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Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two dis-
tinct types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations.
In the long wavelength limit, revising and extending Landau and Khalatnikov’s theory initially de-
veloped for helium [ZhETF 19, 637 (1949)], we obtain universal expressions for three- and four-body
couplings among these two types of excitations. We calculate the corresponding phonon damping
rates at low temperature and compare them to those of a pure phononic origin, paving the way to
experimental observations.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

Introduction – A homogeneous superfluid of particles
with short-range interactions exhibits, at sufficiently low
temperature, phononic excitations as the only micro-
scopic degrees of freedom. In this universal limit, all
superfluids of this type reduce to a weakly interacting
phonon gas, irrespective of the statistics of the under-
lying particles and of the strength of their interactions.
Phonon damping then only depends on the phonon dis-
persion relation close to the zero wavenumber (namely,
its slope and its third derivative) and on the phonon non-
linear coupling, deduced solely from the system equation
of state through Landau and Khalatnikov’s quantum hy-
drodynamic theory [1].

In the experimental reality, however, the tempera-
ture is not always low enough to make the dynamics
purely phononic. Other elementary excitations can en-
rich the problem, such as rotons in liquid helium 4 and
fermionic BCS-type pair-breaking excitations in spin-1/2
cold-atom Fermi gases. These excitations, denoted here
as γ quasiparticles, exhibit in both cases an energy gap
∆ > 0. Remarkably, as shown by Landau and Kha-
latnikov, the phonon-roton coupling, and more generally
the phonon coupling to all gapped excitations as we shall
see, depend to leading order in temperature only on a
few parameters of the dispersion relation of the γ quasi-
particles, namely the value of the minimum ∆ and its
location k0 in the wavenumber space, their derivatives
with respect to density, and the effective mass m∗ close
to k = k0. We have discovered however that the φ − γ
coupling of Ref.[1] is not exact, a fact to our knowledge
unnoticed in the literature. Our goal here is to complete
the result of Landau and Khalatnikov, and to quantita-
tively obtain the phonon damping rate due to the φ− γ
coupling as a function of temperature, an a priori non-
trivial task in the considered strongly interacting sys-
tems. We restrict to the collisionless regime ωqτγ ≫ 1
and ωqτφ ≫ 1, where ωq is the angular eigenfrequency of
the considered phonon mode of wavevector q, and τγ and

τφ are respectively the typical collision times of a thermal
γ quasiparticle and of a thermal phonon. An extension
to the hydrodynamic regime ωqτγ . 1 or ωqτφ . 1 may
however be obtained from kinetic equations [2]. An ex-
perimental test of our results seems nowadays at hand,
either in liquid helium 4, extending the recent work of
Ref.[3], or in homogeneous cold Fermi gases, that the
breakthrough of flat-bottom traps [4] now allows one to
prepare in the lab [5].
Landau-Khalatnikov revisited – We briefly recall the rea-
soning of Ref.[1] to get the phonon-roton coupling in
liquid helium 4, extending it to the phonon-fermionic
quasiparticle coupling in an unpolarised spin-1/2 Fermi
gas. We first treat in first quantized form the case of
a single roton or fermionic excitation, considered as a
quasiparticle γ of position r, momentum p and spin
s = 0 or s = 1/2. In a homogeneous superfluid of
density ρ, its Hamiltonian is given by ǫ(p, ρ), a rota-
tionally invariant function of p such that p 7→ ǫ(p, ρ)
is the γ quasiparticle dispersion relation. In presence
of acoustic waves (phonons), the superfluid acquires a
position-dependent density ρ(r) and velocity v(r). For
a phonon wavelength large enough as compared to the
coherence length of the γ quasiparticle (its thermal de

Broglie wavelength
(

2π~2

m∗kBT

)1/2

) and a phonon angular

frequency small enough as compared to the γ quasiparti-
cle “internal” energy ∆, we can write the γ quasiparticle
Hamiltonian in the local density approximation:

H = ǫ(p, ρ(r)) + p · v(r) (1)

The last term is a Doppler effect reflecting the energy dif-
ference in the lab frame and in the frame moving with the
superfluid [1]. For a weak phononic perturbation of the
superfluid, we expand the Hamiltonian to second order
in the density fluctuations δρ(r) = ρ(r)− ρ:

H ≃ ǫ(p, ρ)+ ∂ρǫ(p, ρ)δρ(r)+p ·v(r)+
1

2
∂2
ρǫ(p, ρ)δρ

2(r)

(2)
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not paying attention yet to the noncommutation of r and
p. Phonons are bosonic quasiparticles connected to the
expansion of δρ(r) and v(r) on eigenmodes of the quan-
tum hydrodynamic equations linearised around the ho-
mogeneous solution at rest:

δρ(r) =
1

V1/2

∑

q 6=0

ρq(b̂q + b̂†−q)e
iq·r (3)

v(r) =
1

V1/2

∑

q 6=0

vq(b̂q − b̂†−q)e
iq·r (4)

The resulting annihilation and creation operators b̂q and

b̂†q of a phonon of wavevector q and energy ~ωq obey the

usual commutation relations [b̂q, b̂
†
q′ ] = δq,q′. We have

taken here periodic boundary conditions in a cubic box
of volume V , and we recall the expressions of the angular
eigenfrequency ωq = cq and of the modal amplitudes

ρq =
(

~ρq
2mc

)1/2

and vq =
(

~c
2mρq

)1/2

q, where m is the

mass of a superfluid particle and c is the sound velocity.

For an arbitrary number of γ quasiparticles, we switch
to second quantisation and rewrite Eq.(2) as

Ĥ =
∑

k,σ

ǫkγ̂
†
kσγ̂kσ+

∑

k,k′,q,σ

A1(k,q;k
′)

V1/2
(γ̂†

k′σ γ̂kσ b̂q+h.c.)

× δk+q,k′ +
∑

k,k′,q,q′,σ

A2(k,q;k
′,q′)

V
γ̂†
k′σ γ̂kσδk+q,k′+q′

× [b̂†q′ b̂q +
1

2
(b̂−q′ b̂q + h.c.)] (5)

where γ̂kσ and γ̂†
kσ are bosonic (rotons, s = 0, σ = 0)

or fermionic (s = 1/2, σ =↑, ↓) annihilation and creation
operators of a γ quasiparticle of wavevector k = p/~ in
spin component σ, obeying the usual commutation or an-
ticommutation relations. The first sum in the right-hand
side of Eq.(5) gives the energy of the γ quasiparticles in
the unperturbed superfluid, with ǫk ≡ ǫ(~k, ρ). The sec-
ond sum, originating from the Doppler term and the term
linear in δρ in Eq.(2), describes inelastic processes of ab-
sorption or emission of a phonon by a γ quasiparticle,
characterised by the amplitude

A1(k,q;k
′) = ρq

∂ρǫk + ∂ρǫk′

2
+ vq ·

~k+ ~k′

2
(6)

where q, k and k′ are the wavevectors of the incoming
phonon and the incoming and outgoing γ quasiparticles.
The writing in Eq.(6) is invariant under the exchange of k
and k′. It results from the symmetrisation of the various
terms, in the form [f(p)eiq·r + eiq·rf(p)]/2 with r and p

canonically conjugated operators, ensuring that the cor-
rect form of Eq.(2) is indeed hermitian. The third sum
in Eq.(5), originating from the terms quadratic in δρ in
Eq.(2), describes the direct elastic scattering of a phonon

on a γ quasiparticle, with the symmetrised amplitude

A2(k,q;k
′,q′) = ρqρq′

∂2
ρǫk + ∂2

ρǫk′

2
(7)

where the primed wavevectors are the ones of the emerg-
ing quasiparticles. It also describes negligible two-
phonon absorption and emission processes. The effec-
tive amplitude for the elastic φ−γ scattering is obtained
by adding the contributions of the direct process, and of
the absorption-emission or emission-absorption process
treated to second order in perturbation theory [1]:

Aeff
2 (k,q;k′,q′) = A2(k,q;k

′,q′)

+
A1(k,q;k+ q)A1(k

′,q′;k′ + q′)

~ωq + ǫk − ǫk+q

+
A1(k− q′,q′;k)A1(k− q′,q;k′)

ǫk − ~ωq′ − ǫk−q′

(8)

Up to this point this agrees with the theory of Landau
and Khalatnikov, except that the first derivative of ∆
with respect to ρ in Eq.(6), thought to be anomalously
small in helium at low pressure, was neglected in Ref.[1].
Expression (8), issued from a local density approxima-
tion, holds only to leading order in a low-energy limit
(it also holds only on the energy shell, that is for energy
conserving scattering processes, which we used to rewrite
the second denominator in (8), since quantum hydrody-
namics is only an effective theory [6]). We then take the
T → 0 limit with the scaling laws

q ≈ T, k − k0 ≈ T 1/2 (9)

reflecting the fact that the thermal energy of a phonon
is ~cq ≈ kBT and the effective kinetic energy ǫk −∆ of
a quasiparticle γ is ≈ kBT , as seen from the expansion

ǫk =
k→k0

∆+
~
2(k − k0)

2

2m∗

+O(k − k0)
3 (10)

The coupling amplitudes A1 and the energy denomina-
tors in Eq.(8) must be expanded up to relative corrections
of order T , that is to order T 3/2 for A1 and T 2 for the
energy denominators, q′ being deduced from q, k and

q′/q′ by energy conservation [q − q′ = ~(k−k0)q(u−u′)
m∗c

[1 +
~(k−k0)u

′

m∗c
] + ~q2(u−u′)2

2m∗c
+O(T 5/2) where u and u′ are de-

fined below Eq.(11)]. On the contrary, it suffices to ex-
pand A2 to leading order T in temperature. We hence
get our main result, the effective coupling amplitude of
the elastic φ−γ process to leading order in temperature:

Aeff
2 (k,q;k′,q′) ∼

T→0

~q

mcρ

{

1

2
ρ2∆′′ +

(~ρk′0)
2

2m∗

+
~
2k20
2m∗

×

{

(

ρ∆′

~ck0

)2

uu′+
ρ∆′

~ck0

[

(u+ u′)

(

uu′ −
ρk′0
k0

)

+
2m∗c

~k0
w

]

+
m∗c

~k0
(u+ u′)w + u2u′2 −

ρk′0
k0

(u2 + u′2)

}}

(11)
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Here ∆′, k′0, ∆
′′ are the first and second derivatives of ∆

and k0 with respect to ρ; u = q·k
qk , u′ = q′·k

q′k , w = q·q′

qq′

are cosines of the angles between k, q and q′; our results
hold in the case k0 = 0 provided the limit k0 → 0 is
taken in Eq.(11). In Ref.[1], the ∆′ terms were neglected
as said, but the last term in (11), with the factor ρk′0/k0,
was forgotten.
Damping rates – A straightforward application of Eq.(11)
is a Fermi golden rule calculation of the damping rate
Γel
q of phonons q due to elastic scattering on γ quasi-

particles. The γ quasiparticles are in thermal equi-
librium with Bose or Fermi mean occupation numbers
n̄γ,k = [exp(ǫk/kBT ) − (−1)2s]−1. So are the phonons
in the modes q′ 6= q, with Bose occupation numbers
n̄b,q′ = [exp(~ωq′/kBT ) − 1]−1; the mode q is initially
excited with an arbitrary number nb,q of phonons. By in-
cluding both the loss q+k → q′+k′ and the inverse gain
q′ + k′ → q+ k process, with the corresponding bosonic
amplification factors, and after summation over k, q′, σ,
passage to the thermodynamic limit, use of energy con-
servation and of the relations 1+(−1)2sn̄ = eǫ/kBT n̄, one
finds that d

dtnb,q = −Γel
q (nb,q − n̄b,q) with

Γel
q =

2π

~
(2s+ 1)

∫

d3kd3q′

(2π)6
[

Aeff
2 (k,q;k′,q′)

]2

× δ(ǫk + ~ωq − ǫk′ − ~ωq′)
n̄b,q′ n̄γ,k′[1 + (−1)2sn̄γ,k]

n̄b,q

(12)

and k′ = k+q−q′. As our low energy theory only holds
for kBT ≪ ∆, the gas of γ quasiparticles is non degener-
ate, and n̄γ,k ≃ exp(−ǫk/kBT ) ≪ 1 in the numerator of
Eq.(12). By taking the T → 0 limit at fixed ~cq/kBT and

setting Aeff
2 =

~ωq

ρ f , where the dimensionless quantity f
only depends on angle cosines, we obtain the equivalent

~Γel
q ∼

T→0
(2s+ 1)

e−∆/kBT

(2π)9/2
k20q

4c

ρ2
(m∗kBT )

1/2I (13)

where the integral I =
∫

d2Ωk

∫

d2Ωq′f2(u, u′, w) over
solid angles of direction k and q′ is independent of q

q [we

find I/(4π)2 = (
~
2k2

0

2m∗mc2 )
2[ 1

25 −
4α
15 + 28

45α
2 + 2β2

9 +A(29 −
4α
3 ) + A2 + 4βB( 1

15 − α
9 ) + B2( 2

15 − 4α
9 + 2α2

3 + 4β2

3 ) +
4β
9 B3 + B4

9 ], with α =
ρk′

0

k0

, β = m∗c
~k0

, A = m∗ρ
2∆′′

(~k0)2
+ α2,

B = ρ∆′

~ck0

].
One proceeds similarly for the calculation of the damp-

ing rate Γinel
q of phonons q due to the inelastic processes

of absorption q + k → k′ or emission k′ → q+ k by the
thermal equilibrium γ quasiparticles. We obtain

Γinel
q =

2π

~
(2s+ 1)

∫

d3k

(2π)3
[A1(k,q;k

′)]2

× δ(~ωq + ǫk − ǫk′)(n̄γ,k − n̄γ,k′) (14)

with k′ = k+ q. The low degeneracy of the γ quasipar-
ticles and energy conservation allow us to write n̄γ,k −
n̄γ,k′ ≃ exp(−ǫk/kBT )/(1 + n̄b,q). Energy conservation
leads here to a scaling law on k that differs from Eq.(9)
as it forces the wavevector k to be at a nonzero distance
from k0, even in the low phonon energy limit: When
q → 0 at fixed k, the Dirac delta in Eq.(14) becomes

δ(~ωq + ǫk − ǫk′) ∼
q→0

(~cq)−1δ

(

1− u
dǫk
dk

~c

)

(15)

and imposes that the group velocity 1
~

dǫk
dk of the incoming

γ quasiparticle is larger in absolute value than that, c,
of the phonons. This condition, that reminds us of the
Landau criterion, restricts the wavenumber k to a subset
D of R+. In the low q limit, q ≪ k ∀k ∈ D significantly
contributing to Eq.(14), but with no constraint on the
ratio ~cq/kBT , we write A1 in Eq.(6) to the leading order
q1/2 in q, and integrate over the direction of k, to obtain

Γinel
q ≃

(2s+ 1)ρ

4πmc

∫

D

dkk2

|dǫkdk |

e−ǫk/kBT

1 + n̄b,q

∣

∣

∣

∣

∣

∂ρǫk+
~
2c2k

ρdǫk
dk

∣

∣

∣

∣

∣

2

(16)

∼
T→0

(2s+ 1)ρk2∗
4π~2mc3

∣

∣

∣

∣

∂ρǫk∗
+
~ck∗
ρη∗

∣

∣

∣

∣

2
kBT e

−ǫk∗/kBT

1 + n̄b,q
(17)

In the second line we give an equivalent when T → 0 at
fixed ~cq/kBT , k∗ being the element of the border of D
(dǫkdk |k=k∗

= η∗~c, η∗ = ±) with minimal energy ǫk (when
more than one of such k∗ exists, one has to sum their
contributions). As ǫk∗

> ∆, the elastic damping rate
dominates the inelastic one in the mathematical limit
T → 0 ; we shall see however that this is not always the
case for typical temperatures in current experiments.
To be complete, we give a low temperature equiva-

lent of the damping rate of the γ quasiparticles k due to
their interaction with thermal phonons. With k − k0 =
O(T 1/2) as in Eq.(9):

~Γγφ
k ∼

T→0

π

42

(kBT )
7

(~cρ1/3)6
I (18)

where the factor 2s+1 is gone but I is the same angular
integral as in Eq.(13). This results from the elastic scat-
tering processes: At low enough temperature, k is close
to k0, emission processes k ↔ q+k′ are forbidden by en-
ergy conservation, and absorption processes k+ q ↔ k′,
that conserve energy only for q ≥ q∗ ≃ 2m∗c/~, are sup-
pressed by an exponential factor e−~ωq∗/kBT . Eq.(18) can
be used to check that the figures below are in the colli-
sionless regime ωqτγ ≫ 1. Indeed, at low temperature,
the density of γ quasiparticles is O(e−∆/kBT ), their in-
teractions become negligible, and their thermal collision
time reduces to τγ ≃ 1/Γγφ

k . Similarly, we checked that
ωqτφ ≫ 1 on the figures.
Application to helium – Precise measurements of the
equation of state (relating ρ to the pressure) and of
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FIG. 1: Phonon damping rates at the angular frequency

ωq = 2π × 165 GHz (q = 0.3Å
−1

) in liquid 4He at pressure
P = 20 bar as a function of temperature. Solid line: purely
phononic damping Γφφ due to the Landau-Khalatnikov four-
phonon process [1, 6, 15]; it depends on the curvature pa-
rameter γ defined as ωq = cq[1 + γ

8
( ~q

mc
)2 + O(q4)]. Interpo-

lating the measurements of P 7→ γ(P ) in Refs.[16, 17] gives
γ = −6.9. Dashed black line/dash-dotted black line: damp-
ing due to elastic/inelastic processes, see Eq.(13)/(16). Red
dashed line: original formula of Ref.[1] for the elastic phonon-
roton damping rate. The roton parameters are extracted from
the measurement of their dispersion relation k 7→ ǫk at var-

ious pressures [18]: ∆/kB = 7.44K, k0 = 2.05Å
−1

, m∗/m =
0.11, ρk′

0/k0 = 0.39, ρ∆′/∆ = −1.64, ρ2∆′′/∆ = −8.03,
ρm′

∗/m∗ = −4.7. In Eq.(16), the parabolic approximation
(10) has been used (hence ǫk∗

/∆ ≃ 1.43). The speed of sound
c = 346.6m/s and the Grüneisen parameter u = d ln c

d ln ρ
= 2.274

which enters in Γφφ, are taken from the equation of state
(A1) of Ref.[19]. The very low values of ~q

mc
= 0.13 and of

kBT

mc2
< 10−2 justify our use of quantum hydrodynamics.

the roton dispersion relation for various pressures have
been performed in liquid 4He at very low temperature
(kBT ≪ mc2,∆). They give access to the parameters
k0, ∆, their derivatives and m∗. The measured speed of
sound is in excellent agreement with the thermodynamic
relation mc2 = ρdµ

dρ , where µ is the zero temperature
chemical potential of the liquid. With this we are able to
plot in Fig. 1 the phonon damping rates as functions of
temperature, for a fixed value of the angular frequency
ωq. At the chosen high pressure, the phonon dispersion
relation is concave at low q, therefore the Beliaev-Landau
[6–11] three-phonon process φ ↔ φφ is energetically for-
bidden at low temperature and the Landau-Khalatnikov
[1] process φφ ↔ φφ is dominant. Our high yet ex-
perimentally accessible [12, 13] value of ωq leads to not
too weak damping rates Γq, thus to attenuation lengths
2c/Γq short enough to be measured in centimetric cells.
As visible on Fig. 1, the damping of sound is in fact
dominated by the four-phonon Landau-Khalatnikov pro-
cesses up to a temperature T ≃ 0.6 K. In this regime
one would directly observe this phonon-phonon damping
mechanism, which would be a premiere. The sound at-
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FIG. 2: Phonon damping rates at the wavenumber q = mc/2~
in an unpolarized homogeneous [5] cold-atom Fermi gas in the
thermodynamic limit as a function of temperature. (a) At
unitarity a−1 = 0, where most parameters of the phonons and
the fermionic quasiparticles have been measured (see text).
(b) On the BCS side 1/kFa = −0.389, these parameters are
estimated in the BCS theory (µ/ǫF ≃ 0.809, ∆/µ ≃ 0.566,
m∗

m
= ∆

2µ
, ρµ′/µ ≃ 0.602, ρ∆′/∆ ≃ 0.815, ρ2∆′′/∆ ≃ −0.209,

u = d ln c
d ln ρ

≃ 0.303). In both cases the curvature parameter
γ defined in the caption of Fig. 1 is estimated in the RPA
[33]. Solid line: phonon-phonon (a) Beliaev-Landau damping
φ ↔ φφ (for γ > 0) as in Eqs. (121) and (122) of Ref.[6]
(independent of |γ|) and (b) Landau-Khalatnikov damping
φφ ↔ φφ (for γ ≃ −0.30 < 0) [6, 15]. Dashed line/dash-
dotted line: elastic/inelastic phonon-fermionic quasiparticle
processes, as in Eq.(13)/(16). In Eq.(16), we took for ǫk (a)
the form proposed in Ref.[30] (hence ǫk∗

/∆ ≃ 1.12) and (b)
the BCS form (hence ǫk∗

/∆ ≃ 1.14). µ is the chemical po-
tential of the gas at T = 0, and the plotted quantities are in
fact inverse quality factors.

tenuation measurements of Ref.[14] in helium at 23 bars
and ωq = 2π × 1.1 GHz are indeed limited to T > 0.8 K
where the damping is still dominated by the rotons.

Application to fermions – In cold-atom Fermi gases, in-
teractions occur in s-wave between opposite-spin atoms.
Of negligible range, they are characterized by the scat-
tering length a tunable by Feshbach resonance [20–25].

Precise measurements of the parameters k0 and ∆ of
the fermionic excitations have been performed at unitar-
ity a−1 = 0 [26]. Due to scale invariance of the unitary
gas [27–29], k0 is proportional to the Fermi wavenumber
kF = (3π2ρ)1/3, k0 ≃ 0.92kF [26], and ∆ is proportional

to the Fermi energy ǫF =
~
2k2

F

2m , ∆ ≃ 0.44ǫF [26]. This
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also determines their derivatives with respect to ρ. Sim-
ilarly, the equation of state measured at T = 0 is simply
µ = ξǫF, where ξ ≃ 0.376 [25], and the critical temper-
ature is Tc ≃ 0.167ǫF/kB [25]. For the effective mass
of the fermionic excitations and their dispersion relation
at non vanishing k − k0, we must rely on the results of
a dimensional ǫ = 4 − d expansion, m∗/m ≃ 0.56 and

ǫk ≃ ∆+
~
2(k2−k2

0
)2

8m∗k2

0

[30]. We also trust the prediction of

Anderson’s RPA [31, 32] that the third derivative of the
phononic dispersion relation is positive at q = 0 [33]. The
damping rates of phonons with wavenumber q = mc/2~
are plotted in Fig. 2a. The contribution of the three-
phonon Landau-Beliaev processes φ ↔ φφ, here energet-
ically allowed, is the dominant one; it is computed in the
quantum hydrodynamic approximation where it is inde-
pendent of the value of the third derivative.

The phononic excitation branch becomes concave in
the BCS limit kFa → 0− [34]. As visible on Fig. 2b, the
phonon-phonon damping (now governed by the Landau-
Khalatnikov processes mentioned earlier) is much weaker,
and dominates the φ − γ damping only at very low
temperatures. At the commonly reached temperatures
T > 0.05ǫF/kB [35], the damping is in fact dominated
by the inelastic φ− γ processes which (unlike in helium)
prevail over the elastic ones because of the small value of
ǫk∗

/∆. Although the associated quality factors ωq/Γq

may seem impressive, the lifetimes Γ−1
q of the modes

do not exceed one second in a gas of 6Li with a typi-
cal Fermi temperature TF = 1µK, which is shorter than
what has been observed in a BEC [36]. Our predic-
tions, less quantitative than on Fig. 2a, are based on
the BCS approximation for both the equation of state
and the dispersion relation of the fermionic excitations

ǫk ≃ ǫBCS
k = [(~

2k2

2m −µ)2+∆2
BCS]

1/2 and on the RPA for
the third derivative of ωq in q = 0 (whose precise value
matters here). A cutting remark on Ref. [37]: even in the
BCS approximation to which it is restricted, we disagree
with its expression of Γinel

q .

Conclusion – By complementing the Landau approach [1]
with a systematic low temperature expansion, we derived
the definitive leading order expression of the phonon-
roton coupling in liquid helium and we generalized it
to the phonon-pair-breaking excitation coupling in Fermi
gases. The ever-improving experimental technics in these
systems give access to the microscopic parameters deter-
mining the coupling and allow for a verification in the
near future. Our result also clarifies the regime of tem-
perature and interaction strength in which the purely
phononic φφ ↔ φφ Landau-Khalatnikov sound damping
in a superfluid, unobserved to this day, is the dominant
process.
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