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Proximal splitting algorithms for convex optimization are largely used in signal and image processing. They make possible to call the individual proximity operators of an arbitrary number of functions, whose sum is to be minimized. But the larger this number, the slower the convergence. In this work, we show how to compute the proximity operator of a sum of two functions, for a certain type of functions operating on objects having a graph structure. The gain provided by avoiding unnecessary splitting is illustrated by an application to depth map estimation.

I. I

Proximal algorithms -Optimization is a key step in solving data processing problems formulated as the minimization of an energy, like inverse problems or learning problems. Efficient convex optimization procedures were restricted to smooth cost functions for several decades, until the development of proximal methods, so-called because they make use of the proximity operator of the functions. This class of algorithms, which are well suited for a broad range of nonsmooth large-scale problems [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]- [START_REF] Burger | First order algorithms in variational image processing[END_REF], includes the forward-backward algorithm (and its derivatives ISTA, FISTA. . . ), the Douglas-Rachford algorithm (related to ADMM, PPXA and PPXA+ [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF]), and several recent primal-dual algorithms [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]- [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF].

Splitting: pros and cons -Let us consider a general template problem:

minimize x ∈H R r =1 f r (x) + S s=1 s (x), (1) 
where H is a real Hilbert space, the functions (f r ) 1≤r ≤R belong to Γ 0 (H), the set of proper, convex, lower semicontinuous functions from H to ]-∞, +∞] [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], and the functions ( s ) 1≤s ≤S in Γ 0 (H) are differentiable, with Lipschitz-continuous gradient. The computation of the gradient of the sum of functions s , which is the sum of their gradients, does not raise any difficulty.
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By contrast, the proximity operator¹ of the sum of functions f r is generally intractable, so that the proximity operators of the individual functions f r are called, instead. The flexibility of the splitting algorithms allows to do so, but at the price of a slower convergence and increased memory usage. It is then preferable to compute the proximity operator of a sum of functions, whenever possible.

Proximity operator of a sum of two functions -Several works have been dedicated to the computation of the proximity operator of a sum of two functions. For instance, we can refer to [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF]- [START_REF] Abboud | Dual block-coordinate forwardbackward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF] for iterative solutions and the convergence guarantees when inner iterations are required. In this work, we focus on sufficient conditions for the following equality to hold:

prox +h = prox h • prox , (2) 
where and h are functions in Γ 0 (H) and • denotes the mapping composition. This desirable property is not satisfied, in general. Given a closed convex set C, we define its indicator function ι C as the convex function which maps x to {0 if x ∈ C, +∞ else}. Then if C is reduced to a singleton or is a non-empty subset of R, the property (2) holds, with h = ι C and any ∈ Γ 0 (R). By extension, it also holds if C and are separable in the same basis of H [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF]. A more general sufficient condition is ∂ (x) ⊂ ∂ (prox h (x)), for every x ∈ H [START_REF] Yu | On decomposing the proximal map[END_REF], [START_REF] Shi | A primer on coordinate descent algorithms[END_REF]. When H = R, is the support function σ C of a closed, convex, non-empty subset C of H [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], and h is differentiable at 0 with h (0) = 0, the equality (2) holds as well [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]Proposition 3.6].

Contribution -A new result is derived in Section II and particular cases of this result are related to the signal processing literature in Section III. The interest of our result compared to splitting is illustrated and discussed by an application to depth estimation in Section IV.

II. N R

We place ourselves in a real Hilbert space H = R Ω of objects x = (x n ) n ∈Ω , with real elements x n and domain Ω. For instance, 1-D signals of size N correspond to Ω = {1, . . . , N }; 2-D images or matrices of size N 1 × N 2 correspond to Ω = {1, . . . , N 1 } × {1, . . . , N 2 }, with n = (n 1 , n 2 ) a 2-D index. We view x ∈ H as a graph with values x n at its edges. Let ϒ be a subset of Ω 2 , consisting of pairs of indexes, which can be viewed as the edges of the graph. Let and h be two functions of Γ 0 (H), which penalize the edges and the vertices of the graph, respectively. More precisely, we suppose that the following holds.

Assumption II.1 (i) h is separable, with ∀x = (x n ) n ∈Ω h(x) = n ∈Ω h 0 (x n ), (3) 
for some function h 0 ∈ Γ 0 (R).

(ii) has the following form:

∀x = (x n ) n ∈Ω (x) = (m,m )∈ϒ σ C m,m (x m -x m ), (4) 
¹The proximity operator prox f of a function f maps an object to the unique minimizer over x of x -2 /2 + f (x) [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF].

where σ C m,m : t ∈ R → sup {tp, p ∈ C m,m } is the support function of a closed real interval C m,m , such that inf C m,m = a m,m and sup C m,m = b m,m , for some a m,m ∈ R ∪ {-∞} and b m,m ∈ R ∪ {+∞}, with a m,m ≤ b m,m . Thus, we have (∀t ∈ R) σ C m,m (t) =          a m,m t if t < 0, 0 if t = 0, b m,m t if t > 0, ( 5 
)
with the convention (-∞)t = +∞ and (+∞)t = +∞.

It is straightforward to show that and h belong to Γ 0 (H).

Proposition II.2 Under Assumption II.1, it holds that

prox +h = prox h • prox . ( 6 
)
The proof is derived in Appendix V. This proposition extends several results of the literature, which are summarized in the next section.

III. I S /I P

The kind of functions considered in the previous Section are often encountered in signal/image processing applications. Here are some examples having practical interest.

Example III.1 In the 1-D case, with

Ω = {1, . . . , N } and ϒ = {(1, 2), (2, 3), . . . , (N -1, N )}, the weighted total variation of x corresponds to our setting with b n,n+1 = -a n,n+1 = ω n ≥ 0; that is, ∀x ∈ R Ω (x) = N -1 n=1 ω n |x n+1 -x n |. (7) 
There exist very efficient algorithms to compute the proximity operator of this specific function [START_REF] Davies | Local extremes, runs, strings and multiresolution[END_REF], [START_REF] Condat | A direct algorithm for 1D total variation denoising[END_REF]. Its extension to 2-D images is known as the anisotropic total variation [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] and its proximity operator can be computed efficiently using graph cuts [START_REF] Chambolle | A parametric maximum flow approach for discrete total variation regularization[END_REF] Example III. [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] The fused lasso [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] corresponds to the case where is defined as in Example III.1

and h is an 1 -norm; that is, in (3), h 0 = λ| • |, for some λ > 0.
The proximity operator of the fused lasso is obtained by applying the proximity operator of the total variation, followed by soft-thresholding, which is the proximity operator of the 1 -norm. This particular case of Proposition II.2 was already known [START_REF] Friedman | Pathwise coordinate optimization[END_REF].

Example III.3 In the 1-D case, with Ω = {1, . . . , N } and ϒ = {(1, 2), (2, 3), . . . , (N -1, N )}, isotonic regression corresponds to (x) = ι E (x), with E = {x ∈ R N : x 1 ≥ . . . ≥ x N }. ( 8 
)
This is a particular case of our setting, with a n,n+1 = 0 and b n,n+1 = +∞.

The Pool Adjacent Violators Algorithm (PAVA) [START_REF] Ayer | An empirical distribution function for sampling with incomplete information[END_REF] allows us to compute the proximity operator of with complexity O(N ).

When, in addition, h 0 = ι [0,1] , the property of Proposition II.2 was already known [START_REF] Grotzinger | Projections onto order simplexes[END_REF]. It was also shown for signals defined on a tree, instead of a 1-D chain [START_REF] Cremers | A fast projection method for connectivity constraints in image segmentation[END_REF].

IV. A D E S

We now focus on a practical application of Proposition II.2. We consider the problem of depth map estimation for noisy stereovision images. An efficient strategy for this purpose has been designed in [START_REF] Chambolle | A convex approach to minimal partitions[END_REF] and involves the same functions as in Example III.3. In this section, we first detail the convex optimization problem to solve and we provide several strategies with more or less splitting, in order to evaluate the impact of our theoretical result in Proposition II.2.

A. Minimal-Partition Type Formulation

Given a pair of images with domain Ω = {1, . . . , N 1 } × {1, . . . , N 2 }, we want to estimate the depth of the scene at every pixel n ∈ Ω. A variational formulation of depth reconstruction consists in estimating a partition (Ω (q) ) 1≤q ≤Q of Ω, such that the depth is constant in each region Ω (q) [START_REF] Chambolle | A convex approach to minimal partitions[END_REF], [START_REF] Condat | A convex approach to K-means clustering and image segmentation[END_REF]. Spatial homogeneity is obtained by penalizing the perimeter of the regions. Given a set of images η (q) ∈ R Ω , q = 1, . . . , Q, so that η (q) n is the cost of assigning the pixel n to the region Ω (q) , the minimization problem reads minimize

Ω (1) , ..., Ω (Q ) Q q=1 n ∈Ω (q) η (q) n + λ Q q=1 Per(Ω (q) ) s.t.      Q q=1 Ω (q) = Ω, (∀q p), Ω (q) ∩ Ω (p) = ∅, (9) 
where Per(•) denotes the perimeter and λ > 0 controls the amount of spatial regularization.

A convex relaxation of this nonconvex problem is [START_REF] Chambolle | A convex approach to minimal partitions[END_REF]: minimize [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] where θ (q) ∈ R Ω , θ (0) ≡ 1, θ (Q ) ≡ 0, the inequalities over the θ (q) are meant pixelwise, and TV denotes some form of the 2-D discrete total variation [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF]. In this paper, we use the classical isotropic total variation [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF]; that is, for every u ∈ R Ω ,

Θ=(θ (q) ) 1≤q ≤Q -1 Q q=1 n ∈Ω θ (q-1) n -θ (q) n η (q) n + λ Q q=1 TV(θ (q-1) -θ (q) ) s.t. θ (0) ≥ θ (1) ≥ . . . ≥ θ (Q -1) ≥ θ (Q ) ,
TV(u) = N 1 n 1 =1 N 2 n 2 =1 1 8 (u n 1 +1,n 2 -u n 1 ,n 2 ) 2 + 1 8 (u n 1 ,n 2 +1 -u n 1 ,n 2 ) 2 = Du 2, 1 , (11) 
where • 2, 1 is the 1, 2 norm and D is the linear operator taking horizontal and vertical finite differences, scaled so that D ≤ 1. Hence, using indicator functions, the minimization problem [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] can be rewritten as

Θ ∈ Argmin Θ F(Θ) + ι [0,1] Q ×Ω (Θ) + ι E (Θ), (12) 
where

F(Θ) = Q -1 q=1 α (q) , θ (q) + λ Q q=1 DH q Θ 2, 1 , (13) 
α (q) = η (q+1) -η (q) , H q : R Q ×Ω → R Ω : Θ → θ (q-1) -θ (q) , and

E = {Θ ∈ R Q ×Ω : θ (1) ≥ . . . ≥ θ (Q -1) }.
This generic formulation can be applied to many partitioning problems [START_REF] Chambolle | A convex approach to minimal partitions[END_REF]. In the case of depth estimation in stereovision [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF], [START_REF] Chaux | Disparity estimation from multicomponent images under illumination variation[END_REF], we are given two multicomponent images tend to be similar, with the depth of the imaged object inversely proportional to n 2 -n 2 . Therefore, we fix the set of possible values of n 2 -n 2 as the integer range q -1 = 0, . . . , Q -1 and we consider the data fidelity term

L ∈ R N 1 ×N 2 ×C and R ∈ R N 1 ×N 2 ×C ,
∀n = (n 1 , n 2 ) ∈ Ω η (q) n = C c=1 | L n 1 ,n 2 ,c -R n 1 ,n 2 -q+1,c | p , (14) 
where an usual choice for p is 1 or 2. Finally, the estimated disparity map is obtained from

Θ as M = Q q=1 (q -1) θ (q-1) -θ (q) . (15) 

B. Algorithmic Strategies

In order to estimate Θ, we need a generic algorithmic scheme able to deal with non-smooth functions (hard constraints and 1, 2 -norm), with a number of functions to minimize greater than two, and with the presence of linear operators (due to the presence of DH q ). Thus, we adopt the Chambolle-Pock primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]. We recall below the form of this algorithm in a general setting, which consists in finding a

minimizer Θ of R-1 r =1 f r (L r Θ) + f R (Θ)
where the L r : H → H r (resp. L * r : H r → H) are linear operators (resp. their adjoints) and the functions belong to Γ 0 (H) or Γ 0 (H r ). We assume an upper bound K of the operator norm

R-1 r =1 L * r L r is known.
In the next Section, we evaluate the impact of three strategies with different levels of splitting:

• Full splitting -The first strategy provides a splitting in R = 4 functions:

               f 1 (Ξ) = λ Q q=1 Ξ 2, 1 and L 1 = DH q , f 2 (Θ) = ι E 1 (Θ) and L 2 = Id, f 3 (Θ) = ι E 2 (Θ) and L 3 = Id, f 4 (Θ) = Q -1 q=1 α (q) , θ (q) + ι [0,1] Q ×Ω (Θ), (16) 
where E 1 and E 2 are defined so as to avoid overlapping variables: E 1 = {Θ ∈ R Q ×Ω : θ (1) ≥ θ (2) , θ (3) ≥ θ (4) , . . .} and E 2 = {Θ ∈ R Q ×Ω : θ (2) ≥ θ (3) , θ (4) ≥ θ (5) , . . .}. We

Algorithm 1 Chambolle-Pock Proximal Splitting Algorithm

Require: Q ≥ 2, (α (q) ) 1≤q ≤Q -1 , λ > 0.

1: Choose the parameter τ > 0. Set σ = 1/(Kτ ).

2: Initialize Θ [0] ∈ H. 3: Initialize Λ [0]
r ∈ H i for every r ∈ {1, . . . , R -1}. 4: for i = 0, 1, . . . do 5:

Θ [i+1] = prox τ f R (Θ [i] -τ R-1 r =1 L * r Λ [i] r ) 6:
for r = 1, . . . , R -

Λ

[i+1] r = prox σ f * r (Λ [i] r + σ L r (2Θ [i+1] -Θ [i] )) 8:
end for 9: end for Ensure: The sequence (Θ [i] ) i ∈N converges to a solution Θ.

remark that E = E 1 ∩ E 2 and that ι E = ι E 1 + ι E 2 .
The proximity operators of ι E 1 , ι E 2 , f 1 and f 4 have simple closed-form expressions. K = 4 + 1 + 1 = 6.

• Intermediate splitting -The second strategy consists in splitting as follows:

           f 1 (Ξ) = λ Q q=1 Ξ 2, 1 and L 1 = DH q , f 2 (Θ) = ι E (Θ) and L 2 = Id, f 3 (Θ) = Q -1 q=1 α (q) , θ (q) + ι [0,1] Q ×Ω (Θ). (17) 
The proximity operator of f 2 , which is the projection onto E, can be computed by the exact and fast PAVA algorithm, applied pixelwise, with complexity O(N 1 N 2 Q) [START_REF] Ayer | An empirical distribution function for sampling with incomplete information[END_REF]. K = 4 + 1 = 5.

• Proposed minimal splitting: The last strategy is:

     f 1 (Ξ) = λ Q q=1 Ξ 2, 1 and L 1 = DH q , f 2 (Θ) = Q -1 q=1 α (q) , θ (q) +ι [0,1] Q ×Ω ∩E (Θ). ( 18 
)
This solution is made possible by Proposition II.2. Indeed, the proximity operator of

ι [0,1] Q ×Ω ∩E = ι E + ι [0,1] Q ×Ω is the projection onto E followed by the projection onto [0, 1] Q ×Ω . K = 4.

C. Experiments

We apply the depth estimation procedure to two image pairs 'Teddy' and 'Corridor' of the classical 2003 Middleburry database [START_REF] Scharstein | High-accuracy stereo depth maps using structured light[END_REF], whose sizes are

N 1 × N 2 × C = 375 × 450 × 3 and N 1 × N 2 × C = 128 × 128 × 1.
The original images were corrupted by additive white Gaussian noise of standard deviation 10. These left and right images L and R are shown in Figure 1. We set Q = 50 (resp. Q = 20), λ = 150 (resp. λ = 50), as these values lead to the best results. Note that the value of Q can be deduced from the translation of the foreground items on the noisy data. The methods were implemented in MATLAB code, which was run on a Apple Mac Pro desktop computer with a 2x2.4GHz Quad-Core Intel Xeon CPU and 16GB RAM. We show in Figure 2 the influence of the parameter τ on the objective value and on the distance to the convex set E, or E 1 and E 2 , along the iterations on 'Teddy' dataset. For this, the solution Θ was computed with a very large number of iterations of the proposed method with τ = 0.005. We can observe that with the full splitting and intermediate splitting, the constraints take time to be satisfied, whereas with the proposed minimal splitting, the constraint is satisfied at every iteration. For all three methods, the value τ = 0.005 yields the fastest convergence. Similar results have been observed for 'Corridor' dataset.

In Figure 3, we show the estimated map and the evolution of the objective function with respect to computation time. We observe that, for both datasets, the proposed minimal splitting is the fastest. This demonstrates the interest of avoiding unnecessary splitting whenever possible.

V. A -P P II.2

Let ∈ R Ω . We set z = prox ( ), x = prox h (z). According to the subdifferential characterization of the proximity operator, there exists u m,m ∈ ∂σ C m,m (z mzm ), for every (m, m ) ∈ ϒ, such that, for every n ∈ Ω,

           0 ∈ zn -n - m : (n,m )∈ϒ u n,m + m : (m,n)∈ϒ u m,n , 0 ∈ xn -zn + ∂h 0 (x n ) . ( 19 
) For t < 0, ∂σ C m,m (t) is {a m,m } if a m,m is real, ∅ else; for t > 0, ∂σ C m,m (t) is {b m,m } if b m,m is real, ∅ else. Moreover, ∂σ C m,m (0) = C m,m .
Then we can remark that the proximity operator of a function of Γ 0 (R) is a nondecreasing function; therefore, for every (m, m ) ∈ ϒ, Full splitting: d E 1 (Θ [i] )

         if zm -zm > 0 then xm -xm ≥ 0, if zm -zm < 0 then xm -xm ≤ 0, if zm -zm = 0 then xm -xm = 0. (20) 
Full splitting: d E 2 (Θ [i] ) This is exactly the subdifferential characterization of prox +h applied to , so that x = prox +h ( ). R
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 3 Fig. 3. First row: results for "Teddy" dataset. Second row: results for "Corridor dataset". Left: estimated disparity map. Right: convergence behavior with respect to computation time for τ = 0.005.