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Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two distinct types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations. In the long wavelength limit, revising and extending Landau and Khalatnikov's theory initially developed for helium [ZhETF 19, 637 (1949)], we obtain universal expressions for three-and four-body couplings among these two types of excitations. We calculate the corresponding phonon damping rates at low temperature and compare them to those of a pure phononic origin in high-pressure liquid helium and in strongly interacting Fermi gases, paving the way to experimental observations.

Introduction -Homogeneous superfluids with shortrange interactions exhibit, at sufficiently low temperature, phononic excitations φ as the only microscopic degrees of freedom. In this universal limit, all superfluids of this type reduce to a weakly interacting phonon gas with a quasilinear dispersion relation, irrespective of the statistics of the underlying particles and of their interaction strength. Phonon damping then only depends on the dispersion relation close to zero wavenumber (namely, its slope and third derivative) and on the phonon nonlinear coupling, deduced solely from the system equation of state through Landau-Khalatnikov quantum hydrodynamics [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF].

In experiments, however, temperatures are not always low enough to make the dynamics purely phononic. Other elementary excitations can enrich the problem, such as spinless bosonic rotons in liquid helium 4 and spinful fermionic BCS-type pair-breaking excitations in spin-1/2 cold-atom Fermi gases. These excitations, denoted here as γ-quasiparticles, exhibit in both cases an energy gap ∆ > 0. Remarkably, as shown by Landau and Khalatnikov [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF], the phonon-roton coupling, and more generally phonon coupling to all gapped excitations as we shall see, depend to leading order in temperature only on a few parameters of the dispersion relation of the γ-quasiparticles, namely the value of the minimum ∆ and its location k 0 in wavenumber space, their derivatives with respect to density, and the effective mass m * close to k = k 0 . We have discovered however that the φ -γ coupling of Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF] is not exact, a fact apparently unnoticed in the literature. Our goal here is to complete the result of Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF], and to quantitatively obtain phonon damping rates due to the φ -γ coupling as functions of temperature, a nontrivial task in the considered strongly interacting systems. We restrict to the collisionless regime ω q τ γ ≫ 1 and ω q τ φ ≫ 1, where ω q is the angular eigenfrequency of the considered phonon mode of wavevector q, and τ γ (τ φ ) is a typical collision time of thermal γ-quasiparticles (thermal phonons). An exten-sion to the hydrodynamic regime ω q τ γ 1 or ω q τ φ 1 may be obtained from kinetic equations [START_REF] Khalatnikov | Relaxation phenomena in superfluid Helium[END_REF]. An experimental test of our results seems nowadays at hand, either in liquid helium 4, extending the recent work of Ref. [START_REF] Fåk | Roton-phonon interaction in superfluid 4 He[END_REF], or in homogeneous cold Fermi gases, which the breakthrough of flat-bottom traps [START_REF] Gaunt | Bose-Einstein condensation of atoms in a uniform potential[END_REF] allows one to prepare [START_REF] Mukherjee | Homogeneous Atomic Fermi Gases[END_REF] and to acoustically excite by spatio-temporally modulated laser-induced optical potentials [START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF]7]. Landau-Khalatnikov revisited -We recall the reasoning of Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF] to get the phonon-roton coupling in liquid helium 4, extending it to the phonon-fermionic quasiparticle coupling in unpolarised spin-1/2 Fermi gases. We first treat in first quantisation the case of a single roton or fermionic excitation, considered as a γ-quasiparticle of position r, momentum p and spin s = 0 or s = 1/2. In a homogeneous superfluid of density ρ, its Hamiltonian is given by ǫ(p, ρ), an isotropic function of p such that p → ǫ(p, ρ) is the γ-quasiparticle dispersion relation. In presence of acoustic waves (phonons), the superfluid acquires position-dependent density ρ(r) and velocity v(r). For a phonon wavelength large compared to the γ-quasiparticle coherence length [START_REF] Cohen-Tannoudji | Atomic motion in laser light[END_REF], here its thermal wavelength (2π 2 /m * k B T ) 1/2 [START_REF]For a thermal phonon wavenumber[END_REF], and for a phonon angular frequency small compared to the γ-quasiparticle "internal" energy ∆, we can write the γ-quasiparticle Hamiltonian in the local density approximation [START_REF] Thomas | The calculation of atomic fields[END_REF][START_REF] Fermi | Un metodo statistico per la determinazione di alcune prioprietà dell'atomo[END_REF]:

H = ǫ(p, ρ(r)) + p • v(r) (1) 
The last term is a Doppler effect reflecting the energy difference in the lab frame and in the frame moving with the superfluid. For a weak phononic perturbation of the superfluid, we expand the Hamiltonian to second order in density fluctuations δρ(r) = ρ(r) -ρ:

H ≃ ǫ(p, ρ) + ∂ ρ ǫ(p, ρ)δρ(r) + p • v(r) + 1 2 ∂ 2 ρ ǫ(p, ρ)δρ 2 (r) (2 
) not paying attention yet to the noncommutation of r and p. Phonons are bosonic quasiparticles connected to the expansion of δρ(r) and v(r) on eigenmodes of the quantum-hydrodynamic equations linearised around the homogeneous solution at rest in the quantisation volume V:

δρ(r) v(r) = 1 V 1/2 q =0 ρ q v q bq + ρ q -v q b † -q e iq•r (3)
with modal amplitudes ρ q = [ ρq/(2mc)] 1/2 and v q = [ c/(2mρq)] 1/2 q, m being the mass of a superfluid particle and c the sound velocity. The annihilation and creation operators bq and b † q of a phonon of wavevector q and energy ω q = cq obey usual commutation relations [ bq , b †

q ′ ] = δ q,q ′ . For an arbitrary number of γ-quasiparticles, we switch to second quantisation and rewrite Eq.( 2) as

Ĥ = k,σ ǫ k γ † kσ γkσ + k,k ′ ,q,σ A 1 (k, q; k ′ ) V 1/2 (γ † k ′ σ γkσ bq +h.c.) × δ k+q,k ′ + k,k ′ ,q,q ′ ,σ A 2 (k, q; k ′ , q ′ ) V γ † k ′ σ γkσ δ k+q,k ′ +q ′ × [ b † q ′ bq + 1 2 ( b-q ′ bq + h.c.)] ( 4 
)
where γkσ and γ † kσ are bosonic (rotons, s = 0, σ = 0) or fermionic (s = 1/2, σ =↑, ↓) annihilation and creation operators of a γ-quasiparticle of wavevector k = p/ in spin component σ, obeying usual commutation or anticommutation relations. The first sum in the right-hand side of Eq.( 4) gives the γ-quasiparticle energy in the unperturbed superfluid, with ǫ k ≡ ǫ( k, ρ). The second sum, originating from the Doppler term and the term linear in δρ in Eq.(2), describes absorption or emission of a phonon by a γ-quasiparticle, characterised by the amplitude

A 1 (k, q; k ′ ) = ρ q ∂ ρ ǫ k + ∂ ρ ǫ k ′ 2 + v q • k + k ′ 2 (5) 
where q, k and k ′ are the wavevectors of the incoming phonon and the incoming and outgoing γ-quasiparticles. Eq.( 5) is invariant under exchange of k and k ′ . This results from symmetrisation of the various terms, in the form [f (p)e iq•r + e iq•r f (p)]/2 with r and p canonically conjugated operators, ensuring that the correct form of Eq.( 2) is hermitian. The third sum in Eq.( 4), originating from the terms quadratic in δρ in Eq.( 2), describes direct scattering of a phonon on a γ-quasiparticle, with the symmetrised amplitude

A 2 (k, q; k ′ , q ′ ) = ρ q ρ q ′ ∂ 2 ρ ǫ k + ∂ 2 ρ ǫ k ′ 2 (6)
where the primed wavevectors are the ones of emerging quasiparticles. It also describes negligible two-phonon absorption and emission. The effective amplitude for φ -γ scattering is obtained by adding the contributions of the direct process (terms of Ĥ quadratic in b), and of the absorption-emission or emission-absorption process (terms linear in b) treated to second order in perturbation theory [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF]:

A eff 2 (k, q; k ′ , q ′ ) = q q ′ k k ′ + q k k ′ q ′ + q k k ′ q ′ = A 2 (k, q; k ′ , q ′ ) + A 1 (k, q; k + q)A 1 (k ′ , q ′ ; k ′ + q ′ ) ω q + ǫ k -ǫ k+q + A 1 (k -q ′ , q ′ ; k)A 1 (k -q ′ , q; k ′ ) ǫ k -ω q ′ -ǫ k-q ′ (7)
where in the second (third) term the γ-quasiparticle first absorbs phonon q (emits phonon q ′ ) then emits phonon q ′ (absorbs phonon q). Up to this point this agrees with Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF], except that the first derivative ∂ ρ ∆ in Eq.( 5), thought to be anomalously small in low-pressure helium, was neglected in Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF].

Eq. ( 7), issued from a local density approximation, holds to leading order in a low-energy limit. We then take the T → 0 limit with scaling laws

q ≈ T, k -k 0 ≈ T 1/2 (8)
reflecting the fact that the thermal energy of a phonon is cq ≈ k B T and the effective kinetic energy of a γquasiparticle, that admits the expansion

ǫ k -∆ = k→k0 2 (k -k 0 ) 2 2m * + O(k -k 0 ) 3 (9) 
is also ≈ k B T . The coupling amplitudes A 1 and energy denominators in Eq.( 7) must be expanded up to relative corrections of order T [START_REF]One expands to order T 3/2 for A1 and T 2 for energy denominators[END_REF]. On the contrary, it suffices to expand A 2 to leading order T in temperature. We hence get our main result, the effective coupling amplitude of the φ -γ scattering to leading order in temperature:

A eff 2 (k, q; k ′ , q ′ ) ∼ T →0 q mcρ 1 2 ρ 2 ∆ ′′ + ( ρk ′ 0 ) 2 2m * + 2 k 2 0 2m * × ρ∆ ′ ck 0 2 uu ′ + ρ∆ ′ ck 0 (u + u ′ ) uu ′ - ρk ′ 0 k 0 + 2m * c k 0 w + m * c k 0 (u + u ′ )w + u 2 u ′2 - ρk ′ 0 k 0 (u 2 + u ′2 ) (10) 
Here ∆ ′ , k ′ 0 , ∆ ′′ are first and second derivatives of ∆ and k 0 with respect to ρ; u = q•k qk , u ′ = q ′ •k q ′ k , w = q•q ′ qq ′ are cosines of the angles between k, q and q ′ ; our results hold for k 0 = 0 provided the limit k 0 → 0 is taken in Eq. [START_REF] Fermi | Un metodo statistico per la determinazione di alcune prioprietà dell'atomo[END_REF]. In Eq.(3.17) of Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF], the ∆ ′ terms were neglected as said, but the last term in Eq.( 10), with the factor ρk ′ 0 /k 0 , was simply forgotten.

Addition in the corrected-augmented version: Expression (7) of the coupling amplitude is incomplete because it does not take into account the interactions among phonons. This omission affects expression [START_REF] Fermi | Un metodo statistico per la determinazione di alcune prioprietà dell'atomo[END_REF] of the effective amplitude, the angular integral in note [47] and the dashed lines of Figs. 1 and2. The erratum [START_REF] Castin | Erratum: Landau Phonon-Roton Theory Revisited for Superfluid 4 He and Fermi Gases [PRL 119,260402[END_REF] that corrects this omission is reproduced here in appendix, see in particular Eqs. [START_REF] Berberich | Investigation of the lifetime of longitudinal phonons at GHz frequencies in liquid and solid 4 He[END_REF] and [START_REF] Rugar | Accurate measurement of lowenergy phonon dispersion in liquid 4 He[END_REF], and it is supplemented by a verification of the final result using a microscopic approach based on Bogoliubov theory with an arbitrary short-range interaction potential. -End of addition.

Damping rates -A straightforward application of Eq.( 10) is a Fermi-golden-rule calculation of the damping rate Γ scat q of phonons q due to scattering on γquasiparticles. The γ-quasiparticles are in thermal equilibrium with Bose or Fermi mean occupation numbers nγ,k = [exp(ǫ k /k B T ) -(-1) 2s ] -1 . So are phonons in modes q ′ = q, with Bose occupation numbers nb,q ′ = [exp( ω q ′ /k B T ) -1] -1 ; mode q is initially excited (e.g. by a sound wave) with an arbitrary number n b,q of phonons. By including both loss q + k → q ′ + k ′ and gain q ′ + k ′ → q + k processes [46] and summing over σ, one finds that d dt n b,q = -Γ scat q (n b,q -nb,q ) with

Γ scat q = 2π (2s + 1) d 3 kd 3 q ′ (2π) 6 A eff 2 (k, q; k ′ , q ′ ) 2 × δ(ǫ k + ω q -ǫ k ′ -ω q ′ ) nb,q ′ nγ,k ′ [1 + (-1) 2s nγ,k ] nb,q (11) 
and k ′ = k + qq ′ . As our low-energy theory only holds for k B T ≪ ∆, the gas of γ-quasiparticles is nondegenerate, and nγ,k ≃ exp(-ǫ k /k B T ) ≪ 1 in Eq. [START_REF] Beliaev | Energy-Spectrum of a Non-ideal Bose Gas[END_REF]. By taking the T → 0 limit at fixed cq/k B T and setting A eff 2 = ωq ρ f , where the dimensionless quantity f only depends on angle cosines, we obtain the equivalent

Γ scat q ∼ T →0 (2s + 1) e -∆/kB T (2π) 9/2 k 2 0 q 4 c ρ 2 (m * k B T ) 1/2 I (12) with I = d 2 Ω k d 2 Ω q ′ f 2 (u, u ′ , w) an integral over solid angles of direction k and q ′ [47].
One proceeds similarly for the calculation of the damping rate Γ a-e q of phonons q due to absorption q + k → k ′ or emission k ′ → q + k processes by thermal equilibrium γ-quasiparticles. We obtain Γ a-e q = 2π (2s + 1) [START_REF] Giorgini | Damping in dilute Bose gases: A mean-field approach[END_REF] with k ′ = k + q. Low degeneracy of the γ-quasiparticles and energy conservation allow us to write nγ,k -nγ,k ′ ≃ exp(-ǫ k /k B T )/(1 + nb,q ). Energy conservation leads here to a scaling on k different from Eq.( 8) as it forces k to be at a nonzero distance from k 0 , even in the lowphonon-energy limit: When q → 0 at fixed k, the Dirac delta in Eq.( 13) becomes

d 3 k (2π) 3 [A 1 (k, q; k ′ )] 2 × δ( ω q + ǫ k -ǫ k ′ )(n γ,k -nγ,k ′ )
δ( ω q + ǫ k -ǫ k ′ ) ∼ q→0 ( cq) -1 δ 1 -u dǫ k dk c ( 14 
)
and imposes that the group velocity 1 dǫ k dk of the incoming γ-quasiparticle is larger in absolute value than that, c, of the phonons. This condition, reminiscent of Landau's criterion, restricts wavenumber k to a domain D not containing k 0 . In the low-q limit, that is for q much smaller than the k significantly contributing to Eq.( 13), but with no constraint on the ratio cq/k B T , we write A 1 in Eq.( 5) to leading order q 1/2 in q, and integrate over the direction of k, to obtain

Γ a-e q ≃ (2s + 1)ρ 4πmc D dkk 2 | dǫ k dk | e -ǫ k /kB T 1 + nb,q ∂ ρ ǫ k + 2 c 2 k ρ dǫ k dk 2 (15) 
∼ T →0 (2s + 1)ρk 2 * 4π 2 mc 3 ∂ ρ ǫ k * + ck * ρη * 2 k B T e -ǫ k * /kB T 1 + nb,q (16) 
Eq.( 16) is an equivalent when T → 0 at fixed cq/k B T ; k * is the element of the border of D ( dǫ k dk | k=k * = η * c, η * = ±) with minimal energy ǫ k (when more than one of such k * exists, one has to sum their contributions). As ǫ k * > ∆, the damping rate due to scattering dominates the one due to absorption-emission in the mathematical limit T → 0 ; we shall see however that this is not always so for typical temperatures in current experiments.

To be complete, we give a low-temperature equivalent of the damping rate of the γ-quasiparticle k due to interaction with thermal phonons. With k -k 0 = O(T 1/2 ) as in Eq.( 8), we find Γ γφ k ∼ (πI/42)(k B T ) 7 /( cρ 1/3 ) 6 , where the factor 2s + 1 is gone (no summation over σ is needed) but I is the same angular integral as in Eq.( 12). Here scattering dominates [48]. Using τ γ ≃ 1/Γ γφ k , we checked that the figures 1 and 2 below are in the collisionless regime ω q τ γ ≫ 1. Similarly, we checked that ω q τ φ ≫ 1 on the figures. Application to helium -Precise measurements of the equation of state (relating ρ to pressure) and of the roton dispersion relation for various pressures were performed in liquid 4 He at low temperature (k B T ≪ mc 2 , ∆). They give access to the parameters k 0 , ∆, their derivatives and m * . The measured sound velocities agree with the thermodynamic relation mc 2 = ρ dµ dρ , where µ is the zerotemperature chemical potential of the liquid. We plot in Fig. 1 the phonon damping rates as functions of temperature, for a fixed angular frequency ω q . At the chosen high pressure, the phonon dispersion relation is concave at low q, therefore the Beliaev-Landau [START_REF] Beliaev | Energy-Spectrum of a Non-ideal Bose Gas[END_REF][START_REF] Pitaevskii | Landau damping in dilute Bose gases[END_REF][START_REF] Giorgini | Damping in dilute Bose gases: A mean-field approach[END_REF][START_REF] Abraham | Sound Propagation in Liquid 4 He[END_REF][START_REF] Katz | Beliaev Damping of Quasiparticles in a Bose-Einstein Condensate[END_REF][START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF] threephonon process φ ↔ φφ is energetically forbidden at low temperature and the Landau-Khalatnikov [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF][START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF] pro- FIG. 1: Phonon damping rates at angular frequency ωq = 2π × 165 GHz (q = 0.3 Å-1 ) in liquid 4 He at pressure P = 20 bar as functions of temperature. Solid line: purely phononic damping Γ φφ due to Landau-Khalatnikov four-phonon processes [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF][START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF]; it depends on the curvature parameter γ defined as ωq = cq[1 + γ 8 ( q mc ) 2 + O(q 4 )]. Interpolating measurements of P → γ(P ) in Refs. [START_REF] Rugar | Accurate measurement of lowenergy phonon dispersion in liquid 4 He[END_REF][START_REF] Swenson | Phonon dispersion in liquid Helium under pressure[END_REF] gives γ = -6.9. Dashed black line/dash-dotted black line: damping due to scattering/absorption-emission by rotons, see Eq.( 12)/(15). Red dashed line: original formula of Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF] for the damping rate due to phonon-roton scattering. The roton parameters are extracted from their dispersion relation k → ǫ k measured at various pressures [START_REF] Gibbs | The collective excitations of normal and superfluid 4 He: the dependence on pressure and temperature[END_REF]: ∆/kB = 7.44K, k0 = 2.05 Å-1 , m * /m = 0.11, ρk ′ 0 /k0 = 0.39, ρ∆ ′ /∆ = -1.64, ρ 2 ∆ ′′ /∆ = -8.03, ρm ′ * /m * = -4.7. In Eq.( 15), parabolic approximation ( 9) is used (hence ǫ k * /∆ ≃ 1.43). The speed of sound c = 346.6 m/s, and the Grüneisen parameter d ln c d ln ρ = 2.274 entering in Γ φφ , are taken from equation of state (A1) of Ref. [START_REF] Maris | Thermodynamic properties of superfluid 4 He at negative pressure[END_REF]. The low values q mc = 0.13 and k B T mc 2 < 10 -2 justify our use of quantum hydrodynamics.

cess φφ ↔ φφ is dominant. Our high yet experimentally accessible [START_REF] Lockerbie | Measurement of the group velocity of 93 GHz phonons in liquid 4 He[END_REF][START_REF] Dietsche | Superconducting Al-PbBi tunnel junction as a phonon spectrometer[END_REF] value of ω q leads to attenuation lengths 2c/Γ q short enough to be measured in centimetric cells. As visible on Fig. 1, the damping of sound is in fact dominated by four-phonon Landau-Khalatnikov processes up to a temperature T ≃ 0.6 K. In this regime one would directly observe this phonon-phonon damping mechanism, which would be a premiere. The sound attenuation measurements of Ref. [START_REF] Berberich | Investigation of the lifetime of longitudinal phonons at GHz frequencies in liquid and solid 4 He[END_REF] in helium at 23 bars and ω q = 2π × 1.1 GHz are indeed limited to T > 0.8 K where damping is still dominated by the rotons. Application to fermions -In cold-atom Fermi gases, interactions occur in s-wave between opposite-spin atoms. Of negligible range, they are characterized by the scattering length a tunable by Feshbach resonance [START_REF] O'hara | Observation of a strongly interacting degenerate Fermi gas of atoms[END_REF][START_REF] Bourdel | Measurement of the interaction energy near a Feshbach resonance in a 6 Li Fermi gas[END_REF][START_REF] Bartenstein | Collective excitations of a degenerate gas at the BEC-BCS crossover[END_REF][START_REF] Zwierlein | Condensation of pairs of fermionic atoms near a Feshbach resonance[END_REF][START_REF] Nascimbène | Exploring the thermodynamics of a universal Fermi gas[END_REF][START_REF] Ku | Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas[END_REF].

Precise measurements of the fermionic excitation parameters k 0 and ∆ were performed at unitarity a -1 = 0 [START_REF] Schirotzek | Determination of the superfluid gap in atomic Fermi gases by quasiparticle spectroscopy[END_REF]. Due to the unitary-gas scale invariance [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF][START_REF] Enss | Viscosity and scale invariance in the unitary Fermi gas[END_REF][START_REF] Castin | The Unitary Gas and its Symmetry Properties[END_REF], k 0 is proportional to the Fermi wavenumber k F = (3π 2 ρ) 1/3 , k 0 ≃ 0.92k F [START_REF] Schirotzek | Determination of the superfluid gap in atomic Fermi gases by quasiparticle spectroscopy[END_REF], and ∆ is proportional to the Fermi energy ǫ F = 2 k 2 F 2m , ∆ ≃ 0.44ǫ F [START_REF] Schirotzek | Determination of the superfluid gap in atomic Fermi gases by quasiparticle spectroscopy[END_REF]. This also determines their derivatives with respect to ρ. Similarly, the equation of state measured at T = 0 is simply 

m = ∆ 2µ , ρµ ′ /µ ≃ 0.602, ρ∆ ′ /∆ ≃ 0.815, ρ 2 ∆ ′′ /∆ ≃ -0.209, d ln c
d ln ρ ≃ 0.303). In both cases the curvature parameter γ defined in the caption of Fig. 1 is estimated in the RPA [START_REF] Kurkjian | Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover[END_REF]. Solid line: phononphonon (a) Beliaev-Landau damping φ ↔ φφ (for γ > 0) as in Eqs.(121,122) of Ref. [START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF] (independent of |γ|) and (b) Landau-Khalatnikov damping φφ ↔ φφ (for γ ≃ -0.30 < 0) [START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF][START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF]. Dashed line/dash-dotted line: scattering/absorption-emission phonon-fermionic quasiparticle processes, as in Eq.( 12)/(15). In Eq.( 15), we took for ǫ k (a) the form proposed in Ref. [START_REF] Nishida | ǫ Expansion for a Fermi gas at infinite scattering length[END_REF] (hence ǫ k * /∆ ≃ 1.12) and (b) the BCS form (hence ǫ k * /∆ ≃ 1.14). µ is the T = 0 gas chemical potential, and the plotted quantities are in fact inverse quality factors. Here kBT /mc 2 > 0.03 in contrast to Fig. 1 where kBT /mc 2 < 0.01: cold atoms are effectively farther from the T → 0 limit than liquid helium, hence the inversion of the Γ scat q -Γ a-e q hierarchy. µ = ξǫ F , where ξ ≃ 0.376 [START_REF] Ku | Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas[END_REF], and the critical temperature is T c ≃ 0.167ǫ F /k B [START_REF] Ku | Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas[END_REF]. For the effective mass of the fermionic excitations and their dispersion relation at non vanishing k -k 0 , we must rely on results of a dimensional ǫ = 4 -d expansion, m * /m ≃ 0.56 and [START_REF] Nishida | ǫ Expansion for a Fermi gas at infinite scattering length[END_REF]. We also trust Anderson's RPA prediction [START_REF] Anderson | Random-phase approximation in the theory of superconductivity[END_REF][START_REF] Combescot | Collective mode of homogeneous superfluid Fermi gases in the BEC-BCS crossover[END_REF] that the q = 0 third derivative of the phononic dispersion relation is positive [START_REF] Kurkjian | Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover[END_REF]. The damping rates of phonons with wavenumber q = mc/2 are plotted in Fig. 2a. The contribution of the three-phonon Landau-Beliaev processes φ ↔ φφ, here energetically allowed, is dominant; it is computed in the quantum-hydrodynamic approximation where it is independent of the aforementioned third derivative.

ǫ k ≃ ∆ + 2 (k 2 -k 2 0 ) 2 8m * k 2 0
The phononic excitation branch becomes concave in the BCS limit k F a → 0 - [START_REF] Marini | Evolution from BCS superconductivity to Bose condensation: analytic results for the crossover in three dimensions[END_REF]. As visible on Fig. 2b, the phonon-phonon damping (now governed by the Landau-Khalatnikov processes mentioned earlier) is much weaker, and dominates the φ -γ damping only at very low temperatures. At commonly reached temperatures T > 0.05ǫ F /k B [START_REF] Hadzibabic | Fiftyfold Improvement in the Number of Quantum Degenerate Fermionic Atoms[END_REF], the damping is in fact dominated by absorption-emission φ -γ processes which, unlike in liquid helium, prevail over scattering ones because of the smaller value of ǫ k * /∆. Although the associated quality factors ω q /Γ q may seem impressive, the lifetimes Γ -1 q of the modes do not exceed one second in a gas of 6 Li with a typical Fermi temperature T F = 1µK, which is shorter than what was observed in a Bose-Einstein condensate [START_REF] Chevy | Transverse Breathing Mode of an Elongated Bose-Einstein Condensate[END_REF]. Our predictions, less quantitative than on Fig. 2a, are based on the BCS approximation for the equation of state and the fermionic excitation dispersion relation

ǫ k ≃ ǫ BCS k = [( 2 k 2 2m -µ) 2 + ∆ 2
BCS ] 1/2 and on the RPA for the q = 0 third derivative of ω q (whose precise value matters here). A cutting remark on Ref. [START_REF] Zhang | Finite-temperature damping of collective modes of a BCS-BEC crossover superfluid[END_REF]: even in the BCS approximation to which it is restricted, we disagree with its expression of Γ a-e q . Conclusion -By complementing the local density approximation in Ref. [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF] with a systematic low-temperature expansion, we derived the definitive leading order expression of the phonon-roton coupling in liquid helium and we generalized it to the phonon-pair-breaking excitation coupling in Fermi gases. The ever-improving experimental technics in these systems give access to the microscopic parameters determining the coupling and allow for a verification in the near future. Our result also clarifies the regime of temperature and interaction strength in which the purely phononic φφ ↔ φφ Landau-Khalatnikov sound damping in a superfluid, unobserved to this day, is dominant.
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Addition in the corrected-augmented version

Erratum : corrections due to three-body interactions among phonons.

The results on the effective φ -γ scattering amplitude and associated damping rate, based on the roton Hamiltonian (Eqs. ( 1) and ( 4)), do not account for the phonon-phonon interaction, which is described, to lowest order in q, by the Hamiltonian [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF]:

Ĥ(3) φ-φ = q1,q2,q3 δ q1+q2,q3 A 2↔1 φ-φ (q 1 , q 2 ; q 3 ) V 1/2 × b † q1 b † q2 bq3 + h.c. ( 17 
)
with the φ + φ ↔ φ amplitude [START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF]:

A 2↔1 φ-φ (q 1 , q 2 ; q 3 ) = mc 2 ρ 1/2 3 q 1 q 2 q 3 32m 3 c 3 × 2 d ln c d ln ρ -1 + q 1 • q 2 q 1 q 2 + q 1 • q 3 q 1 q 3 + q 2 • q 3 q 2 q 3 (18) 
We have used here the Grüneisen parameter d ln c d ln ρ = (ρµ ′′ /µ ′ + 1)/2. To leading order, there are two diagrams mediated by Ĥ(3) φ-φ missing in Eq. ( 7):

A eff 2 (k, q; k ′ , q ′ ) = q q ′ k k ′ + q k k ′ q ′ + q k k ′ q ′ + q q ′ k k ′ + q q ′ k k ′ = A 2 (k, q; k ′ , q ′ ) + A 1 (k, q; k + q)A 1 (k ′ , q ′ ; k ′ + q ′ ) ω q + ǫ k -ǫ k+q + A 1 (k -q ′ , q ′ ; k)A 1 (k -q ′ , q; k ′ ) ǫ k -ω q ′ -ǫ k-q ′ + 2A 2↔1 φ-φ (q ′ , q -q ′ ; q)A 1 (k, q -q ′ ; k ′ ) (ω q -ω q-q ′ -ω q ′ ) + 2A 2↔1 φ-φ (q, q ′ -q; q ′ )A 1 (k ′ , q ′ -q; k) ǫ k -ǫ k ′ -ω q-q ′ (19) 
The energy denominators of the two new diagrams are equal to -ω q-q ′ to leading order (see note [START_REF]One expands to order T 3/2 for A1 and T 2 for energy denominators[END_REF]). One should thus add -( q/mcρ)(ρ∆ ′ /2)(2d ln c/d ln ρ -1 + w) to Eq. ( 10):

A eff 2 (k, q; k ′ , q ′ ) ∼ T →0 q mcρ 1 2 ρ 2 ∆ ′′ - ρ∆ ′ 2 2 d ln c d ln ρ -1 + ( ρk ′ 0 ) 2 2m * + 2 k 2 0 2m * × ρ∆ ′ ck 0 2 uu ′ + ρ∆ ′ ck 0 (u + u ′ ) uu ′ - ρk ′ 0 k 0 + m * c k 0 w + m * c k 0 (u + u ′ )w + u 2 u ′2 - ρk ′ 0 k 0 (u 2 + u ′2 ) (20) 
This also changes the angular integral given in note [47]:

I/(4π) 2 = ( 2 k 2 0 2m * mc 2 ) 2 [ 1 25 -4α 15 + 28 45 α 2 + 2β 2 9 + A( 2 9 -4α 3 ) + A 2 + 4βB( 1 15 -α 9 ) + B 2 ( 2 15 -4α 9 + 2α 2 3 + β 2 3 ) + 2β 9 B 3 + B 4 
9 ], and the definition of

A = m * ( k0) 2 [ρ 2 ∆ ′′ + ρ∆ ′ (1 - 2d ln c/d ln ρ)]+α 2 .
Accordingly, the black dashed curves in Figs. 1, 2a and 2b are multiplied respectively by 0.46, 0.78 and 0.85. Note that the Grüneisen parameter also appears in Ref. [START_REF] Nicolis | Mutual interactions of phonons, rotons, and gravity[END_REF]; our coefficients of the uu ′ and w monomials of A eff 2 are however still in disagreement with that reference.

Microscopic verification of the effective coupling amplitude

To check the expression of the effective coupling amplitude that we obtained through phonon-roton hydrodynamics (Eq. ( 20)), we recompute it within a microscopic approach in the particular case of a weakly-interacting Bose gas. In this well-known system, the excitation spectrum takes the Bogoliubov form

ǫ k = 2 k 2 2m 2 k 2 2m + 2ρV k ( 21 
)
where V k is the Fourier transform of the interaction potential. This spectrum describes hydrodynamic phonons (with ǫ q = cq + O(q 3 )) provided V 0 > 0 and Next, we use the 3-and 4-quasiparticle coupling amplitudes derived from Bogoliubov theory (see Eqs. (E18), (E19) and (E20) of Ref. [START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF]), we compute the effective scattering amplitude in second order perturbation theory as prescribed by Eq. ( 105) of [START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF] (in which we set q 1 = q, q 2 = k, q 3 = q ′ and q 4 = k ′ ) and we take the limit of q and q ′ tending to 0. Since the expected result [START_REF] Rugar | Accurate measurement of lowenergy phonon dispersion in liquid 4 He[END_REF] does not depend on k to leading order, we choose k = k 0 , which greatly simplifies the microscopic calculation. As in the hydrodynamic approach, we then eliminate k ′ using momentum conservation, and the norm of q ′ using energy conservation (with the difference that one should go up to order q 3 in the calculation of q -q ′ because the scattering amplitude of the microscopic model diverges as 1/q off-shell). We get finally:

∂ k V k | k=0 = 0.
A eff micro (k, q; k ′ , q ′ ) ∼ T →0 q 16∆ 3 mcρ -2E 4 k0 + 2∆ 5 m * c 2 uu ′ + ∆E 3 k0 k 0 mc 4(u + u ′ ) + k 0 m * c uu ′ -4E 2 k0 ∆ 2 4(u 2 + u ′2 ) + w -1 + k 0 m * c uu ′ (u + u ′ ) + 2∆ 4 2w -1 + 2 k 0 m * c uu ′ (u + u ′ ) -2∆ 3 E k0 k 0 mc 2(u + u ′ ) + k 0 m * c uu ′ + 8∆ 3 mc 2 k 0 mc w(u + u ′ ) + k 0 m * c u 2 u ′2 (22) 
where E k0 = 2 k 2 0 /2m. This result coincides with the hydrodynamic expression (20) specialized using the Bogoliubov dispersion relation [START_REF] Swenson | Phonon dispersion in liquid Helium under pressure[END_REF] to express k ′ 0 , ∆ ′ and ∆ ′′ in terms of k 0 , ∆ and m * :

k ′ 0 = m * k 0 E k0 mρ∆ , ∆ ′ = ∆ 2 -E 2 k0 2ρ∆ , ∆ ′′ = - 2 k 0 k ′ 0 E k0 mρ∆ - ∆ ′2 ∆ (23)
and the Bogoliubov equation of state µ = ρV 0 to obtain µ ′ = V 0 and µ ′′ = 0.

End of addition

FIG. 2 :

 2 FIG.2:Phonon damping rates at wavenumber q = mc/2 in unpolarized homogeneous cold-atom Fermi gases in thermodynamic limit as functions of temperature. (a) At unitarity a -1 = 0, where most parameters of the phonons and fermionic quasiparticles are measured (see text). (b) On the BCS side 1/kFa = -0.389, these parameters are estimated in BCS the-ory (µ/ǫF ≃ 0.809, ∆/µ ≃ 0.566, m * m = ∆ 2µ , ρµ ′ /µ ≃ 0.602, ρ∆ ′ /∆ ≃ 0.815, ρ 2 ∆ ′′ /∆ ≃ -0.209, d ln c d ln ρ ≃ 0.303).In both cases the curvature parameter γ defined in the caption of Fig.1is estimated in the RPA[START_REF] Kurkjian | Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover[END_REF]. Solid line: phononphonon (a) Beliaev-Landau damping φ ↔ φφ (for γ > 0) as in Eqs.(121,122) of Ref.[START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF] (independent of |γ|) and (b) Landau-Khalatnikov damping φφ ↔ φφ (for γ ≃ -0.30 < 0)[START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF][START_REF] Kurkjian | Three-phonon and four phonon interaction processes in a pair-condensed Fermi gas[END_REF]. Dashed line/dash-dotted line: scattering/absorption-emission phonon-fermionic quasiparticle processes, as in Eq.(12)/(15). In Eq.(15), we took for ǫ k (a) the form proposed in Ref.[START_REF] Nishida | ǫ Expansion for a Fermi gas at infinite scattering length[END_REF] (hence ǫ k * /∆ ≃ 1.12) and (b) the BCS form (hence ǫ k * /∆ ≃ 1.14). µ is the T = 0 gas chemical potential, and the plotted quantities are in fact inverse quality factors. Here kBT /mc 2 > 0.03 in contrast to Fig.1where kBT /mc 2 < 0.01: cold atoms are effectively farther from the T → 0 limit than liquid helium, hence the inversion of the Γ scat q -Γ a-e

  It has a roton minimum∆ = ǫ k0 in k = k 0 provided ∂ k ǫ k | k=k0 = 0 and ∂ 2 k ǫ k | k=k0 = 2 /m * > 0,which is always possible with a careful choice of the function k → V k .

2m * c +O(T 5/2 ) with u and u ′ defined below Eq.( 10).

[46] We also use energy conservation and the relations 1 + (-1) 2s n = e ǫ/k B T n to transform the difference of the gain and loss quantum statistical factors.

[47] I/(4π) 2 = (

den by energy conservation, and absorption k + q ↔ k ′ , conserving energy only for q ≥ q * ≃ 2m * c/ , is O(e -ωq * /k B T ).