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Landau phonon-roton theory revisited for superfluid helium 4 and Fermi gases
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Laboratoire Kastler Brossel, ENS-PSL, CNRS, Sorbonne Universités, Collége de France, Paris, France

Hadrien Kurkjian
TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerp, Belgium
(Dated: July 28, 2017)

Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two dis-
tinct types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations.
In the long wavelength limit, revising and extending Landau and Khalatnikov’s theory initially de-
veloped for helium [ZhETF 19, 637 (1949)], we obtain universal expressions for three- and four-body
couplings among these two types of excitations. We calculate the corresponding phonon damping
rates at low temperature and compare them to those of a pure phononic origin, paving the way to

experimental observations.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.4+q

Introduction — A homogeneous superfluid of particles
with short-range interactions exhibits, at sufficiently low
temperature, phononic excitations as the only micro-
scopic degrees of freedom. In this universal limit, all
superfluids of this type reduce to a weakly interacting
phonon gas, irrespective of the statistics of the under-
lying particles and of the strength of their interactions.
Phonon damping then only depends on the phonon dis-
persion relation close to the zero wavenumber (namely,
its slope and its third derivative) and on the phonon non-
linear coupling, deduced solely from the system equation
of state through Landau and Khalatnikov’s quantum hy-
drodynamic theory [1].

In the experimental reality, however, the tempera-
ture is not always low enough to make the dynamics
purely phononic. Other elementary excitations can en-
rich the problem, such as rotons in liquid helium 4 and
fermionic BCS-type pair-breaking excitations in spin-1,/2
cold-atom Fermi gases. These excitations, denoted here
as v quasiparticles, exhibit in both cases an energy gap
A > 0. Remarkably, as shown by Landau and Kha-
latnikov, the phonon-roton coupling, and more generally
the phonon coupling to all gapped excitations as we shall
see, depend to leading order in temperature only on a
few parameters of the dispersion relation of the v quasi-
particles, namely the value of the minimum A and its
location kp in the wavenumber space, their derivatives
with respect to density, and the effective mass m, close
to k = ko. We have discovered however that the ¢ — ~
coupling of Ref.[1] is not exact, a fact to our knowledge
unnoticed in the literature. Our goal here is to complete
the result of Landau and Khalatnikov, and to quantita-
tively obtain the phonon damping rate due to the ¢ — v
coupling as a function of temperature, an a priori non-
trivial task in the considered strongly interacting sys-
tems. We restrict to the collisionless regime wqmy > 1
and wqTy > 1, where wq is the angular eigenfrequency of
the considered phonon mode of wavevector q, and 7, and

T4 are respectively the typical collision times of a thermal
~ quasiparticle and of a thermal phonon. An extension
to the hydrodynamic regime wqry S 1 or wqrs S 1 may
however be obtained from kinetic equations [2]. An ex-
perimental test of our results seems nowadays at hand,
either in liquid helium 4, extending the recent work of
Ref.[3], or in homogeneous cold Fermi gases, that the
breakthrough of flat-bottom traps [4] now allows one to
prepare in the lab [5].

Landau-Khalatnikov revisited — We briefly recall the rea-
soning of Ref.[1] to get the phonon-roton coupling in
liquid helium 4, extending it to the phonon-fermionic
quasiparticle coupling in an unpolarised spin-1/2 Fermi
gas. We first treat in first quantized form the case of
a single roton or fermionic excitation, considered as a
quasiparticle v of position r, momentum p and spin
s = 0 or s = 1/2. In a homogeneous superfluid of
density p, its Hamiltonian is given by €(p,p), a rota-
tionally invariant function of p such that p — €e(p,p)
is the v quasiparticle dispersion relation. In presence
of acoustic waves (phonons), the superfluid acquires a
position-dependent density p(r) and velocity v(r). For
a phonon wavelength large enough as compared to the
coherence length of the v quasiparticle (its thermal de
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frequency small enough as compared to the v quasiparti-
cle “internal” energy A, we can write the v quasiparticle
Hamiltonian in the local density approximation:

H=¢€(p,p(r)) +p-v(r) (1)
The last term is a Doppler effect reflecting the energy dif-
ference in the lab frame and in the frame moving with the
superfluid [1]. For a weak phononic perturbation of the
superfluid, we expand the Hamiltonian to second order
in the density fluctuations dp(r) = p(r) — p:
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not paying attention yet to the noncommutation of r and
p- Phonons are bosonic quasiparticles connected to the
expansion of dp(r) and v(r) on eigenmodes of the quan-
tum hydrodynamic equations linearised around the ho-
mogeneous solution at rest:

1 7 7 iq-r
dp(r) = mzpqwqwiq)eq (3)
q#0
v(r) = 1/2 qu e‘q'r (4)
q#0

The resulting annihilation and creation operators l;q and
b:‘Jl of a phonon of wavevector q and energy hwq obey the
usual commutation relations [bq,bg/] = 0q,q'- We have
taken here periodic boundary conditions in a cubic box
of volume V, and we recall the expressions of the angular

eigenfrequency wq = cq and of the modal amplitudes
1/2 1/2
Pg = (2%%) and vq = (27’1‘;(1) q, where m is the

mass of a superfluid particle and ¢ is the sound velocity.
For an arbitrary number of v quasiparticles, we switch
to second quantisation and rewrite Eq.(2) as

.Al k q7 . . ~
H Zek'yko.'yka"" Z V1/2 (Vl/Ungbq—f—h.C.)

kk’,q,0
Ak, q; k', q') + .
X 5k+q K+ Z +Vl’07k06k+q,k’+¢
k.k’,q,q’,0

x [bf,bg + = (b_qrb +he)] (5)

where Ak, and ’y;fw are bosonic (rotons, s = 0, o = 0)
or fermionic (s = 1/2, ¢ =1,/) annihilation and creation
operators of a 7y quasiparticle of wavevector k = p/h in
spin component ¢, obeying the usual commutation or an-
ticommutation relations. The first sum in the right-hand
side of Eq.(5) gives the energy of the v quasiparticles in
the unperturbed superfluid, with ey = e(hk, p). The sec-
ond sum, originating from the Doppler term and the term
linear in dp in Eq.(2), describes inelastic processes of ab-
sorption or emission of a phonon by a 7 quasiparticle,
characterised by the amplitude

8pek + 8pek/ hk + Rk’
= o e

Ai(k, q; k/) = 9 Vq- 9

(6)
where q, k and k’ are the wavevectors of the incoming
phonon and the incoming and outgoing v quasiparticles.
The writing in Eq.(6) is invariant under the exchange of k
and k’. It results from the symmetrisation of the various
terms, in the form [f(p)e!9™ + ¢!97 f(p)]/2 with r and p
canonically conjugated operators, ensuring that the cor-
rect form of Eq.(2) is indeed hermitian. The third sum
in Eq.(5), originating from the terms quadratic in dp in
Eq.(2), describes the direct elastic scattering of a phonon

on a 7y quasiparticle, with the symmetrised amplitude
6261( + 6261(/
Az (k, q: K, d') = pgpy ———— (7)
where the primed wavevectors are the ones of the emerg-
ing quasiparticles. It also describes negligible two-
phonon absorption and emission processes. The effec-
tive amplitude for the elastic ¢ — v scattering is obtained
by adding the contributions of the direct process, and of
the absorption-emission or emission-absorption process
treated to second order in perturbation theory [1]:

ATk, q: K, q') = Ao (k, q; k', )
N Ai(k, gk +q) A (K, q K +q)
hwq + €x — €xyq
N Ak —q',q;k)Ai(k — ', q; k)
€k — hwq/ — €k—q’

(8)

Up to this point this agrees with the theory of Landau
and Khalatnikov, except that the first derivative of A
with respect to p in Eq.(6), thought to be anomalously
small in helium at low pressure, was neglected in Ref.[1].
Expression (8), issued from a local density approxima-
tion, holds only to leading order in a low-energy limit
(it also holds only on the energy shell, that is for energy
conserving scattering processes, which we used to rewrite
the second denominator in (8), since quantum hydrody-
namics is only an effective theory [6]). We then take the
T — 0 limit with the scaling laws

g T,k — ko~ TY? (9)

reflecting the fact that the thermal energy of a phonon
is heq ~ kpT and the effective kinetic energy ex — A of
a quasiparticle v is &~ kT, as seen from the expansion
h2(k — ko)?
= A4+ —— " 410k —k? 10
T W ( 0) (10)
The coupling amplitudes 4; and the energy denomina-
tors in Eq.(8) must be expanded up to relative corrections
of order T, that is to order T°/? for A; and T2 for the

energy denominators, ¢’ being deduced from q, k and
1= Blhmko)alu=ul) ) 4

d'/q' by energy conservation [¢ — ¢ g

Ak— k‘))“/] + e 2(;; - 0y O(T®/?) where u and u’ are de-

fined below Eq.(11)]. On the contrary, it suffices to ex-
pand As to leading order T in temperature. We hence
get our main result, the effective coupling amplitude of
the elastic ¢ — v process to leading order in temperature:

hqg |1 (hpk’)2 R2k3
eff o 2 0 0
A k q; k q — P A + — -_—
2 ( E ) T—0 mcp { 2 2m 2mey

2
pA’ ,, PA / I p_% 2myc
X{<hck0> el IO N Cl el Rl Tt

% kg
+mc(u+u)w+u2u/2 p—O(u2+u/2)}} (11)

hkq



Here A, k{), A" are the first and second derivatives of A
ak s _ d°k _ ad

o= gk T T
are cosines of the angles betweenqk, q and Zl’ ; our resgfts
hold in the case kg = 0 provided the limit kg — 0 is
taken in Eq.(11). In Ref.[1], the A’ terms were neglected
as said, but the last term in (11), with the factor pk{/ko,
was forgotten.

Damping rates — A straightforward application of Eq.(11)
is a Fermi golden rule calculation of the damping rate

¢l of phonons q due to elastic scattering on 7 quasi-
particles. The ~ quasiparticles are in thermal equi-
librium with Bose or Fermi mean occupation numbers
Ny x = [exp(ex/ksT) — (=1)*]71. So are the phonons
in the modes q' # q, with Bose occupation numbers
Tbq = lexp(hwy /kpT) — 1]7%; the mode q is initially
excited with an arbitrary number ny  of phonons. By in-
cluding both the loss q+k — q'+k’ and the inverse gain
d + k' — q+ k process, with the corresponding bosonic
amplification factors, and after summation over k, q’, o,
passage to the thermodynamic limit, use of energy con-
servation and of the relations 1+ (—1 )25n =e/k2Tq, one

and ko with respect to p; u =

finds that $Lny.q = —T¢ (ns,q — 7in,q) With
21 d3kd3q 2
1—\81 [ —— 2 1 eff k k/ !
d= ey [ G AT q)]
— /_ , 1 71 25_
X 5(€k —+ hwq — €k’ — hwq/)nb’q My k [ + ( ) n'qu]

Np,q
(12)

and k' = k+q—q’. As our low energy theory only holds
for kT < A, the gas of v quasiparticles is non degener-
ate, and 7.y k ~ exp(—ex/kpT) < 1 in the numerator of
Eq.(12). By taking the T — 0 limit at fixed hcq/kpT and
setting AST = h:’" f, where the dimensionless quantity f
only depends on angle cosines, we obtain the equivalent

7A/kBT k:2

el 1/2
iy~ (25 +1)° R (moksT)V2T (13)
where the integral I = [d?Qx [d*Qq f2(u,u/,w) over

solid angles of direction k and q’ is independent of 3 [we
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)+ A2 ABBE — 5) B~ B A
54 8] with o = 45, 5 - P, A= A L o2
A’
B = ﬁ/,)ckg]'

One proceeds similarly for the calculation of the damp-
ing rate Fifd of phonons q due to the inelastic processes
of absorption q + k — k’ or emission k/ — q + k by the
thermal equilibrium v quasiparticles. We obtain

inel __ 27 / 4’k L2
1—‘q - h (28 + 1) (27T)3 [-Al (ka q; k )]
X 5(ﬁwq + €k — ek’)(ﬁ'y,k — T_L'y,k/) (14)

with k" = k + q. The low degeneracy of the v quasipar-
ticles and energy conservation allow us to write 7.y x —
fiy o =~ exp(—ex/kpT)/(1 4 fip.o). Energy conservation
leads here to a scaling law on & that differs from Eq.(9)
as it forces the wavevector k to be at a nonzero distance
from kg, even in the low phonon energy limit: When
g — 0 at fixed k, the Dirac delta in Eq.(14) becomes

dek
—ew) ~ 1 dk
B(fuoq + e~ ) v, (o) 5( hc) (15)

and imposes that the group velocity %% of the incoming

v quasiparticle is larger in absolute value than that, c,
of the phonons. This condition, that reminds us of the
Landau criterion, restricts the wavenumber & to a subset
D of R*. In the low ¢ limit, ¢ < kVk € D significantly
contributing to Eq.(14), but with no constraint on the
ratio heq/kpT, we write A; in Eq.(6) to the leading order

¢"/? in ¢, and integrate over the direction of k, to obtain
2
: 25 +1 dkk? e=ex/kpT h2c’k
rinel ~ ( . ) 0T O+ —g |(16)
mme | | + Mg I
25 + 1) pk2 hek, |* kpTeck/k5T
(s + D)pky e, + — B¢ (17)
T—0 4mh?me3 s 1+ 7npq

In the second line we give an equivalent when 7" — 0 at
fixed heq/kpT, k. being the element of the border of D
(dek |k=k, = n«hc, N, = ) with minimal energy e, (when
more than one of such k, exists, one has to sum their
contributions). As €, > A, the elastic damping rate
dominates the inelastic one in the mathematical limit
T — 0 ; we shall see however that this is not always the
case for typical temperatures in current experiments.

To be complete, we give a low temperature equiva-
lent of the damping rate of the v quasiparticles k due to
their interaction with thermal phonons. With k — ky =
O(T'/?) as in Eq.(9):

Yo ~ 1 (kBT)7 (18)
k10 42 (hepl/3)6

where the factor 2s + 1 is gone but I is the same angular
integral as in Eq.(13). This results from the elastic scat-
tering processes: At low enough temperature, k is close
to ko, emission processes k <+ q-+k’ are forbidden by en-
ergy conservation, and absorption processes k + q < K/,
that conserve energy only for ¢ > q. ~ 2m.c/h, are sup-
pressed by an exponential factor e~ "wa-/k8T  FEq.(18) can
be used to check that the figures below are in the colli-
sionless regime wq7, > 1. Indeed, at low temperature,
the density of v quasiparticles is O(e=2/¥8T)  their in-
teractions become negligible, and their thermal collision
time reduces to 7, ~ 1/ I‘z‘z’. Similarly, we checked that
wqTe > 1 on the figures.

Application to helium — Precise measurements of the
equation of state (relating p to the pressure) and of
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FIG. 1: Phonon damping rates at the angular frequency

wq = 2m x 165 GHz (¢ = 0.3A_1) in liquid *He at pressure
P = 20 bar as a function of temperature. Solid line: purely
phononic damping I'44 due to the Landau-Khalatnikov four-
phonon process [1, 6, 15]; it depends on the curvature pa-
rameter 7 defined as wq = cg[1 + %(%)2 + O(q")]. Interpo-
lating the measurements of P +— ~(P) in Refs.[16, 17] gives
v = —6.9. Dashed black line/dash-dotted black line: damp-
ing due to elastic/inelastic processes, see Eq.(13)/(16). Red
dashed line: original formula of Ref.[1] for the elastic phonon-
roton damping rate. The roton parameters are extracted from
the measurement of their dispersion relation k — ex at var-
ious pressures [18]: A/kp = 7.44K, ko = 20587, my/m =
0.11, pky/ko = 0.39, pA'/A = —1.64, p*A"/A = —8.03,
pm’,/m. = —4.7. In Eq.(16), the parabolic approximation
(10) has been used (hence e, /A ~ 1.43). The speed of sound
¢ = 346.6 m/s and the Griineisen parameter u = EHE; =2.274
which enters in I'yy, are taken from the equation of state
(A1) of Ref.[19]. The very low values of % = 0.13 and of

kT
mC2

< 1072 justify our use of quantum hydrodynamics.

the roton dispersion relation for various pressures have
been performed in liquid *He at very low temperature
(kT < mc?, A). They give access to the parameters
ko, A, their derivatives and m,. The measured speed of
sound is in excellent agreement with the thermodynamic
relation mec? = p%%, where p is the zero temperature
chemical potential of the liquid. With this we are able to
plot in Fig. 1 the phonon damping rates as functions of
temperature, for a fixed value of the angular frequency
wq. At the chosen high pressure, the phonon dispersion
relation is concave at low ¢, therefore the Beliaev-Landau
[6-11] three-phonon process ¢ <> ¢¢ is energetically for-
bidden at low temperature and the Landau-Khalatnikov
[1] process ¢¢p + ¢¢ is dominant. Our high yet ex-
perimentally accessible [12, 13] value of wq leads to not
too weak damping rates I'q, thus to attenuation lengths
2¢/T'q short enough to be measured in centimetric cells.
As visible on Fig. 1, the damping of sound is in fact
dominated by the four-phonon Landau-Khalatnikov pro-
cesses up to a temperature T ~ 0.6 K. In this regime
one would directly observe this phonon-phonon damping
mechanism, which would be a premiere. The sound at-
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FIG. 2: Phonon damping rates at the wavenumber g = mc/2h
in an unpolarized homogeneous [5] cold-atom Fermi gas in the
thermodynamic limit as a function of temperature. (a) At
unitarity a~! = 0, where most parameters of the phonons and
the fermionic quasiparticles have been measured (see text).
(b) On the BCS side 1/kra = —0.389, these parameters are
estimated in the BCS theory (u/er ~ 0.809, A/ ~ 0.566,
me — % o /1~ 0.602, pA'/A ~ 0.815, p? A" /A ~ —0.209,
u = g}g; ~ 0.303). In both cases the curvature parameter
v defined in the caption of Fig. 1 is estimated in the RPA
[33]. Solid line: phonon-phonon (a) Beliaev-Landau damping
¢ < ¢¢ (for v > 0) as in Eqs. (121) and (122) of Ref.[6]
(independent of |y|) and (b) Landau-Khalatnikov damping
op < ¢¢ (for v ~ —0.30 < 0) [6, 15]. Dashed line/dash-
dotted line: elastic/inelastic phonon-fermionic quasiparticle
processes, as in Eq.(13)/(16). In Eq.(16), we took for e (a)
the form proposed in Ref.[30] (hence €k, /A ~ 1.12) and (b)
the BCS form (hence ek, /A ~ 1.14). u is the chemical po-
tential of the gas at T' = 0, and the plotted quantities are in
fact inverse quality factors.

tenuation measurements of Ref.[14] in helium at 23 bars
and wq = 27 x 1.1 GHz are indeed limited to 7" > 0.8 K
where the damping is still dominated by the rotons.
Application to fermions — In cold-atom Fermi gases, in-
teractions occur in s-wave between opposite-spin atoms.
Of negligible range, they are characterized by the scat-
tering length a tunable by Feshbach resonance [20-25].
Precise measurements of the parameters kg and A of
the fermionic excitations have been performed at unitar-
ity a=* = 0 [26]. Due to scale invariance of the unitary
gas [27-29], ko is proportional to the Fermi wavenumber
kp = (37%p)Y/3, ko ~ 0.92kp [26], and A is proportional
to the Fermi energy ep = M8 A ~ 0.44ep [26]. This
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also determines their derivatives with respect to p. Sim-
ilarly, the equation of state measured at 7' = 0 is simply
u = Eep, where £ ~ 0.376 [25], and the critical temper-
ature is T, ~ 0.167ep/kp [25]. For the effective mass
of the fermionic excitations and their dispersion relation
at non vanishing k — ko, we must rely on the results of
a dimensional ¢ = 4 — d expansion, m,/m ~ 0.56 and

h2 (k% —k3)? c

€ ~ A+ T [30]. We also trust the prediction of
Anderson’s RPA [31, 32] that the third derivative of the
phononic dispersion relation is positive at ¢ = 0 [33]. The
damping rates of phonons with wavenumber ¢ = mc/2h
are plotted in Fig. 2a. The contribution of the three-
phonon Landau-Beliaev processes ¢ <> ¢, here energet-
ically allowed, is the dominant one; it is computed in the
quantum hydrodynamic approximation where it is inde-
pendent of the value of the third derivative.

The phononic excitation branch becomes concave in
the BCS limit krpa — 07 [34]. As visible on Fig. 2b, the
phonon-phonon damping (now governed by the Landau-
Khalatnikov processes mentioned earlier) is much weaker,
and dominates the ¢ — v damping only at very low
temperatures. At the commonly reached temperatures
T > 0.05e¢p/kp [35], the damping is in fact dominated
by the inelastic ¢ — v processes which (unlike in helium)
prevail over the elastic ones because of the small value of
ex,/A. Although the associated quality factors wq/I'q
may seem impressive, the lifetimes T'g L of the modes
do not exceed one second in a gas of SLi with a typi-
cal Fermi temperature T = 1uK, which is shorter than
what has been observed in a BEC [36]. Our predic-
tions, less quantitative than on Fig. 2a, are based on
the BCS approximation for both the equation of state
and the dispersion relation of the fermionic excitations
€~ €208 = [(% — )2+ A%s]'/? and on the RPA for
the third derivative of wy in ¢ = 0 (whose precise value
matters here). A cutting remark on Ref. [37]: even in the
BCS approximation to which it is restricted, we disagree
with its expression of T'i¢l.

Conclusion — By complementing the Landau approach [1]
with a systematic low temperature expansion, we derived
the definitive leading order expression of the phonon-
roton coupling in liquid helium and we generalized it
to the phonon-pair-breaking excitation coupling in Fermi
gases. The ever-improving experimental technics in these
systems give access to the microscopic parameters deter-
mining the coupling and allow for a verification in the
near future. Our result also clarifies the regime of tem-
perature and interaction strength in which the purely
phononic ¢¢ <> ¢¢ Landau-Khalatnikov sound damping
in a superfluid, unobserved to this day, is the dominant
process.

This project received funding from the FWO and the
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