∇u2
∂t u4 − ∇ · (εu1)

⎤

⎥⎦ . (2.1)

Here u = (u1, u2, u3, u4)
T where u1, u3 are vector-valued functions with three components each,

u2, u4 are scalar-valued functions, and ε = ε(t, x) and µ = µ(t, x) are Hermitian positive definite
matrix functions in Q . This operator is symmetric hyperbolic and the lateral boundary Σ is non-
characteristic since det L(0,ν) = (νT εν)2(νT µν)2 > 0.

Let β ∈ L∞(Σ) be such that |β| 6 c < 1 almost everywhere on Σ and set

Mu = (1 + β)ν × u1 − (1 − β)u3,τ (2.2)

where u3,τ is the tangential component of u3. Note that this boundary operator can be used to
express the boundary condition (1.2) if one sets β = (1 − α)/(1 + α). Throughout this section we
assume that Ω has a Lipschitz boundary Γ and that ε,µ, ∂tε, ∂tµ ∈ L∞(Q ) such that ε,µ > c > 0
almost everywhere in Q .

The first a priori estimate follows from the theory of symmetric hyperbolic systems with dissipa-
tive boundary conditions.

Proposition 2.1. Let u ∈ H1(Q )8 be such that u2 = u4 = 0 on Σ . Then, there exists a γ0 > 0 such that
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∥∥e−γ T u(T )
∥∥2

Ω
+ γ

∥∥e−γ t u
∥∥2

Q +
∥∥e−γ t(u1,τ , u3,τ )

∥∥2
Σ

6̃ 1
γ

∥∥e−γ t Lu
∥∥2

Q +
∥∥u(0)

∥∥2
Ω

+
∥∥e−γ t Mu

∥∥2
Σ

. (2.3)

Here u j,τ = (ν × u j) × ν is the tangential component of u j on Σ for j = 1 or 3.

Proof. We multiply the operator (2.1) by e−γ t and take the scalar product with v := e−γ t u in L2(Q )

(
e−γ t Lu, v

)
Q = (Lv, v)Q + γ (Av, v)Q

where A is the Hermitian, positive definite 8 × 8 matrix

A =

⎡

⎢⎣

ε 0 0 0
0 1 0 0
0 0 µ 0
0 0 0 1

⎤

⎥⎦ .

Taking the real part and performing integration by parts give

1
2

(
Av(T ), v(T )

)
Ω

+ γ (Av, v)Q + 1
2
(∂t Av, v)Q + ℜ

∫

Σ

(ν × v1) · v3,τ dΓ dt

+ ℜ
∫

Σ

v2ν · (µv3)dΓ dt − ℜ
∫

Σ

v4ν · (εv1)dΓ dt = 1
2

(
Av(0), v(0)

)
Ω

+ ℜ
(
e−γ t Lu, v

)
Q

and the positivity of A and the Cauchy–Schwarz inequality lead to the inequality

∥∥v(T )
∥∥2

Ω
+ γ ∥v∥2

Q + ℜ
∫

Σ

(ν × v1) · v3,τ dΓ dt + ℜ
∫

Σ

v2ν · (µv3)dΓ dt − ℜ
∫

Σ

v4ν · (εv1)dΓ dt

6̃
∥∥v(0)

∥∥2
Ω

+ 1
γ

∥∥e−γ t Lu
∥∥2

Q (2.4)

for γ > γ0 where γ0 is a constant which depends only on ε and µ. The last two boundary integrals
on the left-hand side vanish since u2 = u4 = 0 on Σ . Note that

ℜ
∫

Σ

(ν × v1) · v3,τ dΓ dt = 1
4
∥ν × v1 + v3,τ ∥2

Σ − 1
4
∥ν × v1 − v3,τ ∥2

Σ

and that

|v1,τ |2 + |v3,τ |2 = 1
2
|ν × v1 − v3,τ |2 + 1

2
|ν × v1 + v3,τ |2.

Hence, the proposition is proved once we show that

|ν × v1 − v3,τ |2 + |ν × v1 + v3,τ |2 6̃ |ν × v1 + v3,τ |2 − |ν × v1 − v3,τ |2 + |M v|2 (2.5)

almost everywhere on Σ .
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To prove this inequality we set λ1 = |ν × v1 + v3,τ | and λ2 = |ν × v1 − v3,τ | and observe that
via (2.2)

λ2
1 = λ2

1 − λ2
2 + λ2

2 6 λ2
1 − λ2

2 + (1 + δ)|M v|2 +
(

1 + 1
δ

)
β2λ2

1

for all δ > 0. Choose δ = |β|
1−|β| and move the last term on the right-hand side into the left-hand side

(
1 − |β|

)
λ2

1 6 λ2
1 − λ2

2 + 1
1 − |β| |M v|2.

Also, by (2.2)

1 − |β|
2

λ2
2 6 (1 + δ)

1 − |β|
2

|M v|2 +
(

1 + 1
δ

)
β2 1 − |β|

2
λ2

1 6 1
2
|M v|2 + |β|1 − |β|

2
λ2

1

where we used again δ = |β|
1−|β| . Combining the last two inequalities gives

1 − |β|
2

[
λ2

1 + λ2
2
]
6 λ2

1 − λ2
2 +

[
1

1 − |β| + 1
2

]
|M v|2

which is exactly (2.5). ✷

Remark 2.1. Note that the proof remains true if β is replaced by a 3 × 3 matrix function S = S(t, x)
with entries in L∞(Σ) satisfying |Sz| 6 c|z| for some constant c < 1 almost everywhere on Σ as well
as Sν = S T ν = 0.

Corollary 2.2. If F ∈ L2(Q )8 , u0 ∈ L2(Ω)8 , and g ∈ L2(Σ)3 with ν · g = 0, then the initial–boundary value
problem

Lu = F in Q , u|t=0 = u0 in Ω, Mu = g, u2 = u4 = 0 in Σ (2.6)

has a unique weak solution u ∈ C([0, T ], L2(Ω)8) with (u1,τ , u3,τ )|Σ ∈ L2(Σ)6 . Moreover, estimate (2.3) is
valid for γ > γ0 .

Note that the statement and the proof of Proposition 2.1 can be easily adjusted to the boundary
value problem (1.1)–(1.3). This way the a priori estimate corresponding to Proposition 1.1 is proved.

Since the boundary Σ in non-characteristic one can establish the unique existence for more regular
solutions. Following the approach by Rauch [10] we establish the estimate (2.3) at the H1-level.

Proposition 2.3. Suppose that Γ is of class C2 , let ε,µ ∈ C1(Q ) be 3 × 3, and let u ∈ H2(Q )8 be such that
u2 = u4 = 0 on Σ . Furthermore, let β ∈ C1(Σ).

Then, there exists a γ0 > 0 such that

∥∥e−γ T u(T )
∥∥2

1,γ ,Ω
+ γ

∥∥e−γ t u
∥∥2

1,γ ,Q +
∥∥e−γ t(u1,τ , u3,τ )

∥∥2
1,γ ,Σ

6̃ 1
γ

∥∥e−γ t Lu
∥∥2

1,γ ,Q +
∥∥u(0)

∥∥2
1,γ ,Ω

+
∥∥e−γ t Mu

∥∥2
1,γ ,Σ

(2.7)

for γ > γ0 .



Author's personal copy

1122 J. Cagnol, M. Eller / J. Differential Equations 250 (2011) 1114–1136

Proof. Assuming that Γ is of class C2 the distance function φ(x) = dist(x,Γ ) is of class C2 in

W =
{

x ∈ Ω: φ(x) < r
}

where r is some positive number [4, Theorem 3.2]. Furthermore ν(y) = −∇φ(y) for y ∈ Γ and the
exterior unit normal is extended to W by setting ν(x) = −∇φ(x) for x ∈ W . Let

u j,τ = (ν × u j) × ν, u j,ν = u j · ν, (t, x) ∈ [0, T ] × W ,

which extends the tangential and normal component of u from Σ to the collar (0, T ) × W .
At first establish (2.7) in the case that u ≡ 0 in {φ(x) < r/2}. Then there will be no boundary terms

in the estimate. Apply inequality (2.3) with u replaced by ∂ ju for j = 0,1,2,3 where ∂0 = ∂t . Since
the coefficients of L are differentiable, the commutator of the operators L and ∂ j can be estimated

∥∥e−γ t L∂ ju
∥∥

Q 6̃
∥∥e−γ t∂ j Lu

∥∥
Q +

3∑

k=0

∥∥e−γ t∂ku
∥∥

Q , j = 0,1,2,3.

Adding estimate (2.3) multiplied by γ 2 to the estimates for ∂ ju gives

∥∥u(T )
∥∥2

1,γ ,Ω
+ γ ∥u∥2

1,γ ,Q 6̃
∥∥u(0)

∥∥2
1,γ ,Q + 1

γ
∥Lu∥2

1,γ ,Q + 1
γ

∥u∥2
1,γ ,Q +

∥∥∂t u(0)
∥∥2

Ω
. (2.8)

Using the definition of L one has ∥∂t u(0)∥2
Ω 6̃ ∥u(0)∥2

1,γ ,Ω + ∥Lu(0)∥2
Ω and using integration by parts

∥∥w(0)
∥∥2

Ω
= 2γ

∫

Q

e−2γ t
(

1 − t
T

)
|w|2 dt dx + 1

T

∫

Q

e−2γ t |w|2 dt dx

− 2ℜ
∫

Q

e−2γ t
(

1 − t
T

)
w · ∂t w dt dx

6 4γ
∥∥e−γ t w

∥∥2
Ω

+ 1
γ

∥∥e−γ t∂t w
∥∥2

Ω
6 4

γ
∥w∥2

1,γ ,Q (2.9)

for w ∈ H1(Q )8, provided γ > 1/T . Hence, with w = Lu one obtains

∥∥∂t u(0)
∥∥2

Ω
6̃

∥∥u(0)
∥∥2

1,γ ,Ω
+ 1

γ
∥Lu∥2

1,γ ,Q . (2.10)

The term next to the last term in the right-hand side of (2.8) can be moved into the left-hand side
for γ sufficiently large. We obtain

∥∥u(T )
∥∥2

1,γ ,Ω
+ γ ∥u∥2

1,γ ,Q 6̃
∥∥u(0)

∥∥2
1,γ ,Q + 1

γ
∥Lu∥2

1,γ ,Q (2.11)

which is exactly (2.7) in this case.
Now we have to establish (2.7) for u ∈ H2(Q )8 where u ≡ 0 in {φ(x) > r}. This part is more

challenging since now the boundary terms will be active. Multiply the estimate (2.3) by γ 2 and add
the estimate (2.3) applied to ∂t w and to ∇τ w . This gives
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γ 2∥∥e−γ T u(T )
∥∥2

Ω
+

∥∥e−γ T ∇τ u(T )
∥∥2

Ω
+

∥∥e−γ T ∂t u(T )
∥∥2

Ω
+ γ 3∥∥e−γ t u

∥∥2
Q + γ

∥∥e−γ t∇τ u
∥∥2

Q

+ γ
∥∥e−γ t∂t u

∥∥2
Q + γ 2∥∥e−γ t(u1,τ , u3,τ )

∥∥2
Σ

+
∥∥e−γ t(∇τ u1,τ ,∇τ u3,τ )

∥∥2
Σ

+
∥∥e−γ t(∂t u1,τ ,∂t u3,τ )

∥∥2
Σ

6̃
∥∥u(0)

∥∥2
1,γ ,Ω

+
∥∥∂t u(0)

∥∥2
Ω

+ 1
γ

∥Lu∥2
1,γ ,Q + ∥Mu∥1,γ ,Σ + 1

γ
∥u∥2

1,γ ,Q +
∥∥e−γ t u

∥∥2
Σ

.

The last two terms on the right-hand side are due to the commutator of the operator L with ∂t ,∇τ

and the commutator of M with ∂t , ∇τ , respectively. To estimate these commutators the regularity
assumptions on the coefficients ε,µ,α and Γ are needed. The last term can be placed into the left-
hand side for γ sufficiently large. Furthermore, the term ∥∂t u(0)∥2

Ω can be estimated as in (2.10). This
gives

γ 2∥∥e−γ T u(T )
∥∥2

Ω
+

∥∥e−γ T ∇τ u(T )
∥∥2

Ω
+

∥∥e−γ T ∂t u(T )
∥∥2

Ω
+ γ 3∥∥e−γ t u

∥∥2
Q + γ

∥∥e−γ t∇τ u
∥∥2

Q

+ γ
∥∥e−γ t∂t u

∥∥2
Q +

∥∥(u1,τ , u3,τ )
∥∥2

1,γ ,Σ

6̃
∥∥u(0)

∥∥2
1,γ ,Ω

+ 1
γ

∥Lu∥2
1,γ ,Q + ∥Mu∥1,γ ,Σ + 1

γ
∥u∥2

1,γ ,Q . (2.12)

In order to obtain an estimate for the first derivative of u we estimate the normal derivative of u.
Since Σ is non-characteristic for L,

∂νu = B(x,∂t ,∇τ )u + D(x)Lu (2.13)

where B(x, ∂t ,∇τ ) is a matrix differential operator and D(x) is an 8×8 matrix. This yields an estimate
for the normal derivative of u in Q and in Ω at t = T ,

∥∥e−γ t∂νu
∥∥2

Q 6̃
∥∥e−γ t∇τ u

∥∥2
Q +

∥∥e−γ t∂t u
∥∥2

Q +
∥∥e−γ t Lu

∥∥2
Q ,

∥∥e−γ T ∂νu(T )
∥∥2

Ω
6̃

∥∥e−γ T ∇τ u(T )
∥∥2

Ω
+

∥∥e−γ T ∂t u(T )
∥∥2

Ω
+

∥∥e−γ T Lu(T )
∥∥2

Ω
. (2.14)

Hence, if we now combine estimate (2.12) with (2.14) we obtain

∥∥u(T )
∥∥2

1,γ ,Q + γ ∥u∥2
1,γ ,Q +

∥∥(u1,τ , u3,τ )
∥∥2

1,γ ,Σ

6̃
∥∥u(0)

∥∥2
1,γ ,Ω

+ 1
γ

∥Lu∥2
1,γ ,Q + ∥Mu∥2

1,γ ,Σ +
∥∥e−γ T Lu(T )

∥∥2
Ω

+ 1
γ

∥u∥2
1,γ ,Q . (2.15)

The last term can be moved into the left-hand side since γ is a large parameter. The term next to it
is estimated using integration by parts

∥∥e−γ T Lu(T )
∥∥2

Ω
=

∫

Q

∂t
[
e−2γ t |Lu|2

]
dt dx +

∥∥Lu(0)
∥∥2

Ω
6̃ 1

γ
∥Lu∥2

1,γ ,Q

where (2.9) was applied as well. Thus we have established

∥∥u(T )
∥∥2

1,γ ,Q + γ ∥u∥2
1,γ ,Q +

∥∥(u1,τ , u3,τ )
∥∥2

1,γ ,Σ
6̃

∥∥u(0)
∥∥2

1,γ ,Ω
+ ∥Lu∥2

1,γ ,Q + ∥Mu∥2
1,γ ,Σ

for u ∈ H2(Q )8 with u ≡ 0 for φ(x) > r.
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To obtain the a priori estimate for u ∈ H1(Q )8, choose χ ∈ C2(Ω) such that χ ≡ 1 in {φ(x) > r}
and χ ≡ 0 in {φ(x) < r/2}. Then u = χu + (1 −χ)u and (2.13) follows now from (2.11) applied to χu
and the estimate above applied to (1 − χ)u. ✷

Observe that

∂ν [uτ ] = ∂ν
[
(ν × u) × ν

]
= (ν × ∂νu) × ν + (∂νν × u) × ν + (ν × u) × ∂νν = [∂νu]τ (2.16)

since ∂νν = (∇φ · ∇)∇φ = ∇|∇φ|2/2 = 0.

Corollary 2.4. Suppose that Γ is of class C2 . Let ε,µ ∈ C1(Q ) and let β ∈ C1(Σ). Moreover, let F ∈ H1(Q )8 ,
u0 ∈ H1(Ω)8 , g ∈ H1(Σ)3 with ν · g = 0 and assume that the compatibility condition M(0)u0 = g(0) in Ω
is satisfied.

Then, there exists a unique solution u ∈ C([0, T ], H1(Q )8) to the initial–boundary value problem (2.6)
with (u1,τ , u3,τ )|Σ ∈ H1(Σ)6 . Furthermore, estimate (2.7) is valid.

Now we will show that the solutions to the initial–boundary value problem (2.6) can be used to
obtain solutions to the initial–boundary value problem for Maxwell’s equations (1.1)–(1.3)

Proposition 2.5.

a) Let (e0,h0) ∈ L2(Ω)6 , ( f1, f2) ∈ L2(Q )6 , and g ∈ L2(Σ)3 be such that ν · g = 0 in Σ .
If ρ1,ρ2 ∈ L2(Q ), then there exists a unique weak solution (e,h) ∈ C([0, T ], L2(Ω)6) to (1.1)–(1.3) with
(eτ ,hτ )|Σ ∈ L2(Σ)6 .

b) Suppose that Γ is of class C2 , ε,µ ∈ C1(Q ), and β ∈ C1(Σ). Furthermore, assume (e0,h0) ∈ H1(Ω)6 ,
( f1, f2) ∈ H1(Q )6 , and g ∈ H1(Σ) such that ν · g = 0 in Σ and

g(0) =
(
1 + β(0)

)
ν × e0 −

(
1 − β(0)

)
h0
τ in Ω.

If ρ1,ρ2 ∈ H1(Q ), then there exists a unique differentiable solution (e,h) ∈ C([0, T ], H1(Ω)6) to (1.1)–
(1.3) with (eτ ,hτ )|Σ ∈ H1(Σ)6 .

Proof. Consider the unique weak solution to (2.6) with u0
2 = u0

4 = 0, u0
1 = e0, u0

3 = h0 and F =
( f1,ρ2, f2,−ρ1). Take the first (vector)-equation and the last equation

∂t(εu1) − ∇ × u3 − ε∇u4 = f1,

∂t u4 − ∇ · (εu1) = −ρ1.

Applying the divergence to the first equation and the time derivative to the last equation, and adding
the resulting equations together yield ∂2

t u4 − ∇ · (ε∇u4) = 0 because of (1.6). Similarly one can show
that ∂2

t u2 − ∇ · (µ∇u2) = 0.
These are both scalar wave equations. These two wave equations are complemented by the initial

conditions

u2|t=0 = u4|t=0 = ∂t u2|t=0 = ∂t u4|t=0 = 0

where the vanishing initial velocities is a consequence of (1.6). Furthermore, we have the boundary
condition u2 = u4 = 0 on Σ . Both u2 and u4 are solutions to a scalar wave equation with homoge-
neous initial and boundary data. Hence u2 ≡ u4 ≡ 0 and e ≡ u1 and h ≡ u3 are the solutions to the
initial–boundary value problem (1.1)–(1.3). This proves part a). The proof of part b) is very similar and
will be omitted. ✷
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In both cases a) and b) we have the estimates (2.3) for the weak solutions and (2.7) for differen-
tiable solutions. Furthermore, the solutions satisfy the divergence equations

∇ · (εe) = ρ1, ∇ · (µh) = ρ2 in Q . (2.17)

Now we will show that both: the weak solution and the differentiable solution to the Maxwell prob-
lem established in the last proposition have more regular traces than implied by the estimates (2.3)
and (2.7), respectively. We start with the weak solution. In what follows we will abbreviate

∥w∥γ ,X =
∥∥e−γ t w

∥∥
X and (w1, w2)γ ,X =

(
e−γ t w1, e−γ t w2

)
X .

Proposition 2.6. Assume the boundary Γ is of class C2 and let ε,µ ∈ C1(Q ), u = (e,h) ∈ H1(Q )6 . Then,
there exists a γ0 > 0 such that

∥eν∥2
γ ,Σ + ∥hν∥2

γ ,Σ 6̃ ∥eτ ∥2
γ ,Σ + ∥hτ ∥2

γ ,Σ + 1
γ

∥∥( f ,ρ)
∥∥2
γ ,Q + γ

∥∥(e,h)
∥∥2
γ ,Q

+
∥∥(e,h)(T )

∥∥2
γ ,Ω

+
∥∥(e,h)(0)

∥∥2
Ω

(2.18)

for γ > γ0 . Here f ,ρ are computed using (1.1) and (2.17).

Proof. Let P , z be real C1-vector fields and let κ be a Hermitian matrix function. Note that

(∇ × z) · (P × κz) = 1
2
(P · ∇)

(
zT κz

)
− 1

2
zT (P · ∇)κz − (κz · ∇)z · P

= 1
2
(P · ∇)

(
zT κz

)
− 1

2
zT (P · ∇)κz − ∇(z · P ) · (κz) + (κz · ∇)P · z

and hence,

(∇ × z) · (P × κz) − ∇ · (κz)P · z

= 1
2
(P · ∇)

(
zT κz

)
− 1

2
zT (P · ∇)κz − ∇ ·

[
(z · P ) · (κz)

]
+ (κz · ∇)P · z. (2.19)

Furthermore,

ℜ
{
∂t(εe) · (P × µh) − ∂t(µh) · (P × εe)

}
= −ℜ∂t

[
µh · (P × εe)

]
.

Using now (2.19) with z = e, κ = ε and z = h, κ = µ we establish the following identity

ℜ
{

f1 · (P × µh) − f2 · (P × εe) + ρ2(P · h) + ρ1(P · e)
}

= −ℜ∂t
[
µh · (P × εe)

]
− 1

2
(P · ∇)

(
eHεe + hHµh

)
+ ℜ

{
∇ ·

[
(e · P ) · (εe) + (h · P ) · (µh)

]}

+ 1
2

[
eH (P · ∇)εe + hH (P · ∇)µh

]
− ℜ

[
(εe · ∇)P · e + (µh · ∇)P · h

]
.

We multiply this identity by e−2γ t and integrate over Q and perform integration by parts in the first
three terms on the right-hand side:
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ℜ
{
( f1, P × µh)γ ,Q − ( f2, P × εe)γ ,Q + (ρ2, P · h)γ ,Q + (ρ1, P · e)γ ,Q

}

= −2γ ℜ(µh, P × εe)γ ,Q −
(
µh(T ), P × εe(T )

)
γ ,Ω

+
(
µh(0), P × εe(0)

)
Ω

− 1
2

∫

Σ

e−2γ t(P · ν)
(
eHεe + hHµh

)
dt dΓ + ℜ

∫

Σ

e−2γ t[(e · P )ν · εe + (h · P )ν · µh
]

dt dΓ

+ 1
2

(
e, (P · ∇)εe

)
γ ,Q + 1

2

(
h, (P · ∇)µh

)
γ ,Q − ℜ

(
(εe · ∇)P , e

)
γ ,Q − ℜ

(
(µh · ∇)P ,h

)
γ ,Q .

(2.20)

Choose now P such that P = ν on Σ . Since Γ ∈ C2 we know that ν ∈ C1. Then

−1
2

∫

Σ

e−2γ t(eHεe + hHµh
)

dt dΓ + ℜ
∫

Σ

e−2γ t[(ν · e)ν · εe + (ν · h)ν · µh
]

dt dΓ

6̃ 1
γ

∥∥( f ,ρ)
∥∥2
γ ,Q + γ

∥∥(e,h)
∥∥2
γ ,Q +

∥∥(e,h)(T )
∥∥2
γ ,Ω

+
∥∥(e,h)(0)

∥∥2
Ω

. (2.21)

With e = eτ + (ν · e)ν , h = hτ + (ν · h)ν the integrands of the integrals over Σ can be rewritten

1
2

(
eHεe + hHµh

)
− ℜ(ν · e)ν · εe − ℜ(ν · h)ν · µh

= 1
2
ℜ

{
eH
τ εe − (ν · e)(ν · εe) + hH

τ µh − (ν · h)(ν · µh)
}

= 1
2
ℜ

{[
eτ − (ν · e)ν

]H
εe +

[
hτ − (ν · h)ν

]H
µh

}

= 1
2
ℜ

{[
eτ − (ν · e)ν

]H
ε
[
eτ + (ν · e)ν

]
+

[
hτ − (ν · h)ν

]H
µ

[
hτ + (ν · h)ν

]}

= 1
2

{
eH
τ εeτ + hH

τ µhτ − |ν · e|2νT εν − |ν · h|2νT µν
}
.

Using this identity in (2.21) finishes the proof. ✷

By density, the identity (2.20) is also valid for weak solutions to Maxwell’s equations. Theorem 1.2
follows now from Proposition 2.5, part a), and Proposition 2.6.

If we replace e and h by the tangential derivatives of e and h along Σ in the estimate (2.18) we
obtain

∥eν∥2
1,γ ,Σ + ∥hν∥2

1,γ ,Σ 6̃ ∥eτ ∥2
1,γ ,Σ + ∥hτ ∥2

1,γ ,Σ + 1
γ

∥∥( f ,ρ)
∥∥2

1,γ ,Q

+ γ
∥∥(e,h)

∥∥2
1,γ ,Q +

∥∥(e,h)(T )
∥∥2

1,γ ,Ω
+

∥∥(e,h)(0)
∥∥2

1,γ ,Ω

under the same regularity assumptions on the coefficients. This improves the boundary regularity of
the differentiable solutions of Maxwell’s system (part b) of Proposition 2.5) to (e,h)|Σ ∈ H1(Σ)6 with
the estimate

∥∥(e,h)(T )
∥∥2

1,γ ,Ω
+ γ

∥∥(e,h)
∥∥2

1,γ ,Q +
∥∥(e,h)

∥∥2
1,γ ,Σ

6̃
∥∥(

e0,h0)∥∥2
1,γ ,Q + 1

γ

∥∥( f ,ρ)
∥∥2

1,γ ,Q + ∥g∥2
1,γ ,Σ .
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This proves Theorem 1.3 up to the regularity statement of the normal derivatives. The regularity of
the normal derivatives follows from (2.13) which yields the estimate

∥∥e−γ t∂νu
∥∥2

Σ
6̃

∥∥e−γ t∇τ u
∥∥2

Σ
+

∥∥e−γ t∂t u
∥∥2

Σ
+

∥∥e−γ t Lu
∥∥2

Σ
.

The last term can be estimated by ∥Lu∥2
1,γ ,Q /γ since by the divergence theorem,

∥∥e−γ t w
∥∥2

Σ
=

∫

Q

e−2γ t∇ ·
(
|w|2ν

)
dt dx =

∫

Q

e−2γ t∇ · ν|w|2 dt dx + 2ℜ
∫

Q

e−2γ t(w · ∇)w · ν dt dx

6̃
∥∥e−γ t w

∥∥2
Q + γ

∥∥e−γ t w
∥∥2

Q + 1
γ

∥∥e−γ t∇w
∥∥2

Q 6̃ 1
γ

∥w∥2
1,γ ,Q

for all w ∈ H1(Q )8.

3. Shape sensitivity analysis for Maxwell’s system

Here we will prove Theorem 1.4. The Gâteaux derivative (Eulerian derivative) of the shape func-
tional (1.8) in direction of V is

d J (Ω, V ) = lim
s→0

J (Ωs) − J (Ω)

s

= ℜ
∫

Q

[
(e − E)Hεe′ + (h − H)Hµh′]dt dx

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ (3.1)

where (e′,h′) is the shape derivative of (1.1)–(1.3) and Vν = V (0) · ν [11, Section 2.31]. In order to
calculate this derivative we need to establish shape differentiability of Maxwell’s equations and char-
acterize the shape derivative.

Throughout this section we assume that ε,µ are constant Hermitian, positive definite matrices
and that α is a positive constant. In contrast to Section 2 we write u = (e,h). With initial data
u0 = (e0,h0) ∈ H1(D)6 ∩H(D) we associate to each element Ω ∈ O the solution u(Ω) = (e,h)(Ω)
of the initial–boundary value problem (1.1)–(1.3) with f ≡ 0, g ≡ 0. Note that ρ j ≡ 0 for j = 1,2,
see (1.6).

Let Y be a space of functions defined on (0, T )× D . The mapping Ω → u(Ω) is shape differentiable
at Ω ∈O in direction V in Y if there exists a function U ∈ C1([0, S]; Y ) such that U (s, ·)|Q s = u(Ωs)
and

U (s) − U (0)

s
−→ ∂sU (0) strongly in Y , as s → 0.

The shape derivative is the function u′(Ω, V ) = ∂sU (0)|Q . If

U (s) − U (0)

s
⇀ ∂sU (0) weakly in Y as s → 0,

then the mapping Ω → u(Ω) is weakly shape differentiable in Y .
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Proposition 3.1. Let (e0,h0) ∈ H1(D)6 ∩ H(D), f = 0, g = 0 and let (e,h) ∈ C([0, T ], H1(Ω)6) ∩
C1([0, T ], L2(Ω)6) be the solution to the initial–boundary value problem (1.1)–(1.3) guaranteed by Theo-
rem 1.3.

This initial–boundary value problem is weakly shape differentiable with shape derivative (e′,h′) ∈
C([0, T ], L2(Ω)6) and the shape derivative is a weak solution to the initial–boundary value problem

ε∂te′ − ∇ × h′ = µ∂th′ + ∇ × e′ = 0 in Q (3.2)

with zero initial data

u′|t=0 = 0 in Ω (3.3)

and the lateral boundary condition

ν × e′ − αh′
τ = (Vν∂νeτ + eν∇τ Vν) × ν + α(Vν∂νhτ + hν∇τ Vν) in Σ. (3.4)

To establish shape differentiability of the initial–boundary value problem (1.1)–(1.3) we will follow
the approach by Cagnol and Zolésio for the wave equation with Dirichlet boundary conditions [3].
Certain aspects of the analysis will simplify since we work with an operator with constant coefficients
and with zero right-hand sides. Following the approach given in [3] it should be possible to obtain
the shape derivative for our Maxwell problem with non-zero f , ρ , and g and also with variable
coefficients α, ε, µ, provided certain assumptions on shape differentiability are satisfied.

3.1. The material derivative

At first we will establish the material differentiability of the initial–boundary value problem (1.1)–
(1.3) with f = g = 0 and divergence free initial data. We will show that this initial–boundary value
problem is weakly material differentiable and that the material derivative is the weak solution to
an initial–boundary value problem (1.1)–(1.3) with f and g depending on (e,h) and also the vector
field V (0).

For our purpose it will be useful to represent the hyperbolic system (1.5) in a different way. Denote
the entries of the matrices Al introduced in (1.4) by al

jk . Form the 6 × 3 matrices

Ak =
(
al

jk

)
16 j66
16l63

, k = 1,2, . . . ,6,

and the gradient of uk is the column vector ∇uk = (∂1uk, ∂2uk, ∂3uk)
T for k = 1,2, . . . ,6. Then

P u = A0∂t u +
6∑

k=1

Ak∇uk

is the Maxwell operator corresponding to the differential equations (1.1). Let u0 = (e0,h0) ∈H(D) ∩
H1(D)6. Denote the unique solutions to the family of initial–boundary value problems

P us = 0 in Q s, νs × es − αhs,τ = 0 in Σs, us|t=0 = u0 in Ωs (3.5)

by us . By Theorem 1.3 we know us = (es,hs) ∈ C([0, T ], H1(Ωs)
6) ∩ C1([0, T ], L2(Ωs)

6) for 0 < s 6 S .
The solution to (3.5) corresponding to s = 0 will be denoted by u.
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The pullback of us to Q is us = us ◦ Fs and the operator P s : H1(Q )6 → L2(Q )6 is defined by

P su = A0∂t u +
6∑

k=1

Ak
(

J−1
s

)T ∇uk

where J s = Dx Fs is the derivative of Fs (Jacobian matrix). By the chain rule one verifies that

P s(v ◦ Fs) = (P v) ◦ Fs for all v ∈ H1(Ωs)
6.

The shape difference quotient is ws = (us − u)/s for 0 < s 6 S and

P ws = P
[

us − u
s

]
= 1

s
(P − P s)us

since P u = 0 in Q and also P sus = P s(us ◦ Fs) = (P us) ◦ Fs = 0 in Q . This shows that the shape dif-
ference quotient satisfies a non-homogeneous hyperbolic differential equation. More precisely, setting
As

k =Ak( J−1
s )T , we have

P ws = 1
s
(P − P s)us = 1

s

6∑

k=1

(
Ak −As

k

)
∇us

k. (3.6)

Furthermore,

ws|t=0 = us|t=0 − u|t=0

s
= (us|t=0 ◦ Fs) − u|t=0

s
= (u0 ◦ Fs) − u0

s
(3.7)

which provides the initial data of the shape difference quotient. Finally, we discuss the boundary con-
dition. From Proposition 2.48 [11] we know that the pullback of the exterior unit normal νs along Γs
to Ω is

νs = νs ◦ Fs = ( J−1
s )T ν

|( J−1
s )T ν|

.

Hence, the pullback us satisfies the boundary condition

Msus := νs × es − α
[
hs −

(
hs · νs)νs] = 0 on Σ

for 0 6 s < S and we write M in the case s = 0. Note that the definition of the boundary operator M
is slightly different from (2.2). Hence

M ws = M
us − u

s
= 1

s
(M − Ms)us on Σ

since also Mu = 0 on Σ . In particular,

M ws = ν − νs

s
× es + α

[(
hs · ν

)ν − νs

s
+

(
hs · ν − νs

s

)
νs

]
(3.8)
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on Σ . Note that ws ∈ C([0, T ], H1(Ω)6) for 0 < s 6 S . Then lims→0 ws is the material derivative, pro-
vided the limit exists. In order to establish the existence of the material derivative we will show that
the shape difference quotient ws(t) at time t is uniformly bounded in L2(Ω) with respect to s.

Proposition 3.2. There exists a constant C > 0 such that

∥∥ws(t)
∥∥

Ω
6 C for all s ∈ (0, S), t ∈ [0, T ], (3.9)

where C depends only on ε, µ, α, Ω and ∥u0∥1,γ ,Ω .

Proof. By the chain rule the pullback us has the same regularity as the solution us . We know that
ws satisfies the initial–boundary value problem (3.6), (3.7), (3.8). In order to obtain a uniform bound
for ws we need to show that P ws , ws|t=0, M ws are uniformly bounded in L2. Hence we will show
that the limits

lim
s→0

∥∥P ws
∥∥

(0,t)×Ω
, lim

s→0

∥∥ws|t=0
∥∥

Ω
, lim

s→0

∥∥M ws
∥∥

(0,t)×Γ
(3.10)

exist for all t ∈ [0, T ]. Once we have established these limits, formula (3.9) follows from Proposi-
tion 1.1.

By the chain rule, one has

lim
s→0

Ak −As
k

s
= −∂sAs

k

∣∣
s=0 =Ak

[
∂s J T

s
](

J T
s
)−2

and using the formula ∂s J s|s=0 = D V (0) (Lemma 2.31 [11]) one obtains lims→0(Ak − As
k)/s =

Ak[D V (0)]T where D V = Dx V is the derivative of V . Hence,

lim
s→0

P ws =
6∑

k=1

Ak
[

D V (0)
]T ∇uk (3.11)

for every t ∈ [0, T ]. From formula (3.7) we conclude with the aid of Proposition 2.32 [11]

lim
s→0

ws
∣∣
t=0 =

[
V (0) · ∇

]
u0. (3.12)

Finally we evaluate lims→0 M ws . Compute

∂sνs = ∂s
( J−1

s )T ν

|( J−1
s )T ν|

= −1
2

∂s(( J−1
s )T ν, ( J−1

s )T ν)

|( J−1
s )T ν|3

(
J−1

s
)T

ν + ( J−2
s )T ∂s J T

s ν

|( J−1
s )T ν|

= − (( J−2
s )T ∂s J T

s ν, ( J−1
s )T ν)

|( J−1
s )T ν|3

(
J−1

s
)T

ν + ( J−2
s )T ∂s J T

s ν

|( J−1
s )T ν|

where the notation (·,·) denotes the scalar product in R3. Since lims→0 J s = I (the identity matrix)
and ∂s J s|s=0 = D V (0), this yields −∂sνs|s=0 = (D V (0)T ν,ν)ν− D V (0)T ν which is the tangential com-
ponent of the vector D V (0)T ν . We will write ν̇ := ∂sνs|s=0 = −[D V (0)T ν]τ and thus

lim
s→0

M ws = −ν̇ × e − α
[
(h · ν)ν̇ + (h · ν̇)ν

]
. (3.13)

Formulas (3.11)-(3.13) establish the limits postulated in (3.10) since u ∈ C([0, T ], H1(Ω)6). ✷
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Because of the uniform bound (3.9) there exists sequence si ↘ 0 such that wsi converges weakly
in L2(Ω)6 for every t . This weak limit is the material derivative u̇, i.e.

wsi (t) ⇀ u̇(t) weakly in L2(Ω)6, t ∈ [0, T ].

Using (3.11)–(3.13) we see that the material derivative u̇ = (ė, ḣ) is the unique solution to the initial–
boundary value problem:

P u̇ =
6∑

k=1

Ak
[

D V (0)
]T ∇uk in Q ,

u̇|t=0 =
[
V (0) · ∇

]
u0 in Ω,

ν × ė − αḣ = −ν̇ × e − α
[
(h · ν)ν̇ + (h · ν̇)ν

]
in Σ. (3.14)

By Proposition 1.1, we have u̇ ∈ C([0, T ], L2(Ω)6).

3.2. The shape derivative

The shape derivative can now be computed

u′(Ω, V ) = u̇ − DuV (0) =
[
V (0) · ∇

]
u (3.15)

[3, Corollary 5], and since u ∈ C([0, T ], H1(Ω)6) we know u′ ∈ C([0, T ], L2(Ω)6). Observe the homo-
geneous initial condition u′|t=0 = 0.

To prove Theorem 3.1 we need to show that the shape derivative satisfies the homogeneous
Maxwell equations as well as the boundary condition (3.4). In what follows we will write V instead
of V (0). To establish (3.2) compute

P u′ = P u̇ − P
[
(V · ∇)u

]
=

6∑

k=1

Ak[D V ]T ∇uk − A0∂t
[
(V · ∇)u

]
−

6∑

k=1

Ak∇[V · ∇uk]

=
6∑

k=1

Ak[D V ]T ∇uk − (V · ∇)
[

A0∂t u
]
−

6∑

k=1

Ak
{
[D V ]T ∇uk + (V · ∇)∇uk

}

=
6∑

k=1

Ak[D V ]T ∇uk − (V · ∇)
[

A0∂t u
]
−

6∑

k=1

Ak[D V ]T ∇uk − (V · ∇)

( 6∑

k=1

Ak∇uk

)

=
6∑

k=1

Ak[D V ]T ∇uk − (V · ∇)(P u) −
6∑

k=1

Ak[D V ]T ∇uk = 0

since P u = 0 in Q . For the boundary condition, observe that V ·∇ = Vτ ·∇τ + Vν∂ν where ∇τ denotes
the tangential gradient on Γ and Vτ = V − Vνν . Since ν × e − αhτ = 0 along Γ ,

0 = (Vτ · ∇τ )
[
ν × e − α(ν × h) × ν

]
= (Vτ · ∇τ )ν × e + ν × (Vτ · ∇τ )e

− α
{[

(Vτ · ∇τ )ν × h
]
× ν +

[
ν × (Vτ · ∇τ )h

]
× ν + [ν × h] × (Vτ · ∇τ )ν

}

which gives
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ν × (V · ∇)e − α
[
ν × (V · ∇)h

]
× ν = ν × (Vν∂νe) − α

[
ν × (Vν∂νh)

]
× ν − (Vτ · ∇τ )ν × e

+ α
{[

(Vτ · ∇τ )ν × h
]
× ν + [ν × h] × (Vτ · ∇τ )ν

}

= ν × (Vν∂νe) − α
[
ν × (Vν∂νh)

]
× ν − (Vτ · ∇τ )ν × e

− α
{
(Vτ · ∇τ )ν(h · ν) + ν

(
h · (Vτ · ∇τ )ν

)}
.

Hence the shape derivative satisfies the boundary condition

ν × e′ − αh′
τ = ν × ė − αḣτ − ν × (V · ∇)e + α

[
(V · ∇)h

]
τ

= −ν̇ × e − α
{
(h · ν)ν̇ + (h · ν̇)ν

}
− ν × (V · ∇)e + α

[
(V · ∇)h

]
τ

= −ν × (Vν∂νe) + α
[
ν × (Vν∂νh)

]
× ν +

[
(Vτ · ∇τ )ν − ν̇

]
× e

+ α
{[

(Vτ · ∇τ )ν − ν̇
]
(h · ν) + ν

(
h ·

[
(Vτ · ∇τ )ν − ν̇

])}
. (3.16)

Since ∇τ Vν = ∇τ (V · ν) = [(D V )T ν]τ + [(Dν)T V ]τ one obtains

(Vτ · ∇τ )ν − ν̇ = (Vτ · ∇τ )ν +
[
(D V )T ν

]
τ =

[
(Dν)V

]
τ +

[
(D V )T ν

]
τ

= ∇τ Vν +
[
(Dν)V

]
τ −

[
(Dν)T V

]
τ .

Recall from Section 2 that ν = −∇φ where φ(x) = dist(Γ, x). Hence Dν = (Dν)T which yields (Vτ ·
∇τ )ν − ν̇ = ∇τ Vν , and the boundary condition (3.16) simplifies to

ν × e′ − αh′
τ = −ν × (Vν∂νe) + α

[
ν × (Vν∂νh)

]
× ν + ∇τ Vν × e

+ α
{
∇τ Vν(h · ν) + ν(h · ∇τ Vν)

}
.

Finally, since ν × e = αhτ we have also eτ = −α(ν × h) and hence,

∇τ Vν × e = ∇τ Vν × (eτ + eνν) = −α∇τ Vν × (ν × h) + ∇τ Vν × eνν

= −α(h · ∇τ Vν)ν + ∇τ Vν × eνν.

Combining the last two formulas completes the proof of Proposition 3.1 in view of (2.16).

3.3. Proof of Theorem 1.4

Use the solution to the adjoint problem (1.10) in formula (3.1) and compute the Gâteaux derivative

d J (Ω, V ) = ℜ
∫

Q

(ε∂t p − ∇ × q) · e′ dt dx + ℜ
∫

Q

(µ∂tq + ∇ × p) · h′ dt dx

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

= ℜ
∫

Σ

[
(ν × p) · h′

τ + q ·
(
ν × e′)]dt dΓ
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+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

= ℜ
∫

Σ

q ·
[
(Vν∂νeτ + eν∇τ Vν) × ν + α(Vν∂νhτ + hν∇τ Vν)

]
dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

where we used that (p,q) solves the adjoint problem (1.10) and that (e′,h′) is a weak solution to
(3.2)–(3.4). To finish the proof we remove the derivatives of Vν by integration by parts on Γ

d J (Ω, V ) = ℜ
∫

Σ

[
q · Vν{∂νeτ × ν + α∂νhτ } + ∇τ Vν · (ν × eνq) + αhνq∇τ Vν

]
dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

= ℜ
∫

Σ

[
q · {∂νeτ × ν + α∂νhτ } − divΓ (ν × eνq) − α divΓ (hνq)

]
Vν dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

= ℜ
∫

Σ

[
q · {∂νeτ × ν + α∂νhτ } + curlΓ (eνq) − α divΓ (hνq)

]
Vν dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ,

see for example [1, Section 2.3]. Here divΓ is the surface divergence and curlΓ is the surface curl.
Note that the Gâteaux derivative turns out to be a linear function of Vν which proves that the shape
functional is Fréchet-differentiable.

4. The case α ≡ 0

Here we will show that the shape functional (1.8) is Fréchet differentiable in the case α ≡ 0. For
that we will investigate the dependence of the Fréchet derivative (1.9) on α. As in Section 2 we will
work with β = (1 − α)/(1 + α). We will show that d J (Ω, V ) is uniformly bounded with respect to β
for β ∈ [−1,1].

4.1. The boundary value problem with dissipative boundary conditions

At first we will study the initial–boundary value problem for Maxwell’s equations

∂t(εe) − ∇ × h = f1, ∂t(µh) + ∇ × e = f2 in Q ,

(e,h)|t=0 =
(
e0,h0) in Ω,

(1 + β)ν × e + (1 − β)hτ = 0 in Σ (4.1)
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for β ∈ L∞(Σ) satisfying |β| 6 1 almost everywhere. In contrast to the previous sections this bound-
ary condition is only dissipative but not necessarily strictly dissipative.

Consider the proof of Proposition 2.1 and let u ∈ H1(Q )8 be such that u2 = u4 = 0 and Mu = 0
on Σ and let β ∈ L∞(Σ) with |β| 6 1. Then

ℜ
∫

Σ

(ν × v1) · v3,τ dΓ dt = ℜ
∫

Σ

1 − β

1 + β
|v3,τ |2 = ℜ

∫

Σ

1 + β

1 − β
|v1,τ |2 > 0.

This implies the estimate

∥∥e−γ T u(T )
∥∥2

Ω
+ γ

∥∥e−γ t u
∥∥2

Q 6̃ 1
γ

∥∥e−γ t Lu
∥∥2

Q +
∥∥u(0)

∥∥2
Ω

where a 6̃ b means now a 6 Cb for some constant C depending on ε,µ,Ω but not on β . Following
the results of Section 2 one can solve the initial–boundary value problem (4.1) with |β| 6 1. Since
we want to discuss the dependence of the solution on the coefficient function β of the boundary
operator M we will denote the solution of the initial–boundary value problem (4.1) by (e,h)β .

To be more precise, if ε,µ ∈ L∞(Q ), f ∈ L2(Q )6, (e0,h0) ∈ L2(Ω)6 one obtains a unique weak
solution (e,h)β ∈ C([0, T ], L2(Ω)6) with the estimate

∥∥e−γ T (e,h)β(T )
∥∥2

Ω
+ γ

∥∥e−γ t(e,h)β
∥∥2

Q 6̃
∥∥(

e0,h0)∥∥2
Ω

+ 1
γ

∥∥e−γ t f
∥∥2

Q (4.2)

for γ > γ0. If Γ ∈ C2, ε,µ ∈ C1, f ,ρ, e0,h0 ∈ H1 one obtains a unique differentiable solution (e,h)β ∈
C([0, T ], H1(Ω)6) ∩ C1([0, T ], L2(Ω)6) and

∥∥(e,h)(T )β
∥∥2

1,γ ,Ω
+ γ

∥∥(e,h)β
∥∥2

1,γ ,Q 6̃
∥∥(

e0,h0)∥∥2
1,γ ,Ω

+ 1
γ

∥∥( f ,ρ)
∥∥2

1,γ ,Q .

Since a differentiable solution satisfies also (e,h)β ∈ H1(Q )6, the trace theorem in Sobolev spaces
give (e,h)β |Σ ∈ H1/2(Σ)6. Furthermore, one can show that ∂νeτ , ∂νhτ ∈ H−1/2(Σ).

Lemma 4.1. Let (e0,h0) ∈ H1(Ω) and f ∈ H1(Q )6 be such that ρ ∈ H1(Q )2 . Then the unique differentiable
solution (e,h)β ∈ C([0, T ], H1(Ω)6) ∩ C1([0, T ], L2(Ω)6) satisfies

[∂ jeβ ]τ , [∂ jhβ ]τ ∈ H−1/2(Σ)3 (4.3)

for j = 1,2,3, uniformly in β for |β| 6 1.

Proof. Here we will only sketch the proof. The full proof requires a smoothing of the solution by
Friedrichs’s mollifiers. For brevity we will drop the subscript β . Let (e,h) ∈ H1/2(Σ)3. By the extension
theorem in Sobolev spaces there exist (E, H) ∈ H1(Q )3 such that ∥(E, H)∥H1(Q ) 6 C∥(e,h)∥H1/2(Σ) .
Integration by parts gives

∫

Σ

(ν × e) · ∂ jh dt dΓ −
∫

Σ

(ν × h) · ∂ je dt dΓ

=
∫

Q

E ·
[
∂t(ε∂ je) − ∇ × ∂ jh

]
dt dx +

∫

Q

H ·
[
∂t(µ∂ jh) + ∇ × ∂ je

]
dt dx
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+
∫

Q

(ε∂t E − ∇ × H) · ∂ je dt dx +
∫

Q

(µ∂t H + ∇ × E) · ∂ jh dt dx

−
∫

Ω

[
∂ je

HεE + ∂ jh
HµH

]
dx

∣∣∣
t=T

t=0
.

Choosing h = 0 one obtains the estimate

∣∣∣∣

∫

Σ

(ν × e) · ∂ jh dt dΓ

∣∣∣∣ 6 C∥e∥H1/2(Σ)

∥∥(e,h)
∥∥

H1(Q )

and by choosing e = 0 one has

∣∣∣∣

∫

Σ

(ν × h) · ∂ je dt dΓ

∣∣∣∣ 6 C∥h∥H1/2(Σ)

∥∥(e,h)
∥∥

H1(Q )
.

These estimates show that [∂ je]τ , [∂ jh]τ are linear functionals on H1/2(Σ). ✷

These regularity results are weaker than the ones established in Theorem 1.3. However, they are
also valid in the case that β = 1 or β = −1.

4.2. The derivative of the shape functional in the case α ≡ 0

As in Section 3 let ε, µ be constant Hermitian, positive matrices and let α be a positive constant.
Note that the Fréchet derivative of the shape functional (1.9) can be interpreted as a duality between
the two Sobolev spaces H1/2(Σ) and H−1/2(Σ). The regularity results of the previous subsection
guarantee that limα→0 J (Ω) exists. Hence we have proved the following result.

Proposition 4.2. Suppose that ε,µ are constant, Hermitian positive definite matrices and that (E, H) ∈
H1((0, T ) × D) ∩ H((0, T ) × D). Furthermore, let f ≡ 0, g ≡ 0 and (e0,h0) ∈ H1(D)6 ∩ H(D) and let
(e,h) ∈ C([0, T ], H1(Ω)6) be the solution to (1.1)–(1.3) with α ≡ 0.

Then, the shape functional (1.8) is Fréchet differentiable at Ω ∈O in direction of the vector field V with
Fréchet derivative

d J (Ω, V ) = ℜ⟨qVν , ∂νeτ × ν⟩ + ℜ
∫

Σ

∇τ Vν · (ν × eνq)dt dΓ

+ 1
2

∫

Σ

[
(e − E)Hε(e − E) + (h − H)Hµ(h − H)

]
Vν dt dΓ

where ⟨·,·⟩ denotes the duality between H1/2(Σ) and H−1/2(Σ) and (p,q) is the solution to the backward
adjoint initial–boundary value problem

ε∂t p − ∇ × q = ε(e − E), µ∂tq + ∇ × qµ(h − H) in Q ,

p|t=T = 0, q|t=T = 0 in Ω,

ν × p = 0 in Σ.
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Remark 4.1. The initial–boundary value problem characterizing the material derivative (3.14) can be
used to establish u̇ ∈ C([0, T ], L2(Ω)6) even in the case α ≡ 0 [5, Corollary 1.4]. The shape derivative
has the same regularity because of (3.15).

Note that the boundary condition of the shape derivative in the case α ≡ 0 simplifies to

ν × e′ = (Vν∂νeτ + eν∇τ Vν) × ν in Σ.

In the case that ε and µ are scalar functions, it has been shown that the trace of the normal deriva-
tive of the electric field is square integrable, i.e. ∂νe|Σ ∈ L2(Σ)3 [6, Theorem 1.1], [12, Proposition 6.1].
However, this result is not sufficient to establish the regularity of the shape derivative from the
boundary value problem (3.2)–(3.4).

We believe that our approach can be used for other shape optimization problems where the con-
straint is a hyperbolic boundary value problem with a conservative boundary condition. Examples
include the scalar wave equation with Neumann boundary conditions and the elastic wave equations
with a zero traction boundary condition.
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