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We propose a method to obtain a regular arrangement of two-level atoms in a three-dimensional
optical lattice with unit filling, where all the atoms share internal state coherence and metrologically
useful quantum correlations. Such a spin-squeezed atomic crystal is obtained by adiabatically raising
an optical lattice in an interating two-component Bose-Einstein condensate. We study numerically
and analytically the spin-squeezing dynamics, the adiabaticity condition and the limits imposed by
particle losses.

PACS numbers: 03.75.Gg. 03.75.Kk, 42.50.Dv. 06.30.Ft

Introduction - One of the most successful applications
of cold atoms is atomic clocks that provide the best time
standards. The intrinsic uncertainty in the measured
clock transition frequency, so called standard quantum
limit ∆ω ∝ (T

√
N)−1 where T is the interrogation time

and N the number of atoms, has been already reached
in atomic fountains using a microwave transition [1] and
it will become a limiting factor even for the new gener-
ation of optical lattice clocks [2]. Quantum correlations
and spin squeezing in an atomic ensemble [3] allow to
increase the clock stability beyond this limit [4, 5]. This
will push even further the fantastic precision of the best
atomic clocks in the long term, besides being an imme-
diate practical advantage in experiments where the atom
number cannot be indefinitely increased as in trapped
atoms atom-chip [5, 6] or optical lattice [2] clocks.

In this theoretical work we propose a method to pre-
pare a spin-squeezed state of ultra-cold atoms in an op-
tical lattice potential dedicated for atomic clocks. The
idea sketched in Fig. 1 brings together two quantum state
preparation protocols which have been successfully real-
ized separately: the superfluid to Mott insulator transi-
tion in an optical lattice [7–9] and spin squeezing in an
atomic ensemble [10–13]. The resulting spatial configu-
ration with one atom per site, already recognized as very
promising for atomic clocks [14, 15], shows in addition
quantum correlations allowing for metrological gain with
respect to independent atoms. Taking a different point
of view, our scheme allows to “extract” the entanglement
among Bose-condensed atoms that are initially in a com-
mon spatial mode [16], to obtain a state where each atom
is in a separate mode, and can be individually addressed
and manipulated with a quantum gas microscope [17, 18].
The entanglement can then be used any quantum infor-
mation or quantum metrology task. A full characteriza-
tion of the entangled state by performing measurements
on specific partitions is also possible [19].

In the following, we formalize the idea sketched in
Fig. 1. Using an adiabatic approximation we provide an-
alytical and numerical results for the squeezing, the rele-
vant time scales and their scaling with the atom number.

We consider a two component condensate with repul-
sive interactions in the non-demixing regime [22] with

(a)

b)(

FIG. 1. (a) Initially, a Bose-Einstein condensate of atoms in
an internal state a is prepared in a shallow 3D optical lattice.
At time t = 0 an electromagnetic π/2-pulse puts each atom
in a coherent superposition two internal states a and b, and
the binary atomic interactions between cold atoms start the
generation of squeezing in the system [20, 21]. (b) Simulta-
neously, the lattice height is gradually increased, in such a
way that the system enters the Mott insulator phase at “best
squeezing time” tbest for which squeezing is the largest, thus
freezing the “best squeezing” ξ2best = ξ2(tbest) (see equation
(2)) in the Mott insulator phase.

symmetric coupling constants describing s-wave interac-
tions between atoms in the two states, gaa = gbb, and
an adjustable interspecies coupling gab < gaa [11, 23];
gij = 4π~2aij/m where aij is the s-wave scattering length
for one atom in state i and one in state j, m is the atomic
mass and ~ is the Planck constant. The system, at zero
temperature, is confined in a 3D uniform optical lattice
with periodic boundary conditions. The total atom num-
ber N is equal to the number of lattice sites M [24]. The
lattice height is increased with a linear ramp

V0(t) = Vinit + (Vc − Vinit)t/tbest (1)

from the initial height Vinit to the critical value Vc on
a time scale given by the best squeezing time tbest. We
assume that the system dynamics is confined to the low-
est Bloch band and it is described by the two-component
Bose-Hubbard model [25], with time-dependent hopping
J(V0) and interaction terms Uσ(V0), σ = a, b, ab [26]. We
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quantify the spin-squeezing using the parameter [3, 4]

ξ2 =
N〈∆Ŝ2

⊥〉min

〈S〉2 , (2)

where 〈S〉 is the length of the mean collective spin and

〈∆Ŝ2
⊥〉min is the minimal variance of the spin orthog-

onally to the mean spin direction. The collective spin
operators, Ŝ± = Ŝx ± iŜy =

∫

d3rΨ̂†
a(r)Ψ̂b(r), Ŝz =

(N̂a − N̂b)/2 where Ψ̂σ is the bosonic field operator and

N̂σ the atom number operator in the internal state σ,
give access to spin squeezing as a function of time.
Initial state and evolution - Starting from a conden-

sate in internal state a, the mixing π/2 pulse puts the
system in a superposition of Fock states with Na atoms
in the internal state a and Nb = N −Na atoms in state
b. Concerning the spatial wave function, in our theoret-
ical analysis we assume that after the pulse each Fock
state is in the spatial ground state for the correspond-
ing atom number |Ψ0

Na,Nb
(0+) : Na, Nb〉 in the shallow

lattice. We thus neglect the thermal excitations initially
present in the system and the excitations crated by the
mixing pulse. A clean way to avoid any excitation in the
experiment would be to perform the pulse for an ideal gas
at zero temperature in a completely flat potential, and
subsequently ramp up adiabatically the interactions [27]
and the lattice. The very stringent condition of having
no excitations at all is however not necessary in practice
for our proposal. Based on our studies of spin squeez-
ing at finite temperature [28, 29], we expect that the
final squeezing will not be affected as long as the initial
non-condensed fraction before the pulse is much smaller
than the targeted squeezing, which can be achieved in the
weakly interacting limit at sufficiently low temperature.
In the adiabatic approximation, during the evolution

following the mixing pulse, each Fock state of the pre-
pared superposition remains in an instantaneous ground
state and picks up a time-dependent phase factor deter-
mined by the ground state energy E0(Na, Nb, t)

|ψ(t)〉 = 2−N/2
N
∑

Na=0

√

(

N

Na

)

e
− i

~

t∫

0

dt′E0(Na,N−Na,t
′)

× |Ψ0
Na,N−Na

(t) : Na, N −Na〉. (3)

We assume that the squeezing is measured after raising
the lattice to reach the deep Mott phase with one atom
per site in the limit of vanishing tunnel coupling, which
allows to disentangle the internal and external degrees
of freedom in state (3). A consequence of this fact is
that the action of the collective spin operators on the
Fock states then obeys simple rules, e.g. Ŝ+|Ψ0

Na,Nb
:

Na, Nb〉 ≈
√

(Na + 1)Nb|Ψ0
Na+1,Nb−1 : Na+1, Nb−1〉, as

for the two-mode Fock state where only internal degrees
of freedom are considered. If the atom number is large,
one can expand the ground state energy E0(Na, Nb, t) in

the phase factor of each Fock state in (3) around 〈N̂a〉 =

〈N̂b〉 = N/2 up to the second order [30]

1

~

t
∫

0

dt′E0(Na, Nb, t
′) ≃ Φ0(N, t) + T (t)

(Na −Nb)
2

4
.

(4)
There is no linear term in (4) because of the a−b symmet-
ric situation we consider, and the phase factor Φ0(N, t)
depending on the total number of atoms does not play
any role in the spin dynamics and can be neglected. In-
troducing chemical potentials µσ(t) = ∂Nσ

E0(Na, Nb, t)
and the parameter χ(t) = 1

2 (∂Na
− ∂Nb

)[µa(t)− µb(t)]/~

T (t) =

t
∫

0

dt′χ(t′) . (5)

By changing the time variable from t to the dimension-
less T (t), one then recovers the one-axis twisting (OAT)

model [20] with an Hamiltonian proportional to Ŝ2
z . In

particular, in the large N limit, the squeezing optimized
over time ξ2best = ξ2(tbest) is ξ2best ≃ 31/6/N2/3 and the
best squeezing time is

tbest ≃
31/6

N2/3





1

Vc − Vinit

Vc
∫

Vinit

dV0 χ(V0)





−1

(6)

where we used T (tbest) ≃ 31/6/N2/3 and the linear ramp
(1). We introduce the term “dynamic OAT model” for
the quadratic approximation (4) in the phase factors, as
opposite to “static OAT model” for which we directly
take a time independent Hamiltonian Ĥ = ~χ(0)Ŝ2

z cor-
responding to the initial conditions after the pulse. In
order to show the squeezing dynamics in our system and
to test the validity of the dynamic OAT model, we evalu-
ate numerically the energy phase factors in (3) using the
Gutzwiller method [25, 31–33]. Precisely, the total mean-
field energy is minimized in the subspace of fixed mean
number of atoms in each component, i.e. 〈N̂a〉 = Na and

〈N̂b〉 = Nb, by a projection method similarly to Ref.[34].
The results are shown in Fig. 2(a-b). The squeezing dy-
namics slows down while approaching the phase tran-
sition, and finally freezes in the Mott insulating phase.
Note that the numerical results from equation (3) in-
cluding the whole non-linearity (green solid line) and
the quadratised dynamic OAT model (red circles) are
in agreement up to the phase transition already for N =
125. In Fig. 2(b) we show the time dependence of T (t).
As expected, the dynamic OAT model predicts a larger
value of tbest than the static one. We show the scaling of
the best squeezing time with the total number of atoms
N in Fig. 2(c). A fit gives tbest ∝ N0.35, a slightly less fa-
vorable scaling than for the static and homogeneous OAT
model, for which χ(0)homo = 8(aaa+abb−2aab)ER/πλ~N
and tbest ∝ N1/3. The same figure confirms that de-
pendence of tbest on the scattering lengths suggested by
the static and homogeneous OAT model, approximately
holds.
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FIG. 2. (Color online) Numerical results: (a) Spin-squeezing
parameter ξ2 as a function of t/tunit (bottom x-axis) and
V0/ER (top x-axis) for the linear ramp; ER = 2π2

~
2/(mλ2)

is the recoil energy and λ/2 the lattice period. t−1
unit =

(aaa+abb−2aab)ER/~λ. The green solid line shows numerical
results with E0 in (3) calculated with the Gutzwiller method,
while the red dots result from the dynamic OAT model (4).
Predictions of the static OAT model (see text) are shown for
comparison (blue dashed lines). (b) T (t) for the dynamic
OAT model (red solid line) and the static OAT model (blue
dashed line). Parameters are N = 125, aaa = abb = 100.4a0

and aab = 95a0, where a0 is the Bohr radius. The dashed hor-
izontal lines represent ξ2best and T (tbest) of the OAT model for
N = 125. By definition, the dynamic curves touch the dashed
horizontal lines at the best squeezing time tbest. (c) Scaling of
the best squeezing time tbest with N for aaa = abb = 100.4a0

and different values of aab. The dashed line is a fit tbest ∝ Nα

with α = 0.353 ± 0.004.

Adiabaticity - In the superfluid phase, where delocal-
ization of atoms is energetically more favorable, a large
majority of particles occupy the zero quasi-momentum
Bloch state of the lowest band giving rise to condensa-
tion in momentum space. When the depletion of the
condensate is small, the Bogoliubov method can capture
the physical properties of the Bose-Hubbard model [35],
although it cannot be pushed too far towards the phase
transition boundary [35, 36]. Taking advantage of the
fact the squeezing in our scheme develops entirely in the
superfluid phase, we use the number-conserving Bogoli-
ubov theory [37, 38] to derive the validity conditions of
the adiabatic approximation at heart of our treatment.

The starting point is the two-component Bose-

Hubbard Hamiltonian [25] in quasi-momentum repre-
sentation. This Hamiltonian has the same form as the
Hamiltonian of a two-component Bose-Einstein conden-
sate [39] with the field operators Ψ̂σ(r) expanded in
a plane wave basis, provided the kinetic energy ǫq =
~
2q2/2m and the coupling constants gσ, gab are re-

placed by ǫq(t) = −2J(V0)
∑

γ cos(q · eγ) and Uσ(V0),

Uab(V0) respectively, where eγ are primitive lattice vec-
tors. By introducing the number-conserving operators,

Λ̂q,a = â†0âq/
√
Na and Λ̂q,b = b̂†0b̂q/

√
Nb, one diago-

nalizes the quadratic Hamiltonian using the generalized
Bogoliubov transformation

Λ̂q,σ(t) =u
σ
q,+(t)β̂q,+(t) + vσq,+(t)β̂

†
−q,+(t)+

uσq,−β̂q,−(t) + vσq,−(t)β̂
†
−q,−(t), (7)

where β̂q,±(t) are Bogoliubov quasi-particle opera-
tors satisfying bosonic commutation relations and
uσq,±(t), v

σ
q,±(t) are know functions [22, 39]. The Bo-

goliubov transformation in Eq. (7) is the same as in [39]
with the same notations, provided that equations are ex-
pressed in terms of ∆Eq(t) = ǫq(t)− ǫ0(t).
In order to calculate the number of excitations cre-

ated by the lattice rump starting at zero temperature
with no excitation, we write the Heisenberg equation of

motion for β̂q,±(t), and proceed similarly to appendix
C of Ref.[27]. One can show that Bogoliubov modes

β̂q,+(t) and β̂q,−(t) evolve independently, and are cou-

pled to modes β̂−q,+(t) and β̂−q,−(t) respectively

i~
d

dt

(

β̂q,±(t)

β̂†
−q,±(t)

)

=

(

~ωq,±(t) −i~Ωq,±(t)
−i~Ωq,±(t) −~ωq,±(t)

)

×

(

β̂q,±(t)

β̂†
−q,±(t)

)

, (8)

where the Bogoliubov spectrum is defined by
(~ωq,±/∆Eq)

2 = 1 + ũa + ũb ±
√

(ũa − ũb)2 + 4ũab
with ũσ = Uσnσ/∆Eq and nσ = Nσ/M for σ = a, b ,

ũab = Uab
√
nanb/∆Eq and Ωq,±(t) =

1
2

d
dt log

(

∆Eq(t)
~ωq,±(t)

)

.

The total fraction of excitations 1
N

∑

q 6=0
nex
q (t) with

nex
q (t) =

∑

ǫ=±〈Ψbog(0)|β̂†
q,ǫ(t)β̂q,ǫ(t)|Ψbog(0)〉 stays

small, as long as the adiabaticity condition

|Ωq,±(t)| ≪ |2ωq,±(t)| (9)

is verified for each quasi-momentum q 6= 0. From the
expression of Ωq,±(t) and for the linear ramp (1) one
gets the expression of the adiabatic time for each mode

tqadiab,± =
(Vc − Vinit)~ER

4∆Eq(V0)

∣

∣

∣

∣

d

dV0

(

∆Eq(V0)

~ωq,±(V0)

)∣

∣

∣

∣

(10)

which should be evaluated at q = (2π/N1/3l, 0, 0) with
the lattice spacing l = λ/2, where the condition (9) is
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most stringent, and maximized over the ramp duration
V0 ∈ [Vinit, Vc]. In the large atom number limit one gets

tadiab,± ≃
N→∞

N1/3

2π

(Vc − Vinit)l

4J(V0)

∣

∣

∣

∣

d

dV0

(

J(V0)

c±(V0)

)∣

∣

∣

∣

, (11)

where c2± = (l/~)2J(V0)((~ωq,±/∆Eq)
2 − 1)∆Eq is the

sound velocity of the phonon-like Bogoliubov excitation
branches. We see from Eq. (11) that the adiabatic time
shares almost the same scaling withN as the best squeez-
ing time. Furthermore, the negative branch tadiab,− is al-
ways larger than tadiab,+ as long as one of the components
is not completely depleted. This implies that tadiab,−
alone sets the adiabatic time scale. We checked numer-
ically that the condition tbest ≫ tadiab,− holds for all
parameters that we consider. For example, for N = 104

and parameters in Fig. 2, tadiab/tbest ≈ 0.032.
Decoherence - While two and three-body losses are

suppressed in the Mott insulator phase, they cannot be
neglected in the superfluid phase, and play an important
role as soon as the lost fraction of atoms at the squeezing
time becomes comparable to the squeezing ξ2best that one
would have in the absence of decoherence [40]. For two
particular configurations in Fig. 3 we show the lost frac-
tion and the expected squeezing ξ2best in the absence of
decoherence as a function of the initial atom number. As
the lost fraction increases with N , while ξ2best decreases,
the crossing of the two curves gives the maximum atom
number Nmax for which the decoherence due to atom
losses can be neglected. The lost fraction is obtained by
solving rate equations for the mean atom number

d

dt
〈N̂σ〉(t) = −γ(2)σ (t) g(2)σ (t) 〈N̂σ〉2(t)

−γ(2)ab (t) g
(2)
ab (t) 〈N̂a〉(t)〈N̂b〉(t) (12)

for two-body losses, and

d

dt
〈N̂σ〉 = −γ(3)σ (t) g(3)σ (t) 〈N̂σ〉3 (13)

for three-body, where γ
(m)
σ (t) =

K(m)
σ

Mm−1

∫

d3r w2m(r, t)

and γ
(2)
ab (t) =

K
(2)
ab

2M

∫

d3r w4(r, t), with K
(m)
σ the m-body

loss rate constants for component σ, w(r) is the Wannier

function identical for the M sites, and g
(m)
σ is the on-

site normalized m-body correlation function in our time-

dependent lattice, for example g
(2)
a = 〈a†ia

†
iaiai〉/〈a

†
iai〉2,

calculated numerically in the adiabatic approximation
using the Gutzwiller method. In the case of the transition
|F = 1,mF = 1〉 ↔ |F = 2,mF − 1〉 for 87Rb atoms in
Fig. 3(a), where the interspecies scattering length aab can
be tuned by Feshbach resonance [11], decoherence due
to two-body losses is never negligible above Nmax ≈ 40

atoms, and limits the squeezing to 10dB already for a
hundred atoms. On the other hand, for the transition
|F = 1,mF −1〉 ↔ |F = 2,mF = −2〉 in Fig. 3(b), where
the interspecies interaction can be tuned by slightly shift-
ing the optical lattices for the two components [23] and

20 40 60 80 100 120
0.0

0.1

0.2
(a) ξ2best

∆Nloss/N

0.0 0.2 0.4 0.6 0.8 1.0
N ×10

6

0

2

4

×10
−4

(b) ξ2best

∆Nloss/N

FIG. 3. Best squeezing ξ2best = ξ2(tbest) in the absence of
decoherence and lost fraction due to 2-body and 3-body losses
at the time tbest as function of the atom number in 87Rb for
the transitions (a) |1, 1〉 ↔ |2,−1〉 with Feshbach tuned aab =

95a0 and dominant two body losses K
(2)
b = 8.1 × 10−20m3/s

[41] and K
(2)
ab = 1.708 × 10−19m3/s [42] and (b) |1,−1〉 ↔

|2,−2〉 with three body losses only K
(3)
a = 5.4 × 10−42m6/s

[43] and K
(3)
b = 1.8 × 10−41m6/s [44].

two body losses are absent [45], the limit that is now im-
posed by three body losses is much less constraining and
it does not influence the results up to large atom numbers
Nmax ≈ 4× 105.
Conclusions - We propose a method to prepare a reg-

ular arrangement of spin-entangled atoms, which we call
a spin-squeezed atomic crystal, by bringing an interact-
ing two-component Bose-Einstein condensate across the
superfluid-to-Mott transition in a time-dependent optical
lattice. We theoretically study the formation of such a
crystal in the adiabatic approximation, which we justify
by a separate study in the superfluid regime where the
spin correlations build up. We finally calculate the maxi-
mal system size for which the effect of decoherence due to
two- and three- body losses can be neglected for param-
eters of current experimental relevance. If the method
turns out to be efficient, it could provide a unique system
to a variety of quantum metrology tasks and applications.
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