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This study is devoted to the long-term behavior of nucleation, growth and fragmentation equations, modeling the spontaneous formation and kinetics of large polymers in a spatially homogeneous and closed environment. Such models are, for instance, commonly used in the biophysical community in order to model in vitro experiments of fibrillation. We investigate the interplay between four processes: nucleation, polymerization, depolymerization and fragmentation. We first revisit the well-known Lifshitz-Slyozov model, which takes into account only polymerization and depolymerization, and we show that, when nucleation is included, the system goes to a trivial equilibrium: all polymers fragmentize, going back to very small polymers. Taking into account only polymerization and fragmentation, modeled by the classical growth-fragmentation equation, also leads the system to the same trivial equilibrium, whether or not nucleation is considered. Finally, when taking into account a depolymerization reaction term, we prove the existence of a steady size-distribution of polymers, as soon as polymerization dominates depolymerization for large sizes whereas depolymerization dominates polymerization for smaller ones -a case which fits the classical assumptions for the Lifshitz-Slyozov equations, but complemented with fragmentation so that "Ostwald ripening" does not happen.

Introduction Framework and model

The formation of large aggregates, polymers or fibrils, out of monomeric units, is a phenomenon of key importance in many application areas, from amyloid diseases to industrial processes. When the average size of polymers or aggregates is very large, a size-continuous framework is relevant and this is our framework: in the following, we denote u(t, x) the concentration of polymers of size x > 0 at time t, and V (t) the concentration of monomers at time t.

Assuming a closed and space-homogeneous environment -which is for instance the case for in vitro experiments [START_REF] Xue | Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly[END_REF] -the total mass needs to be conserved, i.e., we enforce the following equality:

V (t) + ∞ 0 xu(t, x)dx = V (0) + ∞ 0 xu(0, x)dx := M > 0, ∀t ≥ 0. (1)
Here, we have denoted by M the total mass of monomers, present either under the monomeric form -the concentration V (t) -or within polymers. Note that V is not directly homogeneous to u, rather to xu(t, x)dx; see e.g. [START_REF] Collet | The Becker-Döring system and its Lifshitz-Slyozov limit[END_REF][START_REF] Doumic | Scaling Limit of a Discrete Prion Dynamics Model[END_REF][START_REF] Prigent | An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation[END_REF] for further explanations on the relation to a physical quantity appearing more explicitly in discrete models.

To describe the kinetics of polymers and monomers in an environment where polymers are too dilute to interact (no coagulation [START_REF] Escobedo | Gelation in coagulation and fragmentation models[END_REF]), one classically considers four main reactions [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. a perturbation treatment for use with a secondary pathway[END_REF].

1. Nucleation is the formation of polymers out of momomers, by the spontaneous aggregation of monomers into a first stable -very small -polymer, called the nucleus. Generally occurring with a very low rate, this reaction is of key importance in experiments where there are initially only monomers, but becomes negligible as soon as enough polymers are formed, so that the other reactions dominate.

2. Polymerization is the growth in size of polymers by monomer addition. It is called a second-order reaction since the law of mass action assumes that it depends on the product of the concentration of monomers V (t) by the concentration of polymers u(t, x).

3. Depolymerization is the decay in size of polymers by monomer loss (firstorder reaction), 4. Fragmentation is the breakage of polymers into smaller polymers (firstorder reaction).

In the present study, we address the question of the long-time behavior of models combining some or all of these mechanisms, with one main question underlying our study: is there a stable distribution of polymers, or do they dissociate into monomers? To give a comprehensive view on the interplay between these four reactions without burdening the text with technical details, we simplified the assumptions on the coefficients, which are designed to represent typical features rather than to be optimal.

To take into account polymerization, depolymerization and fragmentation, a framework equation satisfied by the concentration of polymers u(t, x) is

∂u ∂t + ∂ ∂x (V (t) -d(x))u + B(x)u(t, x) = 2 ∞ x
B(y)κ(y, x)u(t, y) dy, u(0, x) = u 0 (x) ≥ 0.

(
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Here, we assume, for the sake of simplicity, a constant polymerization rate taken equal to 1, the corresponding term in the equation is ∂ ∂x (V (t)u(t, x)). The depolymerization rate is denoted d(x) ≥ 0, whereas B(x) ≥ 0 is the total fragmentation rate, and κ(y, x) the fragmentation kernel, i.e., the probability measure on [0, y] for polymers of size y to give rise to polymers of size x ≤ y.

If V (t) -d(0) > 0, a boundary condition at x = 0 is needed. Therefore, we state

V (t) -d(0) u(t, 0)1 V (t)-d(0)>0 = εV (t) i0 1 V (t)-d(0)>0 , i 0 ≥ 1, (3) 
where 1 denotes the Heaviside function, ε = 0 in the absence of nucleation and ε = 1 to model the nucleation reaction. In this last case, the nucleation reaction rate is taken to be 1, and i 0 ∈ N * represents the size of the nucleus, see [START_REF] Prigent | An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation[END_REF].

To complement the model ( 2)-( 3), we can either use the mass conservation [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF] or equivalently -as soon as all terms may be defined in appropriate spaces -by the following equation for the concentration of monomers V (t):

dV dt = -V (t) ∞ 0 u(t, x) dx + ∞ 0 d(x)u(t, x)dx, V (0) = V 0 ≥ 0. ( 4 
)

Link with other equations

The framework (1)-( 4) embeds as particular cases several instances of two well-known models, the Lifshitz-Slyozov system and the non-linear growthfragmentation equation. We review them briefly and explain why we need to combine both in a suitable way to get reasonable models for large aggregates formation.

Link with the Lifshitz-Slyozov system. First, when B ≡ 0 and ε = 0, i.e. in the absence of fragmentation and nucleation, the system resembles the well-known Lifshitz-Slyozov system [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF]. Traditionally designed to model phase transition, the assumptions on the polymerization rate (here taken equal to 1 ) and the depolymerization rate d(x) are such that no boundary condition at x = 0 is required, the flux at zero being always going outward. Moreover, one of the key assumptions for phase transition models is that for large sizes, polymerization dominates depolymerization, whereas for small sizes it is the reverse, leading to larger and larger particles in smaller and smaller number, a phenomenon called "Ostwald ripening", see e.g. [START_REF] Filbet | Numerical approximation of the Lifshitz-Slyozov-Wagner equation[END_REF][START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF][START_REF] Niethammer | Derivation of the LSW-theory for Ostwald ripening by homogenization methods[END_REF].

The original model for phase transitions by Lifshitz and Slyozov considers a polymerization rate proportional to x 1 3 together with a constant depolymerization rate [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF]. It has been noted that for more general rate functions the dynamics of the size distribution of the clusters/polymers is driven by the sizedependency of the ratio polymerization rate depolymerization rate (x).

Therefore, the assumption "polymerization dominates depolymerization for large sizes, depolymerization dominates polymerization for the small sizes" can be conveniently phrased in terms of the above ratio being (strictly) decreasing as a function of the size x. Note that in our case of constant polymerization rate this reduces to

d ∈ C 1 (R + ) is strictly decreasing. ( 5 
)
Under this monotonicity assumption, it may be proved that either all the polymers depolymerize and V (t) tends to M (this is the case if there are not enough polymers initially, i.e. M < d(0)), or V (t) tends to 0, the quantity of polymers ∞ 0 u(t, x)dx also tends to 0, and the average size tends to infinity: for large times, all particles tend to be aggregated into only one cluster of infinite size. For finer results, we refer for instance to [START_REF] Niethammer | Non-self-similar behavior in the LSW theory of Ostwald ripening[END_REF][START_REF] Niethammer | The LSW model for domain coarsening: asymptotic behavior for conserved total mass[END_REF][START_REF] Niethammer | On the convergence to the smooth self-similar solution in the LSW model[END_REF].

Link with the growth-fragmentation equation. When d(x) ≡ 0, i.e., if we neglect the depolymerization reaction, Equation (2) turns out to be a nonlinear case of the well-known growth-fragmentation equation, which has been notoriously used, among other applications: (i) to describe cell division, (ii) as the underlying structure for the so-called "prion model".

It is well known that for the linear growth-fragmentation equation (i.e. when V is taken constant and d = 0 in (2)), the size distribution converges to the dominant eigenvector and the population grows exponentially, with a rate of growth given by the dominant eigenvalue. This can be shown e.g. by means of generalized relative entropy techniques; we refer the interested reader to [START_REF] Perthame | Transport equations in biology[END_REF]. When adding the coupling with the monomers concentration V , our model may be seen as a variant of the so-called prion model, introduced in [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF] and studied in [START_REF] Calvez | Prion dynamic with size dependency -strain phenomena[END_REF][START_REF] Pruss | Analysis of a model for the dynamics of prion[END_REF]. However, this prion model describes in vivo systems: nucleation is not considered, and monomers are permanently produced and degraded. In this way the system is not closed: the conservation of mass ( 1) is replaced by the following mass balance law

d dt V (t) + ∞ 0 xu(t, x)dx = -γV + λ, t ≥ 0, (6) 
for two constants λ > 0 and γ > 0 which represent respectively the production and degradation rates of monomers. In that case, it has been proved that a non-trivial equilibrium solution ( V , U (x)) to ( 2), ( 3), (6) may exist, with d ≡ 0 and ε = 0, and this state is attractive under some assumptions on the coefficients [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF][START_REF] Pruss | Analysis of a model for the dynamics of prion[END_REF]. Note however that the problem of convergence towards the equilibrium for general coefficients remains open.

Combined framework: new possibilities. The Lifshitz-Slyozov framework as described above does not fit well to the application field we have in mind: for instance, amyloid fibrils remain numerous instead of clustering all together, and their size, though very large, remains finite. One possibility in order to remedy this situation is to change the assumption [START_REF] Calvez | Prion dynamic with size dependency -strain phenomena[END_REF]. We shall analyze this below; more precisely, we will be concerned with the following specific form of growth:

d ∈ C 1 (R + , R + ), ∃ α, β > 0, 0 < α ≤ d (x) ≤ β. (7) 
Our analysis in Section 2 will show that we do not get a satisfactory picture in this way. Another possibility to fix this situation is to add an extra reaction -nucleation or fragmentation -in the system, be it in combination with (5) or [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]. This leads eventually to the analysis of augmented versions of the growth-fragmentation framework (and more specifically that of the prion model) discussed right above. However, the context of this paper is different than that of the standard prion model: we assume mass conservation, that means λ = γ = 0 in Equation [START_REF] Collet | The Becker-Döring system and its Lifshitz-Slyozov limit[END_REF], which corresponds for instance to in vitro experiments. One can see in Equation ( 4) that in the absence of depolymerization the quantity of monomers can only decrease, being consumed by polymerization. But if V (t) goes to zero, then the polymerization rate vanishes in Equation ( 2), so that for large times it is close to the pure fragmentation equation, for which it is wellknown that u(t, x) tends to a Dirac mass at 0, all polymers become infinitely small. These qualitative considerations are made rigorous in Theorem 1.3.

Such "instability" of polymers, i.e. the fact that their sizes, after having increased by nucleation and growth-fragmentation, would go back to dusts, does not correspond to experimental observations [START_REF] Xue | Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly[END_REF]. The prion model thus needs to be enriched by another reaction in order to obtain a steady distribution of polymers. Our contribution in this paper is to augment the prion model with a depolymerization reaction, which can be thought of as a combination of both Lifshitz-Slyozov and growth-fragmentation frameworks.

The paper is organized as follows. In the next section, we state our main results and give a rigorous meaning to the previous qualitative considerations. The subsequent sections are used to prove these results.

1 Main results

Notations and framework assumptions

Throughout the paper, the domain for both the space and time variables is R + := [0, ∞). In case of possible ambiguity, subscripts are used to denote the functional spaces and indicate to which variable x or t they refer to. For instance, L 1 t is the space of Lebesgue integrable functions of time defined over R + and similarly for L 1

x ; note that we omit the base set, which by default is R + unless otherwise stated. Similarly, standard Sobolev spaces are denoted as W 1,1 t , W 1,2

x and so forth. Sometimes we use weighted spaces like L 1 R + , (1+x 2 )dx with obvious notations, or for instance L 1 R + , (1 + x 2 )dx + for the cone of nonnegative functions of L 1 R + , (1 + x 2 )dx . We also make use of spaces of point-wise defined functions, C(R + ) for continuous functions, C 1 (R + ) for differentiable functions with continuous derivatives and C 1 b (R + ) for differentiable functions with continuous and bounded derivative.

We recall that the p-Wasserstein distance between two probability measures µ, ν (or two nonnegative bounded measures with the same total mass) is defined as

W p (µ, ν) := inf η∈Γ(µ,ν) (0,∞) 2
|x -y| p dη(x, y)

1/p , 1 ≤ p < ∞,
with Γ(µ, ν) the set of measures on (0, ∞) 2 with marginals µ and ν. Note that

W p (µ, ν) ≤ (0,∞) 2
|x -y| p dµ(x)dν(y)

1/p .
We define the moments of u(t,

•) ∈ L 1 x (0, ∞) as M n (t) := 1 n ∞ 0 |x| n u(t, x) dx, n > 0, ρ(t) := ∞ 0 u(t, x)dx. (8) 
Notations M for the total mass defined in (1) and ρ for the total number of polymers are used throughout the document (not to be confused with M n ).

We notice that a boundary condition is needed for (1)-( 2) to be well posed only when V (t) > d(0); we have stated (3) in a way that makes sense even when no boundary condition is needed. This also means that a minimal number of monomers is needed for nucleation reactions to take place under our current formulation. We thus require the initial number of monomers to be large enough so that we avoid trivial dynamics,

V 0 > d(0) ≥ 0. (9) 
Under Assumption [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF], there is no loss of generality in assuming that (9) holds, as the following proposition shows.

Proposition 1.1. Let (V, u) ∈ C 1 b (R + ) × C R + , L 1 (1 + x 2
)dx be any nonnegative solution of (1) and (4) such that the initial datum verifies V 0 < d(0). Assume that d ∈ C 1 (R + ) + satisfies [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]. Then the following statements hold true:

1. If M > d(0) there is a t * ∈ (0, ∞) such that V (t * ) = d(0) and dV dt (t * ) > 0. 2. If M ≤ d(0) then |M -V (t)| ≤ (M -V 0 )e -αt .
Proof. Using (4), [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF] and the mass conservation (1), we have

dV dt ≥ ∞ 0 (d(0) + αx -V (t))u(t, x) dx = α(M -V (t)) + (d(0) -V (t)) ρ(t).
Hence, we may write

dV dt ≥ α(M -V (t)) as long as V (t) ≤ d(0)
which implies

V (t) ≥ M + (V 0 -M )e -αt as long as V (t) ≤ d(0).
Therefore, if M > d(0) we are able to find some 0

< t * < ∞ such that V (t * ) = d(0) and dV (t * ) dt > 0. If M ≤ d(0)
then by mass conservation again we deduce that lim t→∞ V (t) = M .

The former result means that when depolymerization rates increase with size, if we start with a low monomer number, either we fall into the regime given by ( 9) in finite time or the dynamics is somewhat trivial: the polymerized mass vanishes completely on the long time run. These considerations play no role when depolymerization rates decrease with size, as we see it in Section 3.2.

Under the assumptions of our study, we take for granted that, for

u 0 ∈ L 1 R + , (1 + x 2 )dx
+ and V 0 ≥ 0, there exists a nonnegative weak solution

(V, u) ∈ C 1 (R + ) × C R + , L 1 ((1 + x 2
)dx) to the system (1), ( 2) and (3). Such a result is a work in preparation by J. Calvo -see also [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF]; it may be obtained along the lines of [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF][START_REF] Laurençot | Weak solutions to the lifshitz-slyozov-wagner equation[END_REF][START_REF] Laurençot | Well-posedness for a model of prion proliferation dynamics[END_REF][START_REF] Simonett | On the solvability of a mathematical model for prion proliferation[END_REF]. This framework allows us to state the main results of the document. Their guideline is the following: considering some or all of the four main reactions described in the introduction -nucleation, polymerization, depolymerization and fragmentation -and modeled by the framework system (1), ( 2), [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. a perturbation treatment for use with a secondary pathway[END_REF], what is the asymptotic behavior of the polymers and monomers (u(t, x), V (t))? Which reaction rates may lead toward a steady size distribution of monomers?

Lifshitz-Slyozov revisited

First, we concentrate on polymerization and depolymerization reactions, i.e. the Lifshitz-Slyozov system, when B ≡ 0 in (2) and ε = 0 in (3). This gives the system

           dV dt = -V (t) ∞ 0 u(t, x) dx + ∞ 0 d(x)u(t, x)dx, V (0) = V 0 , ∂u ∂t + ∂ ∂x ((V (t) -d(x))u) = 0, u(0, x) = u 0 (x), V (t) -d(0) u(t, 0)1 V (t)-d(0)>0 = 0. ( 10 
)
Under the assumption (5) of a decreasing depolymerization rate, we refer to [START_REF] Niethammer | Derivation of the LSW-theory for Ostwald ripening by homogenization methods[END_REF][START_REF] Niethammer | Non-self-similar behavior in the LSW theory of Ostwald ripening[END_REF][START_REF] Niethammer | On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening[END_REF] for results showing the "Ostwald ripening" if M > d(0). In this section, we explore the reverse case to investigate the possibility of a steady distribution, hence we work under the reverse assumption ( 7) of an increasing depolymerization reaction.

The equation for u in ( 10) is a non-linear transport equation, which asymptotic is closely related to the characteristic curves as classically defined below.

Definition 1.1 (Characteristics). Given z ∈ [0, ∞), let X : [0, ∞) 2 → [0, ∞) be the C 1 solution of d dt X(t, z) = V (t) -d(X(t, z)), X(0, z) = z. Remark 1.1. Using (7) we get dX(t, z) dt ≤ V (t) -αX(t, z),
which implies that the characteristics always remain bounded:

X(t, z) ≤ e -αt z + t 0 V (τ )e ατ dτ ≤ z + M α .
Using the characteristic curves, we obtain the following asymptotic result.

Theorem 1.1 (Lifshitz-Slyozov system: concentration at critical size). Let d satisfy (7), V 0 satisfy (9) and

u 0 ∈ L 1 (R + , (1+x 2 )dx) + with ρ 0 = ∞ 0 u 0 (x)dx > 0.
Let M be defined by [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF].

There exists a unique solution x > 0 to the equation

M = ρ 0 x + d(x), (11) 
and the solution

(V, u) ∈ C 1 (R + ) × C R + , L 1 ((1 + x 2 )dx) to the Lifshitz-Slyozov system (10) satisfies 1. For all z ≥ 0, ∞ 0 |X(t, z) -x| 2 u(t, x)dx ≤ e -2αt ∞ 0 |z -x| 2 u 0 (x)dx, 2. lim t→∞ V (t) = V := d(x), ∀ z ≥ 0, lim t→∞ X(t, z) = x,
3. u(t, x) converges to ρ 0 δ x exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

W 2 (u(t, •), ρ 0 δ x) ≤ Ce -αt , |V (t) -d(x)| ≤ Ce -αt .
The proof of Theorem 1.1 is detailed in Section 2. It relies on two entropy inequalities, inspired by [START_REF] Michel | A singular asymptotic behavior of a transport equation[END_REF] and [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF] respectively (we call in the sequel an "entropy" a functional which decreases along solutions -i.e. a Lyapunov functional, and not a physical entropy). This result shows that the solution of the Lifshitz-Slyozov system [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF], taken with the opposite assumption on the ratio polymerization/depolymerization as the standard case, converges to a singular steady state ( V , ρ 0 δ x), with x such that the decreasing total growth/transport rate V -d(x) vanishes at x, this rate being positive for x < x and negative for x > x.

Such a result is not observed in experiments, because the Lifshitz-Slyozov equation is a first-order approximation of the "true" discrete system, the socalled Bekker-Döring system, see [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF][START_REF] Becker | Kinetische behandlung der keimbildung in bersttigten dmpfen[END_REF]. At points like x, where the total transport rate vanishes, the second order correction, a diffusion term [START_REF] Collet | A modified version of the lifshitz-slyozov model[END_REF], would dominate, changing the steady state from a Dirac to a size-continuous distribution.

Let us now add a nucleation reaction in the system. Specifying ε = 1 in the boundary condition (3), we obtain the system

               dV dt = -V (t) ∞ 0 u(t, x) dx + ∞ 0 d(x)u(t, x)dx, V (0) = V 0 , ∂u ∂t + ∂ ∂x ((V (t) -d(x))u) = 0, u(0, x) = u 0 (x), V (t) -d(0) u(t, 0)1 V (t)-d(0)>0 = V (t) i0 1 V (t)-d(0)>0 . (12) 
Under the usual assumption (5) of a decreasing d, there would be no difference with the usual result of Ostwald ripening, because after a while V (t) < d(0) and nucleation does not act any longer. This is stated in the following theorem, still for increasing d given by the assumption [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF].

Theorem 1.2 (Lifshitz-Slyozov system with nucleation). With the assumptions and notations of Theorem

1.1, let i 0 ∈ N * . The solution (V, u) ∈ C 1 (R + ) × C R + , L 1 ((1 + x 2 )dx) of the Lifshitz-Slyozov system with nucleation (12) sat- isfies        lim t→∞ ∞ 0 u(t, x)dx = +∞, lim t→∞ V (t) = d(0), lim t→∞ xu(t, x) = M -d(0) δ 0 (x),
weakly in measures.

(
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More precisely, we have the following convergence rates.

1. If d(0) > 0, then lim t→∞ ρ(t) t = d(0) i0 , lim t→∞ t(V (t) -d(0)) = d (0) d(0) i0 (M -d(0)). 2. If d(0) = 0, then lim t→∞ ρ(t) t 1 i 0 +1 = (1+i 0 ) 1 i 0 +1 (d (0)M ) i 0 i 0 +1 , lim t→∞ t 1 i 0 +1 V (t) = d (0)M 1 + i 0 1 i 0 +1
. This result is proved in Section 2.2, using strongly the assumption [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF] in successive estimates. This shows a destabilization effect of nucleation: rather than increasing the whole solution, as one could first guess, it leads to a complete depolymerization and to a mass concentration around zero. The explanation is that under these assumptions, since we always have V (t) > d(0), the nucleation reaction permanently fuels the total number of polymers, which increases to infinity, and since the total mass remains finite, the only possibility is that the average size of the polymers vanishes.

Complete model: a possible steady state

The previous results take into account the three reactions of polymerization, depolymerization and nucleation, and show that these reactions alone cannot render out the spontaneous creation -by nucleation -of a steady distribution of fibrils: either they all collide in a unique infinitely large aggregate (Ostwald ripening) or they disintegrate into dusts (shattering). We thus consider now also fragmentation, sometimes denominated in the biophysics literature a secondary pathway [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. a perturbation treatment for use with a secondary pathway[END_REF], i.e. a reaction with a much smaller reaction rate than the primary pathway (here, the polymerization). Nevertheless, it is able to play a prominent role to modify the primary reactions. To simplify our analysis, we assume that the fragmentation rate B and binary fragmentation kernel κ satisfy

y 0 κ(y, dx) = 1, y 0 x κ(y, dx) = y/2, (14) 
∃ B m > 0, B(x) ≥ B m > 0 ∀x ≥ 0, (15) 
which provides us with a convenient control on the relative size of fragmentation rates. This bound from below is somehow a strong assumption that we can relax. Two very different behaviors occur. First, under the assumption of an increasing -or equal to 0 -depolymerization rate, with or without nucleation, the fragmentation strongly amplifies the previous result of dust formation stated in Theorem 1.2. This is stated in the following theorem.

Theorem 1.3. With the assumptions and notations of Theorem 1.1, let ε ∈ {0, 1}, i 0 ∈ N * , let B(x) and κ(y, x) satisfy ( 14)- [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF]. Then the solution (V, u) ∈ C 1 (R + )×C R + , L 1 ((1+x 2 )dx) to the system (1)(2) (3) satisfies (13), and more precisely, for t > 0 we have

∞ 0 u(t, x)dx ≥ e Bmt ∞ 0 u 0 (x)dx and V (t) -d(0) = O(te -Bmt ) > 0.
We prove this theorem in Section 3.1, following the same lines as for Theorem 1.2.

To avoid dust formation, we may use our assumption (5) of a decreasing depolymerization rate, which we precise as follows:

d ∈ C 1 (R + , R * + ) + is strictly decreasing, ∃ C d > 0, n ∈ N\{0}, ∀ x ≥ 1, d(x) -d(∞) ≥ C d x -n . ( 16 
)
As already mentioned, with this assumption solutions of the original Lifshitz-Slyozov system undergo Ostwald ripening. When adding fragmentation to the system, the effect is to generate a non-trivial steady state to emerge, where small polymers feed large ones, and large ones in turn break down to feed smaller ones. The precise result is stated in Theorem 1.4 under additional assumptions.

First, the fragmentation kernel should not charge 0 or 1 exclusively, a property which is expressed by the following standard assumption

∀x ≥ 0, a k (x) := 1 -2 x 0 κ(x, y) y 2 x 2 dy ≥ c > 0. (17) 
Second, we replace the former assumption [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF] on the fragmentation rate by

∃A > 0, B m > 0 such that B(x ≥ A) ≥ B m > 0, (18) 
sup x≥0 B(x) := B M < ∞. ( 19 
)
We also need that the fragmentation rate κ vanishes for small sizes depending on B, namely

             ∃ γ > 0, B(x)x -γ ∈ L ∞ ((0, ∞)), ∀ x min > 0, ∃ C > 0 such that ∀ x 0 < x min , x0 x κ(y, z)dz ≤ min 1, C |x -x 0 | γ y γ ∀ x, y > 0. ( 20 
)
Theorem 1.4 (Stable fibrils). Let d ∈ C 1 (R + ) be a nonnegative decreasing function satisfying [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF]. Assume that ( 14) and ( 17)-( 20) hold true. Then, there exists a positive steady state

( V , U (x)) ∈ R * + × L 1 ((1 + x 2 )dx) solution to (1)-(3), with inf x d(x) < V < d(0).
This theorem is proved in Section 3.2. It states the existence of a positive steady state solution of the polymerization-depolymerization-fragmentation problem; however, the question of whether the solution converges towards this steady state remains open. The same question remains open for a large variety of nonlinear versions of the growth-fragmentation equation, such as the prion model, for which asymptotic behaviour has been solved only for some specific cases, see [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF].

Lifshitz-Slyozov system revisited

This section is devoted to the proof of Theorems 1.1 and 1.2. We first state some additional properties of the solutions.

Lemma 2.1. Let d satisfy (7), V 0 satisfy (9) and

u 0 ∈ L 1 (1 + x 2 )dx + . The solution (V, u) ∈ C 1 (R + ) × C R + , L 1 (1 + x 2 )dx
+ either of the system [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF] or of (12) satisfies 1. For all times t ≥ 0, we have d(0) < V (t) ≤ M .

2. If M θ (0) < ∞ for some θ > 0, then M θ (t) is bounded uniformly in time.

3. For system [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF], the total number of polymers ρ(t) is constant.

Proof. The bound V (t) ≤ M is immediate for any nonnegative solution and follows from the mass conservation [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]. For the lower bound on V (t), we notice that, because d is increasing,

d V (t)-d(0) dt = -ρ(t) (V (t) -d(0)) + ∞ 0 d(x) -d(0) u(t, x)dx ≥ -ρ(t) (V (t) -d(0)) .
Therefore, we conclude that

V (t) ≥ d(0) + (V 0 -d(0))e -t 0 ρ(s)ds > d(0).
For the second item, we may use the characteristics to represent solutions as

u (t, X(t, x)) = u 0 (x) exp t 0 d (X(τ, x)) dτ . (21) 
We also note that

∂X(t, z) ∂z = exp - t 0 d (X(τ, z)) dτ . (22) 
We can extend d(x) by the constant d(0) for x < 0, and thus define the characteristic in R -, then we define z(t), the value such that X(t, z) = 0. Changing variables, using [START_REF] Michel | A singular asymptotic behavior of a transport equation[END_REF] and then in [START_REF] Michel | Optimal proliferation rate in a cell division model[END_REF], we find

∞ 0 x θ u(t, x) dx = ∞ z(t) X(t, z) θ u(t, X(t, z)) ∂X(t, z) ∂z dz = ∞ z(t) X(t, z) θ u(t, X(t, z)) exp - t 0 d (X(τ, z)) dτ dz = ∞ z(t) X(t, z) θ u 0 (z) dz ≤ ∞ 0 (z + M/α) θ u 0 (z) dz,
where we used Remark 1.1 for the last step.

For the third item, the conservation of the total number of polymers ρ(t) is obtained by integrating the equation for u and using the boundary condition at x = 0, thanks to the fact that V (t) > d(0).

Lifshitz-Slyozov without nucleation

Theorem 1.1 follows essentially from two different entropy inequalities. The first one, inspired from [START_REF] Michel | A singular asymptotic behavior of a transport equation[END_REF], shows the exponential convergence of the mass along any characteristic curve, which in turns implies that all characteristic curves converge to each other. The second entropy inequality is an adaptation of the entropy functional introduced by [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF] in the context of the Lifshitz-Slyozov model, and shows the convergence of V (t).

Lemma 2.2 (Entropy inequality -convergence of the characteristic curves [START_REF] Michel | A singular asymptotic behavior of a transport equation[END_REF]). Let d satisfy [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF],

u 0 ∈ L 1 (1 + x 2 )dx + and V 0 > d(0) ≥ 0. Let (V, u) ∈ C 1 (R + ) × C R + , L 1 (1 + x 2 )dx
+ be a solution of [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF]. Let us define, for any z ≥ 0,

g(t, z) := ∞ 0 u(t, x)|X(t, z) -x| 2 dx.
We have g(t, z) ≤ g(0, z)e -2αt .

Proof. Because u has a finite second moment, g is well defined and we may also define

g(t, z) := ∞ 0 u(t, x)(X(t, z) -x) d(X(t, z)) -d(x) dx ≥ αg(t, z).
An immediate calculation gives

dg dt (t, z) = ∞ 0 ∂ ∂t u(t, x)|X(t, z) -x| 2 + 2u(t, x) dX dt (t, z) X(t, z) -x dx = ∞ 0 ∂ ∂x u d(x) -V (t) |X -x| 2 + 2u(V (t) -d(X)) X -x dx = ∞ 0 2u(d(x) -V (t))(X -x) + 2u(V (t) -d(X)) X -x dx = -2g(t, z) ≤ -2αg(t, z),
and hence g(•, z) ∈ L 1 t (0, ∞) with the announced decay.

This proves the point 1 in Theorem 1.1, and shows that the mass concentrates along any characteristic curve. To obtain the convergence of the characteristics towards a fixed point, we use a second entropy inequality, directly adapted from Collet et al [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF],

Definition 2.1 ([8]). Let k : [0, ∞) → [0, ∞) be a C 1 function. We introduce H k (t) := ∞ 0 k(x)u(t, x) dx + K(V (t)), K(v) = v d(0) k (d -1 (s)) ds.
Note that this definition makes sense only if V (t) lies in the range of d, i.e. under assumption [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF], the set [d(0), ∞), which is the case thanks to Lemma 2.1.

Lemma 2.3 (Entropy inequality -adapted from [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF]). Let (V, u) be a solution for either System [START_REF] Deschamps | Quasi steady state approximation of the small clusters in becker-döring equations leads to boundary conditions in the lifshitz-slyozov limit[END_REF] or [START_REF] Doumic | Scaling Limit of a Discrete Prion Dynamics Model[END_REF]. For k a C 1 convex positive function such that ∞ 0 k(x)u 0 (x)dx < +∞, with furthermore k(0) = 0 when (V, u) is solution to [START_REF] Doumic | Scaling Limit of a Discrete Prion Dynamics Model[END_REF]. Then H k (t) is well-defined at any time and we have

d dt H k (t) = ∞ 0 u(t, x)(V (t) -d(x))(k (x) -k (d -1 (V (t))) dx ≤ 0.
Proof. For the sake of completeness, we recall the proof from [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF]. We write

d dt H k (t) = ∞ 0 k(x) ∂ ∂t u(t, x) dx + dV dt k (d -1 (V (t))) = ∞ 0 k(x) ∂ ∂x (d(x) -V (t))u dx + k (d -1 (V (t))) ∞ 0 (d(x) -V (t))udx = ∞ 0 d(x) -V (t) u(t, x) k (d -1 (V (t))) -k (x) dx.
The negativity follows because the mapping x → k • d -1 is increasing. Remark 2.2. Our situation is in some sense the opposite of the one analyzed in [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF] for the classical setting of the Lifshitz-Slyozov model: large clusters grow larger as time advances whereas small clusters tend to become even smaller. This explains why we have an entropy inequality for convex functions k, whereas it is obtained for concave functions k in [START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF].

Proof of Theorem 1.1. The proof of convergence, both for V and for the characteristic curves, combines both entropy inequalities. We use k(x) =

x 0 d(s) ds in Lemma 2.3 and follow the following steps.

Step 1. For the entropy built on K(•) as mentioned above, using that

dH k dt ∈ L 1 t , we obtain ∞ 0 u(t, x)(V (t) -d(x)) 2 dx ∈ L 1 t (0, ∞).
For k(x) =

x 0 d(s) ds, the result follows from the fact that

dH k dt ∈ L 1 t . Step 2. We claim that for z ∈ [0, ∞), we have |V -d(X(•, z))| 2 ∈ W 1,1 t (0, ∞). Consequently, V (t)-d(X(t, z)) tends to zero as t → ∞ irrespective of z ∈ [0, ∞).
We first prove that |V -d(X(•, z))| 2 is integrable. We compute

ρ 0 |V (t) -d(X(t, z))| 2 = ∞ 0 |V (t) -d(X(t, z))| 2 u(t, x) dx ≤ 2 ∞ 0 |V (t) -d(x))| 2 u(t, x) dx + 2 ∞ 0 |d(x) -d(X(t, z))| 2 u(t, x) dx.
The first term is time integrable thanks to the Step 1. For the second term, we use the entropy provided by Lemma 2.2

∞ 0 |d(x) -d(X(t, z))| 2 u(t, x) dx ≤ β 2 g(t, z) ≤ β 2 g(0, z)e -2αt . Then |V -d(X(•, z))| 2 ∈ L 1 t (0, ∞).
Next, we consider the derivative of this function. It reads

d dt (V (t)-d(X(t, z))) 2 = 2 dV dt (V (t)-d(X(t, z))-2d (X(t; z))(V (t)-d(X(t, z))) 2 .
We notice that the second term above is integrable thanks to the previous part of the proof, while the first term is also integrable as the product of two L 2 t functions, since dV dt ∈ L 2 t : indeed, using the Cauchy-Schwarz inequality in (4) we get

dV dt 2 ≤ ∞ 0 u(t, x)|d(x) -V (t)| dx 2 ≤ ρ 0 ∞ 0 (d(x) -V (t)) 2 u(t, x),
and we use here again the Step 1 to conclude this point.

Step 3. For any z ∈ [0, ∞), we decompose the mass conservation relation as

M = V (t) + ρ 0 X(t, z) + B(t, z), B(t, z) := ∞ 0 (x -X(t, z))u(t, x) dx. ( 23 
)
Combining the entropy inequality of Lemma 2.2 with the Cauchy-Schwarz inequality, we have

|B(t, z)| ≤ ρ 0 g(0, z)e -αt ∀t ≥ 0.
Hence for any z ≥ 0,

lim t→∞ V (t) + ρ 0 X(t, z) = lim t→∞ d(X(t, z)) + ρ 0 X(t, z) = M.
By the strict monotonicity of the function x → d(x) + x, and since d(0) < V 0 ≤ M, there exists a unique solution x to

d(x) + ρ 0 x = M.
This implies that lim t→∞ X(t, z) = x, which in turns implies lim t→∞ V (t) = d(x), and proves the point 2 of the theorem.

Step 4. To prove the point 3, we write

W 2 (u, ρ 0 δ x) ≤ |x -y| 2 ρ 0 δ x(y)u(t, x)dx ≤ |x -x| 2 ρ 0 u(t, x)dx ≤ 2 |X(t, z) -x| 2 ρ 0 u(t, x)dx + 2 |X(t, z) -x| 2 ρ 0 u(t, x)dx ≤ C (e -αt + |X(t, z) -x|) → t→∞ 0.
In order to obtain an exponential rate of convergence for the second term X(t, z), we use [START_REF] Niethammer | Derivation of the LSW-theory for Ostwald ripening by homogenization methods[END_REF], and writing M = d(x) + ρ 0 x we obtain

|(V (t) -d(x)) + (ρ 0 X(t, z) -ρ 0 x)| = |B(t, z)| ≤ ρ 0 g(0, z)e -αt ∀t ≥ 0. ( 24 
)
Next we compute

d dt |X(t, z)-x| = sign (X(t, z)-x) dX(t, z) dt = sign (X(t, z)-x) (V (t) -d(X(t, z))) = sign (X(t, z) -x) (V (t) -d(x)) + sign (X(t, z) -x) (d(x) -d(X(t, z))) = sign (X(t, z) -x) (V (t) -d(x)) -d (θ)|X(t, z) -x| ,
for some θ ∈ [0, ∞). We rewrite the first term above as

sign (X(t, z) -x) (V (t) -d(x)) = sign (X(t, z) -x){(V (t) -d(x)) + ρ 0 (X(t, z) -x)} -ρ 0 |X(t, z) -x| .
Thus, using [START_REF] Niethammer | Non-self-similar behavior in the LSW theory of Ostwald ripening[END_REF], we obtain successively

d dt |X(t, z) -x| ≤ -(ρ 0 + α)|X(t, z) -x| + ρ 0 g(0, z)e -αt , 0 ≤ |X(t, z) -x| ≤ |z -x|e -t(ρ0+α) + g(0, z) ρ 0 e -t(ρ0+α) e ρ0t -1 .
Finally, we obtain

|X(t, z) -x| = O(e -αt ) and hence W 2 (u, ρ 0 δ x) = O(e -αt ).
Going back to [START_REF] Niethammer | Non-self-similar behavior in the LSW theory of Ostwald ripening[END_REF] we also conclude that

|V (t) -d(x)| = O(e -αt ).

Lifshitz-Slyozov with nucleation

We turn to the proof of Theorem 1.2, where the Lifshitz-Slyozov system is complemented by a nucleation term [START_REF] Doumic | Scaling Limit of a Discrete Prion Dynamics Model[END_REF]. We first recall a simple lemma, variant of Gronwall's lemma, which is used several times in the proofs below.

Lemma 2.4. Let f ∈ C 1 (R + , R + ) + , g ∈ C(R + ) and h ∈ C(R + , R + ) satisfy df dt ≤ -h(t)f (t) + h(t)g(t), h(t) ≥ C > 0, lim t→∞ g(t) = 0.
Then lim t→∞ f (t) = 0.

Proof. Since d dt f (t)e t 0 h(s)ds ≤ h(t)g(t)e t 0 h(s)ds , integrating, we get

f (t) ≤ f (0)e -t 0 h(s)ds + t 0 h(s)g(s)e -t s h(u)du ≤ f (0)e -Ct + t 2 0 h(s)g(s)e -t s h(u)du + t t 2 h(s)g(s)e -t s h(u)du ≤ f (0)e -Ct + g L ∞ e -t t 2 h(u)du + sup s∈( t 2 ,t) g(s) → t→∞ 0.
As a first step we show that the number of fibrils increases without bound, as provided by the following statement. Proof. Integrating the equation for u in [START_REF] Doumic | Scaling Limit of a Discrete Prion Dynamics Model[END_REF] and using the boundary condition at x = 0, we have

dρ dt = ∞ 0 ∂ ∂t u(t, x)dx = - ∞ 0 ∂ ∂x (V (t) -d(x)) u(t, x)dx = V (t) i0 ≥ d(0) i0 ≥ 0 so that ρ is increasing towards a limit 0 < ρ ∞ ≤ ∞.
Let us assume that it tends to a finite limit ρ ∞ < 0 and argue by contradiction. Using Assumption [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF] and the equation for V , we get

(d(0) -V (t)) ρ(t) + α (M -V (t)) ≤ dV dt ≤ (d(0) -V (t)) ρ(t) + β (M -V (t))
and since d(0

) < V (t) ≤ M and ρ 0 ≤ ρ ≤ ρ ∞ (d(0) -M ) ρ ∞ ≤ dV dt ≤ (d(0) -V (t)) ρ 0 + βM, so that V ∈ C 1 b (R + ). Since V (t) i0 = dρ dt , we also have V i0 ∈ L 1 (R + ), which combined with V ∈ C 1 b (R + ) implies lim t→∞ V = 0.
Turning to the double inequality for V , this implies

0 < d(0)ρ ∞ + αM ≤ lim inf t→∞ dV dt ≤ lim sup t→∞ dV dt ≤ d(0)ρ ∞ + βM,
which contradicts that V (t) → 0. Hence lim t→∞ ρ(t) = +∞. Since we have

dV (t) dt ≤ (d(0) -V (t)) ρ(t) + β (M -V (t)) , which implies lim t→∞ V (t) = d(0) by applying Lemma 2.4 to f = V (t) -d(0), h = ρ(t) and g(t) = βM ρ(t) → t→∞ 0. Note that V (t) → d(0) also implies that lim t→∞ ∞ 0 x u(t, x) dx → M -d(0). ( 25 
)
To prove the concentration of polymerized mass at zero, we then prove that the second moment of u(t, x) vanishes as stated in the following lemma.

Lemma 2.6. Under the assumptions of Theorem 1.2 we have lim t→∞ M 2 (t) = 0.

Proof. We compute

dM 2 (t) dt = ∞ 0 x(V (t) -d(0) + d(0) -d(x))u(t, x) dx ≤ V (t) -d(0) M -2αM 2 (t).
Once again, we apply Lemma 2.4 with f = M 2 , h = 2α and g = 1 2α (V (t)d(0))M which tends to 0 thanks to Lemma 2.5. 

| ∞ 0 xu(t, x)(φ(x) -φ(0))dx| = ∞ ε + ε 0 xu(t, x)|φ(x) -φ(0)|dx ≤ 1 ε φ L ∞ M 2 (t) + φ L ∞ M 2 (t) → t→∞ 0,
and since ∞ 0 xu(t, x)dx → M -d(0), we have the desired general convergence result of Theorem 1.2.

We now prove the rates of convergence of V and ρ according to whether d(0) > 0 or d(0) = 0. One of the key points is to relate the divergence rate of ρ to the convergence rate of V , as stated in the following lemma.

Lemma 2.7. Under the assumptions of Theorem 1.2, we have

lim t→∞ ρ(t)(V (t) -d(0)) = d (0)(M -d(0)).
Proof. Let us first notice that the previous convergence results also imply that

lim t→∞ ∞ 0 (d(x) -d(0))u(t, x) dx = d (0)(M -d(0)). (26) 
We define w

(t) = ρ(t) V (t) -d(0) -d (0) M -d(0) and compute dw(t) dt = V i0 (V (t) -d(0)) + ρ(t) ∞ 0 d(x)u(t, x)dx -V (t)ρ(t) = V i0 (V (t) -d(0)) + ρ(t) ∞ 0 (d(x) -d(0))u(t, x)dx -(V (t) -d(0))ρ(t) = B(t) -ρ(t)w(t) + ρ(t)C(t), with 
B(t) = V (t) i0 V (t) -d(0) , C(t) = ∞ 0 d(x) -d(0) -d (0)x u(t, x) dx.
We then apply Lemma 2.4 with f = w, h = ρ and g = B(t) ρ(t) + C(t), since according to [START_REF] Niethammer | The LSW model for domain coarsening: asymptotic behavior for conserved total mass[END_REF] and to the weak convergence result, we have C(t) -→ t→∞ 0.

Hence lim t→0 w(t) = 0, which proves the result.

Using Lemma 2.7 allows to focus on the asymptotic rate of divergence of ρ, from which the rate of convergence for V (t) -d(0) follows. The two following lemmas now treat respectively the cases d(0) > 0 and d(0) = 0. Proof. As already seen, we have

0 < d(0) i0 < dρ dt = V (t) i0 = d(0) + V (t) -d(0) i0 ≤ d(0) i0 + C V (t) -d(0) , (27) 
which implies the result since lim t→∞ V (t) -d(0) = 0. Lemma 2.9. Under the assumptions of Theorem 1.2, assume moreover d(0) = 0. Then the number of fragments ρ(t) satisfies

lim t→∞ ρ(t) t 1 i 0 +1 = (1 + i 0 ) 1 i 0 +1 (d (0)M ) i 0 i 0 +1 .
Proof of Theorem 1.2,2. : With the information of (25) and of Lemma 2.7 we can determine the asymptotic behavior of ρ and V in turn. Given 0 < < d (0)M , we use Lemma 2.7 to find T > 0 such that

|V (t)ρ(t) -d (0)M | < ε, ∀t > T.
We decompose now

dρ dt = V (t) i0 χ (0,T ) + 1 ρ(t) i0 V (t) i0 ρ(t) i0 χ (T,∞)
for t > T , so that

V (t) i0 χ (0,T ) + (d (0)M -) i0 ρ(t) i0 χ (T,∞) < dρ dt < V (t) i0 χ (0,T ) + (d (0)M + ) i0 ρ(t) i0 χ (T,∞) .
Multiplying by (1 + i 0 )ρ(t) i0 and integrating in time on (T, t),

ρ i0+1 (T )+(1+i 0 )(t-T )(d (0)M -) i0 < ρ i0+1 (t) < ρ i0+1 (T )+(1+i 0 )(t-T )(d (0)M + ) i0 with ρ(T ) = ρ(0) + T 0 V (τ ) i0 dτ.
Therefore, as is arbitrary,

lim t→∞ ρ(t) t 1/(i0+1) = (1 + i 0 ) 1 i 0 +1 (d (0)M ) i 0 i 0 +1 so that lim t→∞ t 1/(i0+1) V (t) = d (0)M 1 + i 0 1/(i0+1)
.

This concludes the proof of Lemma 2.9 and of Theorem 1.2, 2.

Remark 2.3. Using computations like those in the proof of Lemma 2.6 we may deduce that the second moment M 2 (t) vanishes at least as fast as V (t) -d(0) does.

Fragmentation as a possibly stabilizing secondary process

This section is devoted to the proofs of Theorem 1.3 and 1.4, which consider the two opposite cases, respectively increasing or decreasing ratio polymerization/depolymerization, i.e. decreasing or increasing total growth rate V (t) -d(x).

Increasing depolymerization rate

We prove here Theorem 1.3. As expected, under our assumptions on the fragmentation rate, the same asymptotic as in Theorem 1.2 holds but is still faster, thus simplifying rather than complexifying the proof.

Proof of Theorem 1.3. We recall that the total mass conservation still holds, M is constant in (1), because fragmentation is conservative in mass, but increases the number of polymers.

First step: d(0) < V (t) ≤ M. This comes from Lemma 2.1,whose proof remains valid in the present case.

Second step: ρ(t) ≥ ρ(0)e Bmt . Integrating the equation, and using that V (t) > d(0), we obtain the result since

dρ dt = εV (t) i0 + ∞ 0 B(x)u(t, x) dx ≥ B m ρ(t).
Third step:

0 < V (t) -d(0) ≤ Cte -Bmt We have d dt V (t) -d(0) = ∞ 0 (d(x) -d(0))u(t, x) dx -ρ(t)(V (t) -d(0)) ≤ βM -ρ(t)(V (t) -d(0)) , so that V (t) -d(0) ≤ V 0 -d(0) e -t 0 ρ(s)ds + βM t 0 e -t s ρ(σ)dσ ds ≤ V 0 -d(0) e -t 0 ρ(0)e Bms ds + βM t 0 e -t s ρ(0)e Bmσ dσ ds ≤ V 0 -d(0) e -ρ(0) Bm (e Bm t -1) + βM t 0 e -ρ(0)
Bm (e Bmt -e Bms ) ds.

Next, we use the following convexity inequality

e Bmt -1 t ≤ e Bmt -e Bms t -s , 0 ≤ s ≤ t, to obtain t 0 exp -ρ(0)
Bm (e Bmt -e Bms )ds ds ≤ t 0 exp -ρ(0) Bm (e Bmt -1)(1 -s t )ds ds ≤ tBm ρ(0)(e Bmt -1) .

We deduce that V (t) converges to d(0) with the rate te -Bmt when t → ∞.

To conclude the proof of Theorem 1.3, it remains to show the concentration of the polymerized mass at zero size, which follows from the vanishing the second moment, as in the proof of Theorem 1.2.

Depolymerization as a stabilizing mechanism

A particular feature of Theorem 1.3 is that the results remain unchanged if we take d(x) ≡ 0; then ρ still increases exponentially, and since dV dt = -ρ(t)V (t), V (t) decays to 0 faster than exponentially. Then, we can use the fragmentation term, with c in [START_REF] Laurençot | Weak solutions to the lifshitz-slyozov-wagner equation[END_REF], to prove that

dM 2 dt ≤ -cB m M 2 + 2V (t)M,
which also implies the exponential decay of M 2 (t). This observation initially motivated our study: one of the most frequently used model for protein polymerization, namely the growth-fragmentation model, with or without nucleation, leads to an asymptotic state of dust rather than of stable large polymers. An increasing depolymerization rate maintains this asymptotic behavior. We see in Theorem 1.4 that, surprisingly, a decreasing depolymerization rate, meaning that large polymers are more stable than small ones, is able to stabilize the system. Theorem 1.4 thus states the existence of a positive steady state of the model ( 1)-( 3) with decreasing depolymerization rates. In this case, the presence or absence of nucleation does not really play a role in the long-term dynamics, since we prove below that at x = 0 we have d(0) > V , the steady state of V (t).

The proof of Theorem 1.4 follows the lines for instance of Theorem 4.6. in [START_REF] Perthame | Transport equations in biology[END_REF] and also used and detailed e.g. in [START_REF] Calvez | Self-similarity in a general aggregationfragmentation problem. application to fitness analysis[END_REF][START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] for studies of the eigenvalue problem for the growth-fragmentation equation. We decompose the proof in several steps which are stated as additional theorems. Indeed, we encounter a specific difficulty here because the growth rate V -d(x) vanishes at some nonnegative point x 0 , so that the solution operator is not easily defined near x 0 . Indeed, a vanishing transport speed may generate a Dirac solution, however the positive absorbtion term near x 0 has a regularizing effect on the solution, which belongs to a L p space. For that reason, when solving the regularized problem, we first consider the operator only for x > d -1 (V ), and then extend it for smaller x by successive use of the Banach-Picard fixed point theorem.

Theorem 3.1. Assume that d satisfies [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF], that ( 14) and ( 17)-( 20) hold true.

For ε > 0, R > 0 and a given V ∈ (inf x d(x), d(0)), setting x 0 = d -1 (V ) and x ε = x 0 + ε, there exists a unique couple

(λ ε,R V , U ε,R V ) ∈ R × C([x ε , R], R * + ) solution to the following eigenvalue problem on [x ε , R] :      ∂ ∂x ((V -d(x))U ε,R V ) + λ ε,R V U ε,R V + B(x)U ε,R V = 2 R x B(y)U ε,R V (y)κ(y, x)dy, (V -d(x ε ))U ε,R V (x ε ) = ε R xε U ε,R V (y)dy, U ε,R V (x) > 0, R xε U ε,R V (x)dx = 1. (28) 
Proof. We follow the proof of [START_REF] Perthame | Transport equations in biology[END_REF] Theorem 6.6. or [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] Theorem 3 for instance, assuming B and κ continuous, otherwise a standard regularization procedure is implemented. For a given f ∈ C([x ε , R], R * + ), we apply first the Banach-Picard theorem to the operator

T f : C([x ε , R]) → C([x ε , R]), m → n = T f (m) defined thanks to the equation for n µn + ∂ ∂x ((V -d(x))n) + B(x)n = 2 R x B(y)m(y)κ(y, x)dy + f (x), (V -d(x ε ))n(x ε ) = ε R 0 m(y)dy.
For µ > 0 large enough, T f is indeed a strict contraction and thus T f has a unique fixed point. Then we may apply the Krein-Rutman theorem to the operator f → n with T f (n) = n, for which strong positivity, continuity and compactness in C([x ε , R]) follows from arguments in the papers mentioned above. small enough such that the map m → n is contractive in C [x 0 -δ, x 0 ] , which provides the aforementioned extension. Denoting n = n 1 -n 2 the difference between the solutions for m 1 and m 2 respectively, and m = m 1 -m 2 , and

I(m) = 2 x0
x B(y)m(y)κ(y, x)dy, we get, for any x < x < x 0 n(x) exp(

x x λ + B(s) -d (s) V -d(s) ds = exp( x x λ + B(s) -d (s) V -d(s) ds) I(m)(x) V -d(x) ,
so that by integration between x and x 0 we have n(x) exp(

x x λ+B(s)-d (s) V -d(s) ds) = - x0 x exp( s x λ+B(σ)-d (σ) V -d(σ) dσ) I(m)(s) V -d(s) ds.
Let us now do an asymptotic expansion around x 0 to check the validity of the integral: we have

λ + B(x) -d (x) V -d(x) ∼ x0 λ + B(x 0 ) -d (x 0 ) -d (x 0 )(x -x 0 ) = α x -x 0 ,
with α > 0 thanks to our assumption λ + B(x 0 ) -d (x 0 ) > 0, hence exp(

x x λ + B(s) -d (s) V -d(x) ds) ∼ | x 0 -x x 0 - x | α ,
and finally we get

|n(x)( x 0 -x x 0 - x ) α | ≤ C m L ∞ x0 x (x 0 -s) α-1 ds,
with C only depending on the parameters of the problem. Once we have the expansion for the exponential term we plug it into the former equality to get

|n(x)( x 0 -x x 0 - x ) α | ∼ C 1 x0 x | x 0 -s x 0 - x | α I(m)(s) V -d(s) ds ∼ C 2 |x 0 -x| α x0 x |x 0 -s| α-1 I(m)(s)ds
where by the same token we used that

V -d(s) ∼ -d (x 0 )(s -x 0 ). Hence |n(x)| ≤ C 3 m ∞ |x 0 -x| α x0 x |x 0 -s| α-1 x0 s B(y)κ(y, s)dy ds ≤ C 3 m ∞ B M |x 0 -x| α x0 x y x |x 0 -s| α-1 κ(y, s)ds dy .
Here we use [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF] to bound the innermost integral. We consider first the case 0 < α ≤ 1: there holds that 

|n(x)| ≤ C 3 m ∞ B M |x 0 -x| α x γ |x -x 0 | α α |x 0 -x| γ ≤ C 4 δ γ m ∞ .
This shows that the map m → n is contractive in C [x 0 -δ, x 0 ] for δ small enough. When α > 1 we argue in a similar fashion that 

V ∈ (inf x d(x), d(0)) such that λ R V = 0, that means V = R 0 d(x)U R (x)dx, R 0 U R (x)dx = 1, (29) 
∂ ∂x (( V -d(x))U R ) = -B(x)U R (x) + 2 R x B(y)κ(y, x)U R (y) dy. (30) 
Moreover, the following estimates, independent of R > 0 large enough, hold.

1. For k ≥ 0, there exists

C k > 0 such that R 0 B(x)x k U R (x)dx ≤ C k .
2. With γ defined in the assumption (20), there exists C > 0 such that for any x ∈ (0, R) we have

| V -d(x)|U R (x) ≤ C, | V -d(x)|U R (x)|x -x 0 | -γ ≤ C.
3. There exists η > 0 such that

inf x≥0 d(x) < d(∞) + η ≤ V ≤ d(0) -η < d(0).
Proof.

Step 1. A lower bound on V such that λ R V ≥ 0. In this step, we assume that λ R V ≥ 0. On the one hand, integrating the equation against the weight x gives

V ≥ R 0 d(x)U R V (x)dx,
which in turns implies (dropping superscript R and subscript V )

V ≥ A 0 d(x)U (x)dx ≥ d(A)(1 - R A U (x)dx) ≥ d(A) 1 - R A x k A k U (x)dx .
On the other hand, integrating the equation against the weight x k gives (see details below concerning this a priori estimate), R 0 x k B(x)U (x)dx ≤ C k so that, using assumption (18), for A > A, we have

R A x k A k U (x)dx ≤ R A x k A k B(x) B m U (x)dx ≤ C k A k B m .
Finally, we use ( 16) so that

V ≥ d(∞) + C d A n 1 - C k A k B m .
Now, we choose a value k > n, then choosing A large enough, we obtain that for some η > 0 (depending only on our assumptions on the coefficients b, d, κ but not on R), we have

V ≥ d(∞) + η > inf x≥0 d(x). (31) 
In particular, this inequality holds true for V as built below.

Step 2. Existence of the steady state ( V , U R V ). We have already seen that λ R V is a continuous function, positive for V sufficiently close to d(0). Therefore, to prove that λ R V vanishes, it remains to prove that λ R V may be negative. Assume by contradiction, that for any V ∈ (inf d, d(0)) we have λ R V ≥ 0, and take

V → inf x d(x) in Theorem 3.2 -It is possible to extend U R V on [0, R] since the assumption λ R V > -B(x 0 ) + d (x 0
) is then satisfied for all V . We use the estimate [START_REF] Pruss | Analysis of a model for the dynamics of prion[END_REF] to obtain a contradiction and thus conclude the existence of V .

We recall that integrating Equation (30) successively against 1 and x yields 0

≤ (d(0) -V )U (0) = R 0 B(x)U R (x)dx ≤ B M , inf x≥0 d(x) + η ≤ V = R 0 d(x)U R (x)dx ≤ d(0),
so that we find (29) and d(0) ≥ V and a boundary condition at x = 0 is not needed.

Step 3. Moments of B(x)U (x). We drop the index R for simplicity. Integrating Equation (30) against x k yields, using the notation in [START_REF] Laurençot | Weak solutions to the lifshitz-slyozov-wagner equation[END_REF], As right above, we integrate between x 0 < x min and x to find 

-k R 0 ( V -d(x))x k-1 U (x)dx = - R 0 x k B(x)U (x)a k (x)dx with a k (x) ≥ c > 0. Hence for A > A large enough, A being defined in (18) c R 0 B(x)x k U (x)dx ≤ k V R 0 x k-1 U (x)dx ≤ kd(0) A 0 x k-1 U (x) dx + 1 BmA R 0 B(x)x k U (x)dx and thus c - 1 B m A R 0 B(x)x k U (x)dx ≤ kd(0) A 0 x k-1 U (x) dx ≤ kd(0)A k-1 ,
) 32 
Step 5. Upper bound for V and bounds on x 0 . Because we have already proved the lower bound (31) on V , we know that x 0 := d -1 ( V ) remains bounded from above. Ensuring now an upper bound strictly smaller than d(0) for V , uniformly as R → ∞, will ensure a lower bound for x 0 . Let us assume x 0 < x min . We have Using assumption (5), for x ∈ (0, x min ), we have |d (x)| ≥ L for some constant L. Therefore, we have

V
L |x -x 0 | U (x) ≤ | V -d(x)| U (x) ≤ C|x -x 0 | γ
where we have used [START_REF] Simonett | On the solvability of a mathematical model for prion proliferation[END_REF]. We conclude that U (x) ≤ |x -x 0 | γ-1 ∈ L 1 ((0, x 0 + 1)).

Hence for some δ small enough we have )) remains away from zero.

The estimates of Theorem 3.3 are sufficient to let R → ∞ (see once again [29] Theorem 4.6. or the estimates for the proof of [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF] Theorem 1). Thanks to the second estimate, the function U R is uniformly bounded by C|x-x0| γ V -d(x) which is locally integrable around x 0 . Therefore, together with the first estimate which guarantees that x k U R is uniformly in L 1 for large x, we infer that x k U R (x)dx is bounded in L 1 . Thanks to the Dunford-Pettis theorem, we conclude that (U R ) belongs to a weak compact set of L 1 . We can extract a subsequence which converges L 1 -weak towards a certain U. Finally, we can apply the chain rule to the equation (see Eq. ( 28) in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF]) and find that for k ≥ 1 we conclude that (x k U R ) is bounded in W 1,1 , so that the strong convergence is proved. This concludes the proof of Theorem 1.4.

Conclusion

We have investigated, in a systematic way, the polymer size distributions resulting from the interplay between polymerization, depolymerization, fragmentation and nucleation.

For the variant of the classical Lifshitz-Slyozov model considered in this paper, the proofs of convergence are based on two entropy inequalities, which unfortunately fail to be satisfied when adding fragmentation into the system. Then, the existence proof of a steady state for the growth-decay-fragmentation equation relies on a priori estimates, in the same spirit as for the eigenvalue problem of the growth-fragmentation equation, but with the delicate question of a change in the sign of the transport rate.

Our last system shows that a steady distribution of fibrils may be obtained by a polymerizing-depolymerizing-fragmenting system. Another possibility would be to consider the second term in the asymptotic development for the polymerization and depolymerization reactions, making a diffusion term appear [START_REF] Collet | A modified version of the lifshitz-slyozov model[END_REF]. Indeed [START_REF] Laurençot | Steady states for a fragmentation equation with size diffusion[END_REF] proved the existence of steady states for diffusionfragmentation equations. Up to our knowledge, this is however the only existing study in this direction.

Concerning the applications to biology, our study was motivated by in vitro experiments of fibril formation [START_REF] Xue | Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly[END_REF], since most protein fibrils formed in vitro appear to be stable. However, the stability of fibrils may also be linked to a kind of pseudo-stability, in the spirit of metastable states for Becker-Döring [START_REF] Penrose | Metastable states for the becker-döring cluster equations[END_REF], i.e. where a very slow degradation would underlie the observed stability : a numerical study could help to answer this more quantitative question.

Further studies could be to generalize the assumptions on the coefficients, and find assumptions which would guarantee uniqueness of a steady state. Still more challenging is the question of the stability of the steady state, which is also an open problem for the so-called prion system.

Remark 2 . 1 .

 21 Due to the boundary condition, the entropy inequality of Lemma 2.2, which shows the concentration of mass along any characteristic curve, fails for the nucleation boundary condition ( (3) with ε = 1) of System (12), while the entropy inequality of Lemma 2.3, remains true for both models.

Lemma 2 . 5 .

 25 Under the assumptions of Theorem 1.2 we have ρ(t) := ∞ 0 u(t, x)dx +∞ and V (t) -→ d(0) as t → ∞.

Lemma 2 .

 2 6 together with (2.5) implies the weak convergence of xu(t, x) towards (M -d(0)) δ 0 as stated in Theorem 1.2: let φ ∈ C 1 b (R + ) a test function, we have for any ε > 0 small enough

Lemma 2 . 8 .

 28 Under the assumptions of Theorem 1.2, assume moreover d(0) > 0. Then the number of fragments ρ(t) satisfies lim t→∞ ρ(t) t = d(0) i0 .

0 -

 0 s| α-1 κ(y, s)ds dy ≤ C x0 x |y -x 0 | α-1 |y -x| γ y γ dy and as a consequence

1 . 3 . 3 .

 133 s| α-1 κ(y, s)ds dy ≤ C x0 x |x 0 -x| α-1 |y -x| γ y γ dy which in the end allows us to recover the same type of contractivity estimate.Finally, we renormalize U R V by multiplication to achieveR 0 U R V (x)dx =Theorem With the assumptions and notations of Theorem 3.2, for R large enough there exists

  so that finally for A large enoughR 0 B(x)x k U (x)dx ≤ B m kd(0)A k cB m A -1 = C k .Step 4. L ∞ bound for ( V -d(x))U (x) and, for x 0 < x min defined in[START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF], for( V -d(x))U (x)|x -x 0 | -γ .We integrate (30) between x 0 := d -1 ( V ) and x to find| V -d(x)|U (x) + )U (y)κ(y, z)dydz so that | V -d(x)| U (x) )U (y)κ(y, z)dydz ≤ 2B M .

|

  V -d(x)| U (x) ≤ |2 x0 x R z B(y)U (y)κ(y, z)dydz| ≤ 2C R 0 B(y)U (y)y -γ |x -x 0 | γ dy thanks to[START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF], and thus| V -d(x)| U (x) ≤ 2C B(y)y -γ L ∞ |x -x 0 | γ . (

≤ d(0) δ 0 U 0 U

 00 (x)dx + d(δ) R δ U (x)dx = d(δ) + (d(0) -d(δ)) δ (x)dx,so that it remains to show that the mass does not concentrate only around zero.

  and x 0 > min(x min , d -1 ( d(δ)+d(0) 2
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Theorem 3.2. With the assumptions and notations of Theorem 3.1,

• as ε → 0, we obtain a weak solution (λ R V , U R V ) ∈ R × L ∞ ((x 0 , R), R + ) to the limit system of (28) with ε → 0.

• The function V → λ R V is continuous, and for V in a neighbourhood of d(0) and sufficiently large R, we have λ R V > 0.

•

] and obtain, up to renormalisation, a nonnegative solution, for x ∈ (0, R), of

Proof. We present a brief proof because most of the fundamental estimates are proved later with a uniform dependency on R that is not needed here.

Step 1. The proof for the limit is the same as for instance in [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF], end of Appendix B. In the compact [x 0 , R], we can prove uniform bounds in L ∞ for U ε,R V , take a subsequence converging weakly in L ∞ ([x 0 , R]), and the equation taken in a weak sense follows from the strong convergence of the coefficients in

) thanks to our assumptions on the coefficients so that U R V is continuous on (x 0 , R).

Step 2. The continuity of V → λ R V can be obtained following the proof of Lemma 3.1. in [START_REF] Michel | Optimal proliferation rate in a cell division model[END_REF]. If V → d(0), we have x 0 → 0 : we are back to the usual -truncated -growth-fragmentation equation for which the strict positivity of the eigenvalue for sufficiently large R has been established [START_REF] Doumic | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Perthame | Transport equations in biology[END_REF].

Step 3. We restrict now ourselves to the set of values V such that λ R V > -B(x 0 )+ d (x 0 ), which holds true at least for x 0 = d -1 (V ) small enough (that is, V ∼ d(0)) following the step 2. This is necessary to extend the solution at x = x 0 as we see it right below. For such an x 0 , we extend our solution U R V to [0, x 0 ] by applying successively a Banach-Picard fixed point theorem to intervals [x 0 -(k + 1)δ, x 0 -kδ] on spaces C [x 0 -(k + 1)δ, x 0 -kδ] , k ∈ N, for δ small enough so that the following operator m → n is a contraction:

with F k defined in the previous steps of the iteration by

In these iterations, the most difficult point is the extension for x < x 0 close to the singular point x 0 , which is possible thanks to the absorption stemming from the choice λ R V > -B(x 0 ) + d (x 0 ). Let us show that there is some δ > 0