
HAL Id: hal-01570182
https://hal.science/hal-01570182v1

Preprint submitted on 28 Jul 2017 (v1), last revised 31 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proximity Operator of a Sum of Functions; Application
to Depth Map Estimation

Nelly Pustelnik, Laurent Condat

To cite this version:
Nelly Pustelnik, Laurent Condat. Proximity Operator of a Sum of Functions; Application to Depth
Map Estimation. 2017. �hal-01570182v1�

https://hal.science/hal-01570182v1
https://hal.archives-ouvertes.fr


1

Proximity Operator of a Sum of Functions;
Application to Depth Map Estimation

Nelly Pustelnik and Laurent Condat

July 27, 2017

Abstract

Proximal splitting algorithms for convex optimization are largely used in signal and image

processing. They make possible to call the individual proximity operators of an arbitrary

number of functions, whose sum is to be minimized. But the larger this number, the slower

the convergence. In this work, we show how to compute the proximity operator of a sum of

two functions, for a certain type of functions operating on objects having a graph structure.

The gain provided by avoiding unnecessary splitting is illustrated by an application to depth

map estimation.

Index Terms

Proximal algorithms, proximity operator, splitting, convex optimization, support function,

disparity map estimation.

I. Introduction

Proximal algorithms – Optimization is a key step in solving data processing problems

formulated as the minimization of an energy, like inverse problems or learning problems.

E�cient convex optimization procedures were restricted to smooth cost functions for several

decades, until the development of proximal methods, so-called because they make use of

the proximity operator of the functions. This class of algorithms, which are well suited for

a broad range of nonsmooth large-scale problems [1]–[3], includes the forward–backward

algorithm (and its derivatives ISTA, FISTA. . . ), the Douglas–Rachford algorithm (related to

ADMM, PPXA and PPXA+ [4]), and several recent primal–dual algorithms [5]–[9].

Splitting: pros and cons – Let us consider a general template problem:

minimize
x ∈H

R∑

r=1

fr (x) +

S∑

s=1

дs (x), (1)

where H is a real Hilbert space, the functions (fr )1≤r ≤R belong to Γ0(H), the set of proper,

convex, lower semicontinuous functions from H to ]−∞,+∞] [1], and the functions (дs )1≤s≤S
in Γ0(H) are differentiable, with Lipschitz-continuous gradient. The computation of the gradi-

ent of the sum of functions дs , which is the sum of their gradients, does not raise any di�culty.
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By contrast, the proximity operator¹ of the sum of functions fr is generally intractable, so that

the proximity operators of the individual functions fr are called, instead. The flexibility of the

splitting algorithms allows to do so, but at the price of a slower convergence and increased

memory usage. It is then preferable to compute the proximity operator of a sum of functions,

whenever possible.

Proximity operator of a sum of two functions – Several works have been dedicated to the

computation of the proximity operator of a sum of two functions. For instance, we can refer

to [11], [12] for iterative solutions and the convergence guarantees when inner iterations are

required. In this work, we focus on su�cient conditions for the following equality to hold:

proxд+h = proxh ◦ proxд , (2)

where ◦ denotes the mapping composition. This desirable property is not satisfied, in general.

Given a closed convex set C, we define its indicator function ιC as the convex function which

maps x to {0 if x ∈ C, +∞ else}. Then if C is reduced to a singleton or is a non-empty subset

of R, the property (2) holds, with h = ιC and any д ∈ Γ0(R). By extension, it also holds if

C and д are separable in the same basis of H [11]. A more general su�cient condition is

∂д(x) ⊂ ∂д(proxh(x)), for every x ∈ H [13]. When H= R, д is the support function σC of a

closed, convex, non-empty subset C of H [1], and h is differentiable at 0 with h′(0) = 0, the

equality (2) holds as well [14, Proposition 3.6].

Contribution – A new result is derived in Section II and particular cases of this result are

related to the signal processing literature in Section III. The interest of our result compared

to splitting is illustrated and discussed by an application to depth estimation in Section IV.

II. New Result

We place ourselves in a real Hilbert space H = R
Ω of objects x = (xn)n∈Ω , with real

elements xn and domain Ω. For instance, 1-D signals of size N correspond to Ω = {1, . . . ,N };

2-D images or matrices of size N1 × N2 correspond to Ω = {1, . . . ,N1} × {1, . . . ,N2}, with

n = (n1,n2) a 2-D index. We view x ∈ H as a graph with values xn at its edges. Let ϒ be a

subset of Ω2, consisting of pairs of indexes, which can be viewed as the edges of the graph.

Let д and h be two functions of Γ0(H), which penalize the edges and the vertices of the graph,

respectively. More precisely, we suppose that the following holds.

Assumption II.1 (i) h is separable, with
�
∀x = (xn)n∈Ω

�
h(x) =

∑

n∈Ω

h0(xn), (3)

for some function h0 ∈ Γ0(R).
(ii) д has the following form:

�
∀x = (xn)n∈Ω

�
д(x) =

∑

(m,m′)∈ϒ

σCm,m′
(xm′ − xm), (4)

¹The proximity operator proxf of a function f maps an object y to the unique minimizer over x of ‖x −y‖2/2+
f (x) [1], [10].
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where σCm,m′
: t ∈ R 7→ sup{tp,p ∈ Cm,m′} is the support function of a closed real interval

Cm,m′ , such that infCm,m′ = am,m′ and supCm,m′ = bm,m′ , for some am,m′ ∈ R ∪ {−∞}
and bm,m′ ∈ R ∪ {+∞}, with am,m′ ≤ bm,m′ . Thus, we have

(∀t ∈ R) σCm,m′
(t) =



am,m′t if t < 0,

0 if t = 0,

bm,m′t if t > 0,

(5)

with the convention (−∞)t = +∞ and (+∞)t = +∞.

It is straightforward to show that д and h belong to Γ0(H).

Proposition II.2 Under Assumption II.1, it holds that

proxд+h = proxh ◦ proxд . (6)

The proof is derived in Appendix V. This proposition extends several results of the literature,

which are summarized in the next section.

III. Interest in Signal/Image Processing

The kind of functions considered in the previous Section are often encountered in sig-

nal/image processing applications. Here are some examples having practical interest.

Example III.1 In the 1-D case, with Ω = {1, . . . ,N } and ϒ = {(1,2),(2,3), . . . ,(N − 1,N )},
the weighted total variation of x corresponds to our setting with bn,n+1 = −an,n+1 = ωn ≥ 0;

that is,

�
∀x ∈ RΩ

�
д(x) =

N−1∑

n=1

ωn |xn+1 − xn |. (7)

There exist very e�cient algorithms to compute the proximity operator of this specific func-

tion [15], [16]. Its extension to 2-D images is known as the anisotropic total variation [17]

and its proximity operator can be computed e�ciently using graph cuts [18]

Example III.2 The fused lasso [19] corresponds to the case where д is defined as in Example III.1

and h is an ℓ1-norm; that is, in (3), h0 = λ| · |, for some λ > 0.

The proximity operator of the fused lasso is obtained by applying the proximity operator

of the total variation, followed by soft-thresholding, which is the proximity operator of the

ℓ1-norm. This particular case of Proposition II.2 was already known [20].

Example III.3 In the 1-D case, with Ω = {1, . . . ,N } and ϒ = {(1,2),(2,3), . . . ,(N − 1,N )},
isotonic regression corresponds to

д(x) = ιE (x), with E = {x ∈ RN : x1 ≥ . . . ≥ xN }. (8)

This is a particular case of our setting, with an,n+1 = 0 and bn,n+1 = +∞.

The Pool Adjacent Violators Algorithm (PAVA) [21] allows us to compute the proximity

operator of д with complexity O(N ).
When, in addition, h0 = ι[0,1], the property of Proposition II.2 was already known [22]. It

was also shown for signals defined on a tree, instead of a 1-D chain [23].
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IV. Application to Depth Estimation in Stereovision

We now focus on a practical application of Proposition II.2. We consider the problem of

depth map estimation for noisy stereovision images. An e�cient strategy for this purpose

has been designed in [24] and involves the same functions as in Example III.3. In this

section, we first detail the convex optimization problem to solve and we provide several

strategies with more or less splitting, in order to evaluate the impact of our theoretical result

in Proposition II.2.

A. Minimal-Partition Type Formulation

Given a pair of images with domain Ω = {1, . . . ,N1} × {1, . . . ,N2}, we want to estimate

the depth of the scene at every pixel n ∈ Ω. A variational formulation of depth reconstruction

consists in estimating a partition (Ω(q))1≤q≤Q of Ω, such that the depth is constant in each

region Ω
(q) [24], [25]. Spatial homogeneity is obtained by penalizing the perimeter of the

regions. Given a set of images η(q) ∈ R
Ω, q = 1, . . . ,Q, so that η

(q)
n is the cost of assigning

the pixel n to the region Ω
(q), the minimization problem reads

minimize
Ω(1)

, ...,Ω(Q )

Q∑

q=1

∑

n∈Ω(q)

η
(q)
n + λ

Q∑

q=1

Per(Ω(q))

s.t.


⋃Q
q=1 Ω

(q)
= Ω,

(∀q , p), Ω(q) ∩ Ω
(p)
= ∅,

(9)

where Per(·) denotes the perimeter and λ > 0 controls the amount of spatial regularization.

A convex relaxation of this nonconvex problem is [24]:

minimize
Θ=(θ (q))1≤q≤Q−1

Q∑

q=1

∑

n∈Ω

�
θ
(q−1)
n − θ

(q)
n

�
η
(q)
n

+ λ

Q∑

q=1

TV(θ (q−1)
− θ (q))

s.t. θ (0)
≥ θ (1)

≥ . . . ≥ θ (Q−1)
≥ θ (Q), (10)

where θ (q)
∈ R

Ω, θ (0)
≡ 1, θ (Q)

≡ 0, the inequalities over the θ (q) are meant pixelwise,

and TV denotes some form of the 2-D discrete total variation [17]. In this paper, we use the

classical isotropic total variation [17]; that is, for every u ∈ RΩ,

TV(u) =

N1∑

n1=1

N2∑

n2=1

√

1
8
(un1+1,n2

− un1,n2
)2

+
1
8
(un1,n2+1 − un1,n2

)2

= ‖Du‖2,1, (11)

where ‖ · ‖2,1 is the ℓ1,2 norm and D is the linear operator taking horizontal and vertical finite

differences, scaled so that ‖D‖ ≤ 1. Hence, the minimization problem (10) can be rewritten
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as

Θ̂ ∈ Argmin
Θ∈[0,1]Q×Ω∩E

Q−1∑

q=1

〈α (q),θ (q)〉 + λ

Q∑

q=1

‖DHqΘ‖2,1

︸                                     ︷︷                                     ︸
F(Θ)

, (12)

where α (q)
= η(q+1) − η(q), Hq : R

Q×Ω → R
Ω : Θ 7→ θ (q−1)

− θ (q), and E = {Θ ∈ R
Q×Ω :

θ (1)
≥ . . . ≥ θ (Q−1)}.

This generic formulation can be applied to many partitioning problems [24]. In the case of

depth estimation in stereovision, we are given two multicomponent images yL ∈ R
N1×N2×C

and yR ∈ RN1×N2×C , corresponding to the views of the same scene by the left and right eyes.

C = 3 in the case of color images. The principle used for depth estimation is that the pixel

values yLn1,n2
and yR

n1,n
′
2

tend to be similar, with the depth of the imaged object inversely

proportional to n2 − n
′
2. Therefore, we fix the set of possible values of n2 − n

′
2 as the integer

range q − 1 = 0, . . . ,Q − 1 and we consider the data fidelity term

�
∀n = (n1,n2) ∈ Ω

�
η
(q)
n =

C∑

c=1

|yLn1,n2,c
− yRn1,n2−q+1,c

|p , (13)

where an usual choice for p is 1 or 2. Finally, the estimated disparity map is obtained from

Θ̂ as

M̂=

Q∑

q=1

(q − 1)
�
θ̂
(q−1)

− θ̂
(q)�
. (14)

B. Algorithmic Strategies

In order to estimate Θ̂, we need a generic algorithmic scheme able to deal with non-smooth

functions (hard constraints and ℓ1,2-norm), with a number of functions to minimize greater

than two, and with the presence of linear operators (due to the presence of DHq). Thus, we

adopt the Chambolle–Pock primal–dual algorithm [5], [7].

We recall below the form of this algorithm in a general setting, which consists in finding

a minimizer Θ̂ of
∑R−1
r=1 fr (LrΘ) + fR(Θ) where the Lr : H → Hr are linear operators and

the functions belong to Γ0(H) or Γ0(Hr ). We assume an upper bound K of the operator norm

‖
∑R−1

r=1 L
∗
rLr ‖ is known.

In the next Section, we evaluate the impact of three strategies with different levels of

splitting:

• Full splitting – The first strategy provides a splitting in R = 4 functions:



f1(Ξ) = λ
∑Q
q=1‖Ξ‖2,1 and L1 = DHq ,

f2(Θ) = ιE1
(Θ) and L2 = Id,

f3(Θ) = ιE2
(Θ) and L3 = Id,

f4(Θ) =
∑Q−1
q=1 〈α

(q),θ (q)〉 + ι[0,1]Q×Ω(Θ),

(15)

where E1 and E2 are defined so as to avoid overlapping variables: E1 = {Θ ∈ R
Q×Ω :

θ (1)
≥ θ (2)

, θ (3)
≥ θ (4)

, . . .} and E2 = {Θ ∈ R
Q×Ω : θ (2)

≥ θ (3)
, θ (4)

≥ θ (5)
, . . .}. We
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Algorithm 1 Chambolle–Pock Proximal Splitting Algorithm

Require: Q ≥ 2, (α (q))1≤q≤Q−1, λ > 0.

1: Choose the parameter τ > 0. Set σ = 1/(Kτ ).
2: Initialize Θ

[0] ∈ H.

3: Initialize Λ
[0]
r ∈ Hi for every r ∈ {1, . . . ,R − 1}.

4: for i = 0,1, . . . do

5: Θ
[i+1]
= proxτ fR (Θ

[i] − τ
∑R−1
r=1 L

∗
rΛ

[i]
r )

6: for r = 1, . . . ,R − 1

7: Λ
[i+1]
r = proxσ f ∗r (Λ

[i]
r + σLr (2Θ

[i+1] − Θ[i]))
8: end for

9: end for

Ensure: The sequence (Θ[i])i ∈N converges to a solution Θ̂.

remark that E = E1 ∩ E2 and that ιE = ιE1
+ ιE2

. The proximity operators of ιE1
, ιE2

, f1
and f4 have simple closed-form expressions. K = 4 + 1 + 1 = 6.

• Intermediate splitting – The second strategy consists in splitting as follows:



f1(Ξ) = λ
∑Q
q=1‖Ξ‖2,1 and L1 = DHq ,

f2(Θ) = ιE (Θ) and L2 = Id,

f3(Θ) =
∑Q−1
q=1 〈α

(q),θ (q)〉 + ι[0,1]Q×Ω(Θ).

(16)

The proximity operator of f2, which is the projection onto E, can be computed by the

exact and fast PAVA algorithm, applied pixelwise, with complexity O(N1N2Q) [21]. K =
4 + 1 = 5.

• Proposed minimal splitting: The last strategy is:



f1(Ξ) = λ
∑Q

q=1‖Ξ‖2,1 and L1 = DHq ,

f2(Θ) =
∑Q−1
q=1 〈α

(q),θ (q)〉+ι[0,1]Q×Ω∩E (Θ).
(17)

This solution is made possible by Proposition II.2. Indeed, the proximity operator of

ι[0,1]Q×Ω∩E = ιE + ι[0,1]Q×Ω is the projection onto E followed by the projection onto

[0,1]Q×Ω . K = 4.

C. Experiments

We apply the depth estimation procedure to the image pair ‘Teddy’ of the classical 2003

Middleburry database [26]. The original images were corrupted by additive white Gaussian

noise of standard deviation 10. These left and right images yL and yR are shown in Figure 1.

We set Q = 50, λ = 150, as these values lead to the best results. The methods were

implemented in MATLAB code, which was run on a Apple Mac Pro desktop computer with a

2x2.4GHz Quad-Core Intel Xeon CPU and 16GB RAM. We show in Figure 2 the influence of

the parameter τ on the objective value and on the distance to the convex set E, or E1 and

E2, along the iterations. For this, the solution Θ̂ was computed with a very large number of
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Fig. 1. First row: left and right images yL and yR used for the depth estimation experiment. Second row: zoom
in on the same part of these two images, to show the horizontal shift and the presence of noise.

iterations of the proposed method with τ = 0.005. We can observe that with the full splitting

and intermediate splitting, the constraints take time to be satisfied, whereas with the proposed

minimal splitting, the constraint is satisfied at every iteration. For all three methods, the value

τ = 0.005 yields the fastest convergence.

In Figure 3, we show the estimated map and the evolution of the objective function with

respect to computation time. We observe that the proposed minimal splitting is the fastest.

This demonstrates the interest of avoiding unnecessary splitting whenever possible.

V. Appendix – Proof of Proposition II.2

Let y ∈ RΩ. We set z̃ = proxд(y), x̃ = proxh(z̃). According to the subdifferential characteri-

zation of the proximity operator, there exists um,m′ ∈ ∂σCm,m′
(z̃m′−z̃m), for every (m,m

′) ∈ ϒ,
such that, for every n ∈ Ω,



0 ∈ z̃n − yn −
∑

m′ :
(n,m′)∈ϒ

un,m′ +
∑

m :
(m,n)∈ϒ

um,n ,

0 ∈ x̃n − z̃n + ∂h0(x̃n) .

(18)

For t < 0, ∂σCm,m′
(t) is {am,m′} if am,m′ is real, ∅ else; for t > 0, ∂σCm,m′

(t) is {bm,m′} if

bm,m′ is real, ∅ else. Moreover, ∂σCm,m′
(0) = Cm,m′ . Then we can remark that the proximity

operator of a function of Γ0(R) is a nondecreasing function; therefore, for every (m,m′) ∈ ϒ,



if z̃m′ − z̃m > 0 then x̃m′ − x̃m ≥ 0,

if z̃m′ − z̃m < 0 then x̃m′ − x̃m ≤ 0,

if z̃m′ − z̃m = 0 then x̃m′ − x̃m = 0.

(19)
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Fig. 3. Estimated disparity map (right) and convergence behavior with respect to computation time for τ = 0.005.

Hence, ∂σCm,m′
(z̃m′ − z̃m) ⊂ ∂σCm,m′

(x̃m′ − x̃m). Together with (18), this implies that there

exists um,m′ ∈ ∂σCm,m′
(x̃m′ − x̃m), for every (m,m′) ∈ ϒ, such that, for every n ∈ Ω,

0 = x̃n − yn −
∑

m′ :
(n,m′)∈ϒ

un,m′ +
∑

m :
(m,n)∈ϒ

um,n + ∂h0(x̃n). (20)
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This is exactly the subdifferential characterization of proxд+h applied to y, so that x̃ =
proxд+h(y).
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