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Abstract – We propose a method to obtain a regular arrangement of two-level atoms in a three-
dimensional optical lattice with unit filling, where all the atoms share internal state coherence
and metrologically useful quantum correlations. Such a spin-squeezed atomic crystal is obtained
by adiabatically raising an optical lattice in an interacting two-component Bose-Einstein conden-
sate. The scheme could be directly implemented on a microwave transition with state-of-the art
techniques and used in optical-lattice atomic clocks with bosonic atoms to strongly suppress the
collisional shift and benefit from the spins quantum correlations at the same time.

Introduction. – One of the most successful appli-
cations of cold atoms is atomic clocks that provide the
best time standards. The intrinsic uncertainty in the
measured clock transition frequency, so called standard
quantum limit ∆ω ∝ (T

√
N)−1 where T is the interroga-

tion time and N the number of atoms, has been already
reached in atomic fountains using a microwave transition
[1]. Increasing the atom number N and the interroga-
tion time T in order to lower the value of the standard
quantum limit is not straightforward in an atomic foun-
tain. Indeed too large densities introduce an atom-number
dependent frequency shift due to atomic interactions (col-
lisional shift) and the interrogation time is limited by the
fact that the cold cloud is in free expansion. Optical lat-
tices that allow to confine and interrogate simultaneously
a large number of atoms for longer times offer in this re-
spect a crucial advantage [2–7] that, combined with the use
of a larger reference frequency (optical transition) already
outperforms the regular frequency standards [2, 8, 9]. In-
terestingly, many-body physics of cold atoms in an optical
lattice opens new perspectives that can further improve
atomic clocks. In particular, the configuration with one
atom per site of an optical lattice is a mean to suppress
the collisional shift, maximizing at the same time the den-
sity, both for bosonic [3–5] and also for fermionic atomic
clocks [10]. On the top of these rapid developments, in
this paper we envisage to introduce well designed quan-
tum correlations among the atoms internal states, known
as spin-squeezing [11–16], in order to beat the standard

quantum limit and push even further the extraordinary
precision of optical-lattice clocks in the long term. To this
aim we generalize a spin-squeezing scheme successfully im-
plemented in bimodal Bose-Einstein condensates [12,13] to
the spatially multimode case of an optical lattice.
Our idea is to raise the optical lattice in an interacting

bimodal Bose-Einstein condensate, adiabatically bringing
the system from the superfluid to the Mott-insulator phase
[17–19]. The correlations among the atomic spins build
up in the superfluid phase where “each atom sees each
atom” similarly to what happens in the absence of lattice
where all the atoms share the same spatial mode. As the
system approaches the Mott transition, the squeezing dy-
namics slows down to finally stop completely. While the
condensate is destroyed as the atoms get localized in the
lattice sites, the spin-squeezing survives and it is stored
in the Mott-insulator phase. To the advantage of having
a close packed ensemble atoms, where atomic interactions
are highly suppressed meeting the basic requirements for
an atomic clock, we then add the advantage of quantum
correlations allowing for metrological gain with respect
to independent atoms. We analyze in detail the scheme
for a microwave transition relevant to microwave trapped-
atoms bosonic clocks [6, 7, 20–22], for which a proof-of-
principle experiment may be preformed with state of the
art techniques.
Besides atomic clocks, the scheme can be used to “ex-

tract” the entanglement among the atoms that are initially
in a common spatial mode [23], to obtain a state where
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(a)
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Fig. 1: (a) Initially, a Bose-Einstein condensate of atoms in
an internal state a is prepared in a shallow 3D optical lattice.
At time t = 0 an electromagnetic π/2-pulse puts each atom in
a coherent superposition two internal states a and b, and the
binary atomic interactions between cold atoms start the gen-
eration of squeezing in the system [27,28]. (b) Simultaneously,
the lattice height is gradually increased, in such a way that the
system enters the Mott-insulator phase at the “best squeez-
ing time” tbest for which squeezing is the largest, thus freezing
the “best squeezing” ξ2best = ξ2(tbest) (see equation (5)) in the
Mott-insulator phase.

each entangled atom can be individually addressed and
manipulated with a quantum gas microscope [24,25]. Our
“spin-squeezed crystal” is then a platform that allows a
complete characterization of the entangled state [26] and
could be used as a resource in the emerging field of quan-
tum networks and multiparameter estimation.

The Model. – The protocol is sketched in Fig. 1.
We consider a two component condensate with repulsive
interactions, with symmetric coupling constants describ-
ing s-wave interactions between atoms in the two states
gaa = gbb, and an adjustable interspecies coupling [13, 29]
in the phase-mixed regime gab < gaa [30]; gij = 4π~2aij/m
where aij is the s-wave scattering length for one atom in
state i and one in state j, m is the atomic mass and ~ is
the Planck constant. The system Hamiltonian is

Ĥ =
∑

σ=a,b

{
∫

d3r Ψ̂†
σ(r)

[

− ~
2

2m
∇2 + V (r)

]

Ψ̂σ(r)

+
gσσ
2

∫

d3r Ψ̂†
σ(r)Ψ̂

†
σ(r)Ψ̂σ(r)Ψ̂σ(r)

}

+ gab

∫

d3r Ψ̂†
a(r)Ψ̂

†
b(r)Ψ̂b(r)Ψ̂a(r), (1)

where Ψ̂a and Ψ̂b are the bosonic field operators for atoms
in the state a and b respectively satisfying usual commu-
tation relations,

[Ψ̂σ(r), Ψ̂
†
σ′ (r

′)] = δ(r− r′)δσσ′ . (2)

The system is confined in a 3D uniform optical lattice
described by the periodic potential

V (r) = V0
∑

α=x,y,z

sin2(kα) (3)

where k = 2π/λ is the lattice wavenumber and λ/2 is the
lattice period, with the number of lattice sites M equal
to the number of atoms N . Uniform systems can be re-
alized in a flat bottom potential that is now possible to
produce in the laboratory [31, 32]. The fact that the po-
tential walls are not infinitely steep releases the constraint
of having exactly a filling factor of one to reach the Mott
transition [33]. After each atom is prepared in a coherent
superposition of internal states a and b by an electromag-
netic π/2 pulse, the lattice depth is linearly increased in
time

V0(t) = Vinit + (Vc − Vinit)t/tbest (4)

from an initial value Vinit to the critical value Vc to reach
the Mott transition, on a time scale given by the best
squeezing time tbest. We assume that the system dynamics
is confined to the lowest Bloch band and it is described by
the two-component Bose-Hubbard model [34] with time-
dependent hopping J(V0) and interaction terms Uσ(V0),
Uab(V0). We quantify the spin-squeezing using the pa-
rameter [11, 35]

ξ2 =
N〈∆Ŝ2

⊥〉min

〈S〉2 , (5)

where 〈S〉 is the length of the mean collective spin and
〈∆Ŝ2

⊥〉min is the minimal variance of the spin orthogonally
to the mean spin direction. The collective spin operators,
Ŝ± = Ŝx ± iŜy =

∫

d3rΨ̂†
a(r)Ψ̂b(r), Ŝz = (N̂a − N̂b)/2

where N̂σ is the atom number operator in the internal
state σ, give access to spin-squeezing as a function of time.

Initial state and evolution. – Starting from a con-
densate in internal state a, a mixing π/2 pulse puts the
system in a superposition of Fock states with Na atoms
in the internal state a and Nb = N − Na atoms in b
|Ψ0

Na,Nb
(0+) : Na, Nb〉 where we assume that each Fock

state is in the spatial ground state for the corresponding
atom number in the shallow lattice. We thus neglect the
thermal excitations initially present in the system and the
excitations created by the mixing pulse. A clean way to
avoid any excitation in the experiment would be to per-
form the pulse for an ideal gas at zero temperature in a
completely flat potential, and subsequently ramp up adi-
abatically the interactions [36] and the lattice. The very
stringent condition of having no excitations at all is how-
ever not necessary in practice for our proposal. Based on
our studies of spin-squeezing at finite temperature [37,38],
we expect that the final squeezing will not be affected as
long as the initial non-condensed fraction before the pulse
is much smaller than the targeted squeezing, which can be
achieved in the weakly interacting limit at sufficiently low
temperature.

In the adiabatic approximation, during the evolution
following the mixing pulse, each Fock state of the prepared
superposition remains in an instantaneous ground state
and picks up a time-dependent phase factor determined
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by the ground state energy E0(Na, Nb, t)

|ψ(t)〉 = 2−N/2
N
∑

Na=0

√

(

N

Na

)

e
− i

~

t∫

0

dt′E0(Na,N−Na,t
′)

× |Ψ0
Na,N−Na

(t) : Na, N −Na〉. (6)

Equation (6) for the system evolution is exact in the adia-
batic approximation, as long as Ψ0

Na,Nb
and E0(Na, Nb)

refer to the exact ground-state of the system with Na

atoms in the internal state a and Nb atoms in state b. The
N -body ground state for two-component bosons on a lat-
tice exhibits non-trivial correlations [39, 40] that entangle
the internal and external degrees of freedom in equation
(6) which would render the calculation of the squeezing
parameter a formidable task. We can however simplify
the problem by introducing two approximations. (i) We
assume that the squeezing is measured after raising the
lattice to reach the deep Mott phase with one atom per
site in the limit of vanishing tunnel coupling, which al-
lows to disentangle the internal and external degrees of
freedom in state (6). A consequence of this fact is that
the action of the collective spin operators on the Fock
states then obeys simple rules, e.g. Ŝ+|Ψ0

Na,Nb
: Na, Nb〉 ≈

√

(Na + 1)Nb|Ψ0
Na+1,Nb−1 : Na+1, Nb−1〉, as for the two-

mode Fock state where only internal degrees of freedom are
considered. (ii) We evaluate the energies E0(Na, Nb) en-
tering in the phase factors in (6) in the mean field approx-
imation for the external degrees of freedom of the atoms,
using the Gutzwiller method [34,41–43]. Precisely, the to-
tal mean-field energy is minimized numerically in the sub-
space of fixed mean number of atoms in each component,
i.e. 〈N̂a〉 = Na and 〈N̂b〉 = Nb, by a projection method
similarly to Ref. [44]. This approximation is accurate
enough in 3D and captures the transition to the Mott state
marked by the suppression of on-site atom number fluctu-
ations for integer filling and a threshold value of the U/J
parameter of the Bose-Hubbard model. The results for the

on-site correlation functions g
(2)
aa = 〈â†i â

†
i âiâi〉/〈â

†
i âi〉2 and

g
(2)
ab = 〈â†i b̂

†
i âib̂i〉/〈â

†
i âi〉〈b̂

†
i b̂i〉 and for the squeezing pa-

rameter ξ2 as a function of time are shown in Fig. 2(a) and
in Fig. 2(b) (green solid line) respectively. The time where
the on-site g(2) functions go to zero, indicated with a ver-
tical dotted line, marks the transition to the Mott phase.
At this point the atoms cease to “feel each other” via the
mean field interaction. As a consequence the squeezing
dynamics stops and the spin correlations that built up in
the superfluid phase are “frozen” in the Mott phase.

Effective χŜ2
z model in the superfluid phase. –

If the atom number is large, one can expand the ground
state energy E0(Na, Nb, t) in the phase factor of each Fock
state in (6) around 〈N̂a〉 = 〈N̂b〉 = N/2 up to the second
order [45]

1

~

t
∫

0

dt′E0(Na, Nb, t
′) ≃ Φ0(N, t) +T (t)

(Na −Nb)
2

4
. (7)

There is no linear term in (7) because of the a − b sym-
metric situation we consider, and the phase factor Φ0(N, t)
depending on the total number of atoms does not play any
role in the spin dynamics and can be neglected. Introduc-
ing the chemical potentials µσ(t) = ∂NσE0(Na, Nb, t) and
the parameter χ(t) = 1

2 (∂Na − ∂Nb
)[µa(t) − µb(t)]/~, the

function T (t) in equation (7) has the form

T (t) =

t
∫

0

dt′χ(t′) . (8)

By changing the time variable from t to the dimension-
less T (t), one then recovers the one-axis twisting (OAT)
model [27] with an Hamiltonian proportional to Ŝ2

z . In
particular, in the large N limit, the squeezing optimized

over time ξ2best = ξ2(tbest) is ξ
2
best ≃ 32/3

2
1

N2/3 and the best
squeezing time is

tbest ≃
31/6

N2/3





1

Vc − Vinit

Vc
∫

Vinit

dV0 χ(V0)





−1

(9)

where we used T (tbest) ≃ 31/6/N2/3 and the linear ramp
(4). We introduce the term “dynamic-OAT model” for the
quadratic approximation (7) in the phase factors, as op-
posite to “static-OAT model” for which we directly take a
time independent Hamiltonian Ĥ = ~χ(0)Ŝ2

z correspond-
ing to the initial conditions after the pulse. Contrarily
to the approach described in the previous section based
on the numerical solution of equation (6), the dynamic-
OAT model is valid only in the superfluid phase where the
derivatives entering the definition of χ(t) are well defined.
It allows however to get a physical insight and simple an-
alytical results. In Fig. 2(b), giving the time evolution
of the squeezing parameter, we show that the dynamic-
OAT model (red circles) is in agreement with the numer-
ical solution of equation (6) (green solid line) up to the
phase transition already for N = 125. In Fig. 2(c) we
show the corresponding time dependence of T (t). When
approaching the transition, χ(t) tends to zero and T (t),
that is the effective time of the effective χŜ2

z model, tends
to a constant. For optimal results, the Mott transition
should occur at the best squeezing time, whose expres-
sion for large N is given in equation (9). As expected,
the squeezing dynamics is slower in the dynamic-OAT
model than in static one. We show the scaling of the
best squeezing time with the total number of atoms N in
Fig. 2(d). A fit gives tbest ∝ N0.35, a slightly less favor-
able scaling than for the homogeneous static-OAT model,
for which χ(0)homo = 8(aaa + abb − 2aab)ER/πλ~N and
tbest ∝ N1/3. The same figure confirms that the depen-
dence of tbest on the scattering lengths suggested by the
homogeneous static-OAT model, approximately holds.

Adiabaticity and beyond mean field effects. – In
our treatment based on equation (6), while we treat ex-
actly the spin degrees of freedom that are in a quantum
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Fig. 2: (Color online) Numerical results: (a) On-site two-body

correlation functions g
(2)
aa = 〈â†

i
â†
i
âiâi〉/〈â

†
i
âi〉

2 and g
(2)
ab

=

〈â†
i
b̂†
i
âib̂i〉/〈â

†
i
âi〉〈b̂

†
i
b̂i〉 calculated for the central Fock state

|Na = N/2, Nb = N/2〉. (b) Spin-squeezing parameter ξ2 as a
function of t/tunit (bottom x-axis) and V0/ER (top x-axis) for
the linear ramp; ER = 2π2

~
2/(mλ2) is the recoil energy and

λ/2 the lattice period. t−1
unit = (aaa + abb − 2aab)ER/~λ. The

green solid line shows numerical results with E0 in (6) cal-
culated with the Gutzwiller method, while the red dots result
from the dynamic-OAT model (7). Predictions of the static-
OAT model (see text) are shown for comparison (blue dashed
lines). (c) T (t) for the dynamic-OAT model (red solid line)
and the static-OAT model (blue dashed line). Parameters are
N = 125, aaa = abb = 100.4a0 and aab = 95a0, where a0 is
the Bohr radius. The dashed horizontal lines in (b) and in (c)
represent respectively ξ2best and T (tbest) of the OAT model for
N = 125. By definition, the dynamic curves touch the dashed
horizontal lines at the best squeezing time tbest. (d) Scaling of
the best squeezing time tbest with N for aaa = abb = 100.4a0

and different values of aab. The dashed line is a fit tbest ∝ Nα

with α = 0.353 ± 0.004.

superposition in the initial state, we perform two main ap-
proximations concerning the external degrees of freedom of
the atoms. First, we assume adiabaticity as the optical lat-
tice lattice is raised, second we use the Gutwiller approx-
imation to evaluate the ground state energy for a given
spin Fock state. In this paragraph, we extend our anal-
ysis beyond mean field. As the squeezing in our scheme
develops essentially in the superfluid phase, we first con-

centrate on this phase and derive the validity conditions
of the adiabatic approximation at heart of our treatment
using the number-conserving Bogoliubov theory [46, 47].
Then, in the end of the pararagraph, we discuss the effect
of residual density fluctuations in the Mott state.
In the superfluid phase, where delocalization of atoms

is energetically more favorable, a large majority of par-
ticles occupy the zero quasi-momentum Bloch state of
the lowest band giving rise to condensation in momen-
tum space. When the depletion of the condensate is
small, the Bogoliubov method can capture the physi-
cal properties of the Bose-Hubbard model [48], although
it cannot be pushed too far towards the phase transi-
tion boundary [48, 49]. The starting point is the two-
component Bose-Hubbard Hamiltonian [34] written in
quasi-momentum representation. This Hamiltonian has
the same form as for a two-component Bose-Einstein con-
densate in free space [50] with the field operators Ψ̂σ(r)
expanded in a plane wave basis, provided the kinetic en-
ergy ǫq = ~

2q2/2m and the coupling constants gσ, gab are
replaced by ǫq(t) = −2J(V0)

∑

γ cos(q · eγ) and Uσ(V0),
Uab(V0) respectively, where eγ are primitive lattice vec-
tors. One then introduces the number-conserving opera-
tors, Λ̂q,a = â†0âq/

√
Na and Λ̂q,b = b̂†0b̂q/

√
Nb represent-

ing the non-condensed fields, and quadratizes the Hamil-
tonian in these fields. The quadratic Hamiltonian is diag-
onalized using the generalized Bogoliubov transformation

Λ̂q,σ(t) =u
σ
q,+(t)β̂q,+(t) + vσq,+(t)β̂

†
−q,+(t)+

uσq,−β̂q,−(t) + vσq,−(t)β̂
†
−q,−(t), (10)

where β̂q,±(t) are Bogoliubov quasi-particle operators sat-
isfying bosonic commutation relations and uσq,±(t), v

σ
q,±(t)

are known functions [30,50]. The Bogoliubov transforma-
tion in Eq. (10) is the same as in [50] with the same no-
tations, provided that equations are expressed in terms of
∆Eq(t) = ǫq(t)− ǫ0(t).
In order to calculate the number of excitations created

by the lattice rump starting at zero temperature with no
excitation, we write the Heisenberg equation of motion
for β̂q,±(t), and proceed similarly to appendix C of Ref.

[36]. One can show that the Bogoliubov modes β̂q,+(t) and

β̂q,−(t) evolve independently, and are coupled to modes

β̂−q,+(t) and β̂−q,−(t) respectively

i~
d

dt

(

β̂q,±(t)

β̂†
−q,±(t)

)

=

(

~ωq,±(t) −i~Ωq,±(t)
−i~Ωq,±(t) −~ωq,±(t)

)

×

(

β̂q,±(t)

β̂†
−q,±(t)

)

, (11)

where the Bogoliubov spectrum is defined by
(~ωq,±/∆Eq)

2 = 1 + ũa + ũb ±
√

(ũa − ũb)2 + 4ũab
with ũσ = Uσnσ/∆Eq and nσ = Nσ/M for σ = a, b ,

ũab = Uab
√
nanb/∆Eq and Ωq,±(t) =

1
2

d
dt log

(

∆Eq(t)
~ωq,±(t)

)

.
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The total fraction of excitations 1
N

∑

q 6=0
nex
q (t) with

nex
q (t) =

∑

ǫ=±〈Ψbog(0)|β̂†
q,ǫ(t)β̂q,ǫ(t)|Ψbog(0)〉 stays

small, as long as the (sufficient) adiabaticity condition

|Ωq,±(t)| ≪ |2ωq,±(t)| (12)

is verified for each quasi-momentum q 6= 0. From the
expression of Ωq,±(t) and for the linear ramp (4) one gets
the expression of the adiabatic time for each mode

tqadiab,± =
(Vc − Vinit)~ER

4∆Eq(V0)

∣

∣

∣

∣

d

dV0

(

∆Eq(V0)

~ωq,±(V0)

)∣

∣

∣

∣

(13)

which should be evaluated at q = (2π/N1/3l, 0, 0) with
the lattice spacing l = λ/2, where the condition (12) is
most stringent, and maximized over the ramp duration
V0 ∈ [Vinit, Vc]. In the large atom number limit one gets

tadiab,± ≃
N→∞

N1/3

2π

(Vc − Vinit)l

4J(V0)

∣

∣

∣

∣

d

dV0

(

J(V0)

c±(V0)

)∣

∣

∣

∣

, (14)

where c2± = (l/~)2J(V0)((~ωq,±/∆Eq)
2 − 1)∆Eq is the

sound velocity of the phonon-like Bogoliubov excitation
branches. We see from Eq. (14) that the adiabatic time
shares almost the same scaling with N as the best squeez-
ing time. Furthermore, the negative branch tadiab,− is al-
ways larger than tadiab,+ as long as one of the components
is not completely depleted. This implies that tadiab,− alone
sets the adiabatic time scale. We checked numerically that
the condition tbest ≫ tadiab,− holds for all parameters that
we consider. For example, for N = 104 and parameters in
Fig. 2, tadiab/tbest ≈ 0.032.

Decoherence. – While two and three-body losses are
suppressed in the Mott-insulator phase, they cannot be ne-
glected in the superfluid phase, and play an important role
as soon as the lost fraction of atoms at the best squeezing
time becomes comparable to the squeezing ξ2best that one
would have in the absence of decoherence [51]. For two
particular configurations in Fig. 3 we show the lost frac-
tion and the expected squeezing ξ2best in the absence of
decoherence as a function of the initial atom number. As
the lost fraction increases with N , while ξ2best decreases,
the crossing of the two curves gives the maximum atom
numberNmax for which the decoherence due to atom losses
can be neglected. The lost fraction is obtained by solving
rate equations for the mean atom number

d

dt
〈N̂σ〉(t) = −γ(2)σ (t) g(2)σ (t) 〈N̂σ〉2(t)

−γ(2)ab (t) g
(2)
ab (t) 〈N̂a〉(t)〈N̂b〉(t) (15)

for two-body losses, and

d

dt
〈N̂σ〉 = −γ(3)σ (t) g(3)σ (t) 〈N̂σ〉3 (16)

for three-body, where γ
(m)
σ (t) =

K(m)
σ

Mm−1

∫

d3r w2m(r, t)

and γ
(2)
ab (t) =

K
(2)
ab

2M

∫

d3r w4(r, t), with K
(m)
σ the m-body

20 40 60 80 100 120
0.0

0.1

0.2
(a) ξ2best

∆Nloss/N

0.0 0.2 0.4 0.6 0.8 1.0
N ×10

6
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−4

(b) ξ2best

∆Nloss/N

Fig. 3: Best squeezing ξ2best = ξ2(tbest) in the absence of
decoherence and lost fraction due to 2-body and 3-body losses
at the time tbest as function of the atom number in 87Rb for the
transitions (a) |1, 1〉 ↔ |2,−1〉 with Feshbach tuned aab = 95a0

and dominant two body losses K
(2)
b

= 8.1 × 10−20m3/s [52]

and K
(2)
ab

= 1.708 × 10−19m3/s [53] and (b) |1,−1〉 ↔ |2,−2〉

with three body losses only K
(3)
a = 5.4 × 10−42m6/s [54] and

K
(3)
b

= 1.8× 10−41m6/s [55].

loss rate constants for component σ, w(r) is the Wannier

function identical for the M sites, and g
(m)
σ is the on-

site normalized m-body correlation function in our time-

dependent lattice, for example g
(2)
a = 〈a†ia

†
iaiai〉/〈a

†
iai〉2,

calculated numerically in the adiabatic approximation us-
ing the Gutzwiller method. In the case of the transition
|F = 1,mF = 1〉 ↔ |F = 2,mF − 1〉 for 87Rb atoms
in Fig. 3(a), where the interspecies scattering length aab
can be tuned by Feshbach resonance [13], decoherence due
to two-body losses is never negligible above Nmax ≈ 40
atoms, and limits the squeezing to 10dB already for a
hundred atoms. On the other hand, for the transition
|F = 1,mF − 1〉 ↔ |F = 2,mF = −2〉 in Fig. 3(b), where
the interspecies interaction can be tuned by slightly shift-
ing the optical lattices for the two components [29] and
two body losses are absent [56], the limit that is now im-
posed by three body losses is much less constraining and
it does not influence the results up to large atom numbers
Nmax ≈ 4× 105.

In the Mott phase with one atom per site of a two-
component system, two types of excitations exist: excita-
tions that lead to double occupations, that are in general
gapped, and “soft” excitations within the subspace of one
atom per site that can be described by an effective spin
model. In our scheme we need to maintain adiabaticity
with respect to the first kind of excitations only, that is
we need to remain in the manifold of single occupation.
In this manifold, it is not important for us to be in the
ground state, because the spin-dependent interaction en-
ergy is strongly reduced, scaling as J2/U [39, 40, 57, 58]
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1, and consequently the squeezing dynamics is practically
stopped. In particular, contrarily to what happens in the
superfluid phase, the presence of a gap separating the low
energy manifold with one atom per site from the states
with double occupation, allows us to raise the lattice to
the deep Mott regime J → 0 in a finite time, typically of
order τ ≥ ~/U [59]. One can estimate the effect of the
residual squeezing dynamics during this time by compar-
ing χresidτ , where χresid scales as the spin-dependent inter-
action eneregy per particle divided by N , with the expres-
sion of the adimensional squeezing time T (tbest) ≃ N−2/3

below equation (9). As χresidτ ≃ (J/U)2N−1 ≪ N−2/3

we find that the residual squeezing dynamics during this
adiabatic time is completely negligible. The only problem
may come from the critical region where the gap closes
as ∆/J ∝

√

(J/U)c − (J/U) in the thermodynamic limit,
scaling as (∆/J)c ∝ N−1/3 at the transition in a finite
size system [60]. At the critical point we then find the
same scaling N1/3 of the adiabatic time as in the super-
fluid case. However, even taking τ = ~N1/3/J , we would
have χresidτ ≃ (J/U)N−2/3 ≪ N−2/3 meaning that the
effect of the residual squeezing dynamics would still be
small, due to the small value of J/U near the critical point
(J/U)c ≃ 0.03.

Conclusions. – We study the formation of a
spin-squeezed atomic crystal by bringing an interact-
ing two-component Bose-Einstein condensate across the
superfluid-to-Mott transition in a time-dependent optical
lattice. The scheme could be directly used in lattice clocks
using a microwave transition.
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