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Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two dis-
tinct types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations.
In the long wavelength limit, revising and extending Landau and Khalatnikov’s theory initially de-
veloped for helium [ZhETF 19, 637 (1949)], we obtain universal expressions for three- and four-body
couplings among these two types of excitations. We calculate the corresponding phonon damping
rates at low temperature and compare them to those of a pure phononic origin in high-pressure
liquid helium and in strongly interacting Fermi gases, paving the way to experimental observations.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

Introduction – Homogeneous superfluids with short-
range interactions exhibit, at sufficiently low tempera-
ture, phononic excitations φ as the only microscopic de-
grees of freedom. In this universal limit, all superfluids
of this type reduce to a weakly interacting phonon gas
with a quasilinear dispersion relation, irrespective of the
statistics of the underlying particles and of their inter-
action strength. Phonon damping then only depends on
the dispersion relation close to zero wavenumber (namely,
its slope and third derivative) and on the phonon non-
linear coupling, deduced solely from the system equation
of state through Landau-Khalatnikov quantum hydrody-
namics [1].

In experiments, however, temperatures are not al-
ways low enough to make the dynamics purely phononic.
Other elementary excitations can enrich the problem,
such as spinless bosonic rotons in liquid helium 4 and
spinful fermionic BCS-type pair-breaking excitations in
spin-1/2 cold-atom Fermi gases. These excitations, de-
noted here as γ-quasiparticles, exhibit in both cases an
energy gap ∆ > 0. Remarkably, as shown by Landau and
Khalatnikov [1], the phonon-roton coupling, and more
generally phonon coupling to all gapped excitations as
we shall see, depend to leading order in temperature
only on a few parameters of the dispersion relation of
the γ-quasiparticles, namely the value of the minimum
∆ and its location k0 in wavenumber space, their deriva-
tives with respect to density, and the effective mass m∗

close to k = k0. We have discovered however that the
φ − γ coupling of Ref.[1] is not exact, a fact apparently
unnoticed in the literature. Our goal here is to com-
plete the result of Ref.[1], and to quantitatively obtain
phonon damping rates due to the φ−γ coupling as func-
tions of temperature, a nontrivial task in the considered
strongly interacting systems. We restrict to the colli-
sionless regime ωqτγ ≫ 1 and ωqτφ ≫ 1, where ωq is the
angular eigenfrequency of the considered phonon mode
of wavevector q, and τγ (τφ) is a typical collision time of
thermal γ-quasiparticles (thermal phonons). An exten-

sion to the hydrodynamic regime ωqτγ . 1 or ωqτφ . 1
may be obtained from kinetic equations [2]. An experi-
mental test of our results seems nowadays at hand, either
in liquid helium 4, extending the recent work of Ref.[3],
or in homogeneous cold Fermi gases, which the break-
through of flat-bottom traps [4] allows one to prepare
[5] and to acoustically excite by spatio-temporally mod-
ulated laser-induced optical potentials [6, 7].
Landau-Khalatnikov revisited – We recall the reasoning
of Ref.[1] to get the phonon-roton coupling in liquid he-
lium 4, extending it to the phonon-fermionic quasipar-
ticle coupling in unpolarised spin-1/2 Fermi gases. We
first treat in first quantisation the case of a single roton
or fermionic excitation, considered as a γ-quasiparticle
of position r, momentum p and spin s = 0 or s = 1/2.
In a homogeneous superfluid of density ρ, its Hamilto-
nian is given by ǫ(p, ρ), an isotropic function of p such
that p 7→ ǫ(p, ρ) is the γ-quasiparticle dispersion rela-
tion. In presence of acoustic waves (phonons), the super-
fluid acquires position-dependent density ρ(r) and veloc-
ity v(r). For a phonon wavelength large compared to
the γ-quasiparticle coherence length [8], here its thermal
wavelength (2π~2/m∗kBT )

1/2 [42], and for a phonon an-
gular frequency small compared to the γ-quasiparticle
“internal” energy ∆, we can write the γ-quasiparticle
Hamiltonian in the local density approximation [9, 10]:

H = ǫ(p, ρ(r)) + p · v(r) (1)

The last term is a Doppler effect reflecting the energy
difference in the lab frame and in the frame moving with
the superfluid. For a weak phononic perturbation of the
superfluid, we expand the Hamiltonian to second order
in density fluctuations δρ(r) = ρ(r)− ρ:

H ≃ ǫ(p, ρ)+ ∂ρǫ(p, ρ)δρ(r)+p ·v(r)+
1

2
∂2
ρǫ(p, ρ)δρ

2(r)

(2)
not paying attention yet to the noncommutation of r

and p. Phonons are bosonic quasiparticles connected to
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the expansion of δρ(r) and v(r) on eigenmodes of the
quantum-hydrodynamic equations linearised around the
homogeneous solution at rest in the quantisation volume
V :
(

δρ(r)
v(r)

)

=
1

V1/2

∑

q 6=0

[(

ρq
vq

)

b̂q +

(

ρq
−vq

)

b̂†−q

]

eiq·r (3)

with modal amplitudes ρq = [~ρq/(2mc)]1/2 and vq =
[~c/(2mρq)]1/2q, m being the mass of a superfluid parti-
cle and c the sound velocity. The annihilation and cre-
ation operators b̂q and b̂†q of a phonon of wavevector q

and energy ~ωq = ~cq obey usual commutation relations

[b̂q, b̂
†
q′] = δq,q′ .

For an arbitrary number of γ-quasiparticles, we switch
to second quantisation and rewrite Eq.(2) as

Ĥ =
∑

k,σ

ǫkγ̂
†
kσγ̂kσ+

∑

k,k′,q,σ

A1(k,q;k
′)

V1/2
(γ̂†

k′σ γ̂kσ b̂q+h.c.)

× δk+q,k′ +
∑

k,k′,q,q′,σ

A2(k,q;k
′,q′)

V
γ̂†
k′σ γ̂kσδk+q,k′+q′

× [b̂†q′ b̂q +
1

2
(b̂−q′ b̂q + h.c.)] (4)

where γ̂kσ and γ̂†
kσ are bosonic (rotons, s = 0, σ = 0)

or fermionic (s = 1/2, σ =↑, ↓) annihilation and creation
operators of a γ-quasiparticle of wavevector k = p/~ in
spin component σ, obeying usual commutation or anti-
commutation relations. The first sum in the right-hand
side of Eq.(4) gives the γ-quasiparticle energy in the un-
perturbed superfluid, with ǫk ≡ ǫ(~k, ρ). The second
sum, originating from the Doppler term and the term
linear in δρ in Eq.(2), describes absorption or emission
of a phonon by a γ-quasiparticle, characterised by the
amplitude

A1(k,q;k
′) = ρq

∂ρǫk + ∂ρǫk′

2
+ vq ·

~k+ ~k′

2
(5)

where q, k and k′ are the wavevectors of the incoming
phonon and the incoming and outgoing γ-quasiparticles.
Eq.(5) is invariant under exchange of k and k′. This re-
sults from symmetrisation of the various terms, in the
form [f(p)eiq·r + eiq·rf(p)]/2 with r and p canonically
conjugated operators, ensuring that the correct form of
Eq.(2) is hermitian. The third sum in Eq.(4), originat-
ing from the terms quadratic in δρ in Eq.(2), describes
direct scattering of a phonon on a γ-quasiparticle, with
the symmetrised amplitude

A2(k,q;k
′,q′) = ρqρq′

∂2
ρǫk + ∂2

ρǫk′

2
(6)

where the primed wavevectors are the ones of emerging
quasiparticles. It also describes negligible two-phonon
absorption and emission. The effective amplitude for φ−

γ scattering is obtained by adding the contributions of
the direct process (terms of Ĥ quadratic in b̂), and of
the absorption-emission or emission-absorption process
(terms linear in b̂) treated to second order in perturbation
theory [1]:

Aeff
2 (k,q;k′,q′) =

q

q′
k

k′

+
q

k

k′

q′
+

q

k

k′

q′

= A2(k,q;k
′,q′) +

A1(k,q;k+ q)A1(k
′,q′;k′ + q′)

~ωq + ǫk − ǫk+q

+
A1(k− q′,q′;k)A1(k− q′,q;k′)

ǫk − ~ωq′ − ǫk−q′

(7)

where in the second (third) term the γ-quasiparticle first
absorbs phonon q (emits phonon q′) then emits phonon
q′ (absorbs phonon q). Up to this point this agrees with
Ref.[1], except that the first derivative ∂ρ∆ in Eq.(5),
thought to be anomalously small in low-pressure helium,
was neglected in Ref.[1]. Eq. (7), issued from a local
density approximation, holds to leading order in a low-
energy limit. We then take the T → 0 limit with scaling
laws

q ≈ T, k − k0 ≈ T 1/2 (8)

reflecting the fact that the thermal energy of a phonon
is ~cq ≈ kBT and the effective kinetic energy of a γ-
quasiparticle, that admits the expansion

ǫk −∆ =
k→k0

~
2(k − k0)

2

2m∗

+O(k − k0)
3 (9)

is also ≈ kBT . The coupling amplitudes A1 and energy
denominators in Eq.(7) must be expanded up to relative
corrections of order T [43]. On the contrary, it suffices to
expand A2 to leading order T in temperature. We hence
get our main result, the effective coupling amplitude of
the φ− γ scattering to leading order in temperature:

Aeff
2 (k,q;k′,q′) ∼

T→0

~q

mcρ

{

1

2
ρ2∆′′ +

(~ρk′0)
2

2m∗

+
~
2k20
2m∗

×

{

(

ρ∆′

~ck0

)2

uu′+
ρ∆′

~ck0

[

(u+ u′)

(

uu′ −
ρk′0
k0

)

+
2m∗c

~k0
w

]

+
m∗c

~k0
(u+ u′)w + u2u′2 −

ρk′0
k0

(u2 + u′2)

}}

(10)

Here ∆′, k′0, ∆
′′ are first and second derivatives of ∆ and

k0 with respect to ρ; u = q·k
qk , u′ = q′·k

q′k , w = q·q′

qq′ are

cosines of the angles between k, q and q′; our results hold
for k0 = 0 provided the limit k0 → 0 is taken in Eq.(10).
In Eq.(3.17) of Ref.[1], the ∆′ terms were neglected as
said, but the last term in Eq.(10), with the factor ρk′0/k0,
was simply forgotten.
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Damping rates – A straightforward application of
Eq.(10) is a Fermi-golden-rule calculation of the damp-
ing rate Γscat

q of phonons q due to scattering on γ-
quasiparticles. The γ-quasiparticles are in thermal equi-
librium with Bose or Fermi mean occupation numbers
n̄γ,k = [exp(ǫk/kBT ) − (−1)2s]−1. So are phonons in
modes q′ 6= q, with Bose occupation numbers n̄b,q′ =
[exp(~ωq′/kBT ) − 1]−1; mode q is initially excited (e.g.
by a sound wave) with an arbitrary number nb,q of
phonons. By including both loss q + k → q′ + k′ and
gain q′ +k′ → q+k processes [44] and summing over σ,
one finds that d

dtnb,q = −Γscat
q (nb,q − n̄b,q) with

Γscat
q =

2π

~
(2s+ 1)

∫

d3kd3q′

(2π)6
[

Aeff
2 (k,q;k′,q′)

]2

× δ(ǫk + ~ωq − ǫk′ − ~ωq′)
n̄b,q′ n̄γ,k′[1 + (−1)2sn̄γ,k]

n̄b,q

(11)

and k′ = k + q − q′. As our low-energy theory only
holds for kBT ≪ ∆, the gas of γ-quasiparticles is non-
degenerate, and n̄γ,k ≃ exp(−ǫk/kBT ) ≪ 1 in Eq.(11).
By taking the T → 0 limit at fixed ~cq/kBT and setting

Aeff
2 =

~ωq

ρ f , where the dimensionless quantity f only
depends on angle cosines, we obtain the equivalent

~Γscat
q ∼

T→0
(2s+ 1)

e−∆/kBT

(2π)9/2
k20q

4c

ρ2
(m∗kBT )

1/2I (12)

with I=
∫

d2Ωk

∫

d2Ωq′f2(u, u′, w) an integral over solid
angles of direction k and q′ [45].
One proceeds similarly for the calculation of the damp-

ing rate Γa-e
q of phonons q due to absorption q+ k → k′

or emission k′ → q+k processes by thermal equilibrium
γ-quasiparticles. We obtain

Γa-e
q =

2π

~
(2s+ 1)

∫

d3k

(2π)3
[A1(k,q;k

′)]2

× δ(~ωq + ǫk − ǫk′)(n̄γ,k − n̄γ,k′) (13)

with k′ = k+ q. Low degeneracy of the γ-quasiparticles
and energy conservation allow us to write n̄γ,k − n̄γ,k′ ≃
exp(−ǫk/kBT )/(1 + n̄b,q). Energy conservation leads
here to a scaling on k different from Eq.(8) as it forces
k to be at a nonzero distance from k0, even in the low-
phonon-energy limit: When q → 0 at fixed k, the Dirac
delta in Eq.(13) becomes

δ(~ωq + ǫk − ǫk′) ∼
q→0

(~cq)−1δ

(

1− u
dǫk
dk

~c

)

(14)

and imposes that the group velocity 1
~

dǫk
dk of the incom-

ing γ-quasiparticle is larger in absolute value than that,
c, of the phonons. This condition, reminiscent of Lan-
dau’s criterion, restricts wavenumber k to a domain D
not containing k0. In the low-q limit, that is for q much

smaller than the k significantly contributing to Eq.(13),
but with no constraint on the ratio ~cq/kBT , we write
A1 in Eq.(5) to leading order q1/2 in q, and integrate over
the direction of k, to obtain

Γa-e
q ≃

(2s+ 1)ρ

4πmc

∫

D

dkk2

|dǫkdk |

e−ǫk/kBT

1 + n̄b,q

∣

∣

∣

∣

∣

∂ρǫk+
~
2c2k

ρdǫk
dk

∣

∣

∣

∣

∣

2

(15)

∼
T→0

(2s+ 1)ρk2∗
4π~2mc3

∣

∣

∣

∣

∂ρǫk∗
+
~ck∗
ρη∗

∣

∣

∣

∣

2
kBT e

−ǫk∗/kBT

1 + n̄b,q
(16)

Eq.(16) is an equivalent when T → 0 at fixed ~cq/kBT ;
k∗ is the element of the border of D (dǫkdk |k=k∗

= η∗~c,
η∗ = ±) with minimal energy ǫk (when more than one of
such k∗ exists, one has to sum their contributions). As
ǫk∗

> ∆, the damping rate due to scattering dominates
the one due to absorption-emission in the mathematical
limit T → 0 ; we shall see however that this is not always
so for typical temperatures in current experiments.
To be complete, we give a low-temperature equivalent

of the damping rate of the γ-quasiparticle k due to in-
teraction with thermal phonons. With k− k0 = O(T 1/2)

as in Eq.(8), we find ~Γγφ
k ∼ (πI/42)(kBT )

7/(~cρ1/3)6,
where the factor 2s+ 1 is gone (no summation over σ is
needed) but I is the same angular integral as in Eq.(12).

Here scattering dominates [46]. Using τγ ≃ 1/Γγφ
k , we

checked that the figures 1 and 2 below are in the col-
lisionless regime ωqτγ ≫ 1. Similarly, we checked that
ωqτφ ≫ 1 on the figures.
Application to helium – Precise measurements of the
equation of state (relating ρ to pressure) and of the roton
dispersion relation for various pressures were performed
in liquid 4He at low temperature (kBT ≪ mc2,∆). They
give access to the parameters k0, ∆, their derivatives
and m∗. The measured sound velocities agree with the
thermodynamic relation mc2 = ρdµ

dρ , where µ is the zero-
temperature chemical potential of the liquid. We plot
in Fig. 1 the phonon damping rates as functions of tem-
perature, for a fixed angular frequency ωq. At the cho-
sen high pressure, the phonon dispersion relation is con-
cave at low q, therefore the Beliaev-Landau [11–16] three-
phonon process φ ↔ φφ is energetically forbidden at low
temperature and the Landau-Khalatnikov [1, 6, 16] pro-
cess φφ ↔ φφ is dominant. Our high yet experimen-
tally accessible [17, 18] value of ωq leads to attenuation
lengths 2c/Γq short enough to be measured in centimet-
ric cells. As visible on Fig. 1, the damping of sound is
in fact dominated by four-phonon Landau-Khalatnikov
processes up to a temperature T ≃ 0.6 K. In this regime
one would directly observe this phonon-phonon damping
mechanism, which would be a premiere. The sound at-
tenuation measurements of Ref.[19] in helium at 23 bars
and ωq = 2π × 1.1 GHz are indeed limited to T > 0.8 K
where damping is still dominated by the rotons.
Application to fermions – In cold-atom Fermi gases, in-
teractions occur in s-wave between opposite-spin atoms.
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FIG. 1: Phonon damping rates at angular frequency ωq =

2π × 165 GHz (q = 0.3Å
−1

) in liquid 4He at pressure P = 20
bar as functions of temperature. Solid line: purely phononic
damping Γφφ due to Landau-Khalatnikov four-phonon pro-
cesses [1, 6, 16]; it depends on the curvature parameter γ
defined as ωq = cq[1 + γ

8
( ~q
mc

)2 + O(q4)]. Interpolating mea-
surements of P 7→ γ(P ) in Refs.[20, 21] gives γ = −6.9.
Dashed black line/dash-dotted black line: damping due to
scattering/absorption-emission by rotons, see Eq.(12)/(15).
Red dashed line: original formula of Ref.[1] for the damping
rate due to phonon-roton scattering. The roton parameters
are extracted from their dispersion relation k 7→ ǫk measured

at various pressures [22]: ∆/kB = 7.44K, k0 = 2.05Å
−1

,
m∗/m = 0.11, ρk′

0/k0 = 0.39, ρ∆′/∆ = −1.64, ρ2∆′′/∆ =
−8.03, ρm′

∗/m∗ = −4.7. In Eq.(15), parabolic approxima-
tion (9) is used (hence ǫk∗

/∆ ≃ 1.43). The speed of sound
c = 346.6m/s, and the Grüneisen parameter d ln c

d ln ρ
= 2.274

entering in Γφφ, are taken from equation of state (A1) of

Ref.[23]. The low values ~q
mc

= 0.13 and kBT
mc2

< 10−2 jus-
tify our use of quantum hydrodynamics.

Of negligible range, they are characterized by the scat-
tering length a tunable by Feshbach resonance [24–29].

Precise measurements of the fermionic excitation pa-
rameters k0 and ∆ were performed at unitarity a−1 = 0
[30]. Due to the unitary-gas scale invariance [31–33], k0 is
proportional to the Fermi wavenumber kF = (3π2ρ)1/3,
k0 ≃ 0.92kF [30], and ∆ is proportional to the Fermi

energy ǫF =
~
2k2

F

2m , ∆ ≃ 0.44ǫF [30]. This also de-
termines their derivatives with respect to ρ. Similarly,
the equation of state measured at T = 0 is simply
µ = ξǫF, where ξ ≃ 0.376 [29], and the critical tem-
perature is Tc ≃ 0.167ǫF/kB [29]. For the effective mass
of the fermionic excitations and their dispersion relation
at non vanishing k − k0, we must rely on results of a
dimensional ǫ = 4 − d expansion, m∗/m ≃ 0.56 and

ǫk ≃ ∆+
~
2(k2−k2

0
)2

8m∗k2

0

[34]. We also trust Anderson’s RPA

prediction [35, 36] that the q = 0 third derivative of the
phononic dispersion relation is positive [37]. The damp-
ing rates of phonons with wavenumber q = mc/2~ are
plotted in Fig. 2a. The contribution of the three-phonon
Landau-Beliaev processes φ ↔ φφ, here energetically
allowed, is dominant; it is computed in the quantum-
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FIG. 2: Phonon damping rates at wavenumber q = mc/2~ in
unpolarized homogeneous cold-atom Fermi gases in thermo-
dynamic limit as functions of temperature. (a) At unitarity
a−1 = 0, where most parameters of the phonons and fermionic
quasiparticles are measured (see text). (b) On the BCS side
1/kFa = −0.389, these parameters are estimated in BCS the-
ory (µ/ǫF ≃ 0.809, ∆/µ ≃ 0.566, m∗

m
= ∆

2µ
, ρµ′/µ ≃ 0.602,

ρ∆′/∆ ≃ 0.815, ρ2∆′′/∆ ≃ −0.209, d ln c
d ln ρ

≃ 0.303). In both
cases the curvature parameter γ defined in the caption of
Fig. 1 is estimated in the RPA [37]. Solid line: phonon-
phonon (a) Beliaev-Landau damping φ ↔ φφ (for γ > 0) as in
Eqs.(121,122) of Ref.[16] (independent of |γ|) and (b) Landau-
Khalatnikov damping φφ ↔ φφ (for γ ≃ −0.30 < 0) [6, 16].
Dashed line/dash-dotted line: scattering/absorption-emission
phonon-fermionic quasiparticle processes, as in Eq.(12)/(15).
In Eq.(15), we took for ǫk (a) the form proposed in Ref.[34]
(hence ǫk∗

/∆ ≃ 1.12) and (b) the BCS form (hence ǫk∗
/∆ ≃

1.14). µ is the T = 0 gas chemical potential, and the
plotted quantities are in fact inverse quality factors. Here
kBT/mc2 > 0.03 in contrast to Fig.1 where kBT/mc2 < 0.01:
cold atoms are effectively farther from the T → 0 limit than
liquid helium, hence the inversion of the Γscat

q -Γa-e
q hierarchy.

hydrodynamic approximation where it is independent of
the aforementioned third derivative.

The phononic excitation branch becomes concave in
the BCS limit kFa → 0− [38]. As visible on Fig. 2b, the
phonon-phonon damping (now governed by the Landau-
Khalatnikov processes mentioned earlier) is much weaker,
and dominates the φ− γ damping only at very low tem-
peratures. At commonly reached temperatures T >
0.05ǫF/kB [39], the damping is in fact dominated by
absorption-emission φ− γ processes which, unlike in liq-
uid helium, prevail over scattering ones because of the
smaller value of ǫk∗

/∆. Although the associated quality
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factors ωq/Γq may seem impressive, the lifetimes Γ−1
q of

the modes do not exceed one second in a gas of 6Li with
a typical Fermi temperature TF = 1µK, which is shorter
than what was observed in a Bose-Einstein condensate
[40]. Our predictions, less quantitative than on Fig. 2a,
are based on the BCS approximation for the equation
of state and the fermionic excitation dispersion relation

ǫk ≃ ǫBCS
k = [(~

2k2

2m − µ)2 + ∆2
BCS]

1/2 and on the RPA
for the q = 0 third derivative of ωq (whose precise value
matters here). A cutting remark on Ref.[41]: even in the
BCS approximation to which it is restricted, we disagree
with its expression of Γa-e

q .

Conclusion – By complementing the local density ap-
proximation in Ref.[1] with a systematic low-temperature
expansion, we derived the definitive leading order ex-
pression of the phonon-roton coupling in liquid helium
and we generalized it to the phonon-pair-breaking exci-
tation coupling in Fermi gases. The ever-improving ex-
perimental technics in these systems give access to the
microscopic parameters determining the coupling and al-
low for a verification in the near future. Our result
also clarifies the regime of temperature and interaction
strength in which the purely phononic φφ ↔ φφ Landau-
Khalatnikov sound damping in a superfluid, unobserved
to this day, is dominant.

This project received funding from the FWO and the
EU H2020 program under the MSC Grant Agreement
No. 665501.
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