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Criteria Comparison for Classifying Peatland Vegetation Types Using in situ Hyperspectral Measurements
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This study aims at evaluating three classes of methods to discriminate 13 peatland vegetation types using reflectance data. These vegetation types were empirically defined according to their composition, strata and biodiversity richness. On one hand, it is assumed that same vegetation type spectral signatures have similarities. Consequently they can be compared to a reference spectral database. To catch those similarities, several similarities criteria (related to distances (Euclidean distance, Manhattan distance, Canberra distance) or spectral shapes (Spectral Angle Mapper) or probabilistic behaviour (Spectral Information Divergence) and several mathematical transformations of spectral signatures enhancing absorption features (such as the first derivative or the second derivative, the normalized spectral signature, the continuum removal, the continuum removal derivative reflectance, the log transformation) were investigated. Furthermore those similarity measures were applied on spectral ranges which characterize specific biophysical properties. On the other hand, we suppose that specific biophysical properties/components may help to discriminate vegetation types applying supervised classification such as Random Forest (RF), Support Vector Machines (SVM), Regularized Logistic Regression (RLR), Partial Least Squares-Discriminant Analysis (PLS-DA). Biophysical components can be used in a local way considering vegetation spectral indices or in a global way considering spectral ranges and transformed spectral signatures as explained above. RLR classifier applied on spectral vegetation indices (training size = 25 %) was able to achieve 77.21 % overall accuracy in discriminating peatland vegetation types. It was also able to discriminate 83.95 % vegetation types considering specific spectral range [350-1350 nm], first derivative of spectral signatures and training size = 25 %. Conversely, similarity criterion was able to achieve 81.70 % overall accuracy using the Canberra distance computed on the full spectral range [350-2500 nm]. The results of this study suggest that RLR classifier and similarity criteria are promising to map the different vegetation types with high ecological values despite vegetation heterogeneity and mixture.

Introduction

Peatlands represent a diverse array of wetlands that accumulate partially decomposed organic material.

Whilst they may only cover a small proportion (∼ 3 %) of the Earth's land surface, these ecosystems are highly Submitted to Remote Sens., pages 1 -59 www.mdpi.com/journal/remotesensing important in terms of functional and ecological values. Indeed, undisturbed, global peatland systems act as net atmospheric carbon sinks, storing approximately a third of the world's soil organic carbon [START_REF] Gorham | Northern peatlands: role in the carbon cycle and probable responses to climatic warming[END_REF], the vast majority of which (450-547 GtC (Gigatons of Carbon)) is held in northern peatlands (those above 45 • N [START_REF] Yu | Global peatland dynamics since the Last Glacial Maximum[END_REF]).

From an ecological perspective, these environments also provide important habitats for a number of rare plant and animal species [START_REF] Rydin | The Biology of Peatlands[END_REF].

Traditionally, species discrimination for floristic mapping needs intensive field work, including taxonomical information and the visual estimation of percentage cover for each species which are costly and time-consuming and sometimes inapplicable due to their poor accessibility [START_REF] Kent | Vegetation Description and Analysis: A Practical Approach[END_REF]. Remote sensing is a technique that gathers data regularly about the earth's features. The main advantages that make remote sensing preferable to field-based methods in land cover classification, are that it has repeat coverage potential, allowing continuous monitoring, and its digital data can be easily integrated into a geographic information system (GIS) for more analysis which is less costly and less time-consuming [START_REF] Schmidt | Spectral discrimination of vegetation types in a coastal wetland[END_REF][START_REF] Adam | Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry[END_REF].

Historically, aerial photography was the first remote sensing method to be employed for mapping wetland vegetation [START_REF] Seher | Color aerial photos for marshland[END_REF]. Currently, a variety of remotely sensed images are available for mapping wetland vegetation thanks to of airborne and space-borne vectors with multi-spectral sensors or hyperspectral sensors which operate within the different optical spectrum [START_REF] Adam | Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review[END_REF].

Mapping and monitoring wetlands (and even though peatland) floristic diversity is really challenging.

Indeed, both temporal and spatial resolutions of remotely sensed imageries and in situ plant diversity and mixing contribute to the limitation of such techniques. Wetland plants are not as easily detectable as terrestrial plants since herbaceous wetland vegetations exhibits high spectral and spatial variabilities because of its steep environmental gradients [START_REF] Schmidt | Spectral discrimination of vegetation types in a coastal wetland[END_REF][START_REF] Adam | Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review[END_REF]. Besides, the reflectance spectra of wetland vegetation canopies are often very similar and can be combined with reflectance spectra of the underlying soil, hydrologic regime and atmospheric vapour [START_REF] Guyot | Optical properties of vegetation canopies[END_REF][START_REF] Yuan | Identification of the spectral characteristics of submerged plant Vallisneria spiralis[END_REF].

However, plant species have been successfully classified in estuarine [START_REF] Hestir | Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem[END_REF], palustrine [START_REF] Torbick | Characterizing field-level hyperspectral measurements for identifying wetland invasive plant species[END_REF] and riparian habitats [START_REF] Hamada | Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery[END_REF], as well in saltmarsh [START_REF] Schmidt | Spectral discrimination of vegetation types in a coastal wetland[END_REF], in mangrove [START_REF] Vaiphasa | A hyperspectral band selector for plant species discrimination[END_REF][START_REF] Jia | Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data[END_REF], in swamp [START_REF] Prospere | Plant species discrimination in a tropical wetland using in situ hyperspectral data[END_REF] but not in peatlands, to our knowledge.

Peatland mapping faces two great challenges at local and global scales due to their high environmental function (biodiversity hotspot, greenhouse gas fluxes, etc.): characterizing their internal diversity [START_REF] Adam | Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review[END_REF] and delineating their extent [START_REF] Krankina | Meeting the challenge of mapping peatlands with remotely sensed data[END_REF]. This study focuses on the first challenge for which only high -spectral or spatial -resolution imageries appear appropriate (see for instance [START_REF] Hubert-Moy | Etude de zones humides de fond de vallées à partir d'images hyperspectrales CASI: Application à un bassin versant de la région de Pleine-Fougères (Bretagne, France)[END_REF][START_REF] Thomas | Image classification of a northern peatland complex using spectral and plant community data[END_REF][START_REF] Knoth | Unmanned aerial vehicles as innovative remote sensing platforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs[END_REF]).

Plant species classification can benefit from several existing and recent techniques commonly used in remote sensing. Two main methods are applied for vegetation discrimination: the similarity measurement techniques and the supervised classification methods with sometimes application of a preliminary spectral band reduction technique. On one hand, similarity measures enable to discriminate similar classes from a set of spectra, extracted from images or acquired on the field. Some spectral measures, such as the Spectral Angle Mapper (SAM) are related to the difference of the spectral shape (e.g. [START_REF] Yagoub | Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data[END_REF] identified forests of the Liege oaks from other forests, grain crops and steppes using the multispectral Advanced Very High Resolution Radiometer (AVHRR) with five bands from 580 nm to 1250 nm, 1 km spatial resolution (Overall Accuracy (OA) = 94.10 %, κ = 0.93); [START_REF] Bahri | Essai de cartographie des espèces forestières dominantes dans le moyen atlas (Maroc) à l'aide des données Aster[END_REF] discriminated tree species using the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with 9 spectral bands from 520 nm to 2430 nm and a spatial resolution of 15 m or 30 m (κ = 0.66)). Other spectral measures, such as the Spectral Information Divergence (SID) are related to probabilistic behaviour (e.g. [START_REF] Sobhan | Species discrimination from a hyperspectral perspective[END_REF] classified different tree species at leaf and vegetation cover scales using the hyperspectral HyMap sensor: 126 spectral bands from 436 nm to 2485 nm and a spatial resolution of 4 m (OA = 91.10 %, κ = 0.87)). On the other hand, the supervised classification methods may contribute as well to discriminate (group of) spectral signatures for plant species discrimination. The Linear Discriminant Analysis (LDA) is a method assuming that independent variables are normally distributed and which attempts to look for linear combination of variables to model the difference between the classes of the data (e.g. [START_REF] Clark | Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[END_REF] succeeded in classifying different tree species at leaf and vegetation cover scales using the HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor with 210 spectral bands from 400 nm to 2500 nm, 1.6 m spatial resolution (OA = 86 % using an object-based approach)). The Random Forest is an ensemble learning method based on the construction of multiple decision trees (e.g. [START_REF] Lawrence | Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)[END_REF] succeeded in mapping invasive plants using the hyperspectral Probe-1 sensor: 128 bands from 450 nm to 2507 nm, 5 m spatial resolution (OA = 86 % for the leafy spurge classification)). The Support Vector Machines (SVM) is a classifier that looks for the best separating hyperplane (e.g. [START_REF] Dalponte | Tree species classification in boreal forests with hyperspectral data[END_REF] succeeded in classifying different tree species in boreal forest using HySpex VNIR-1600-instrument: 160 spectral bands ranging from 410 nm to 990 nm , with a spatial resolution of 0.4 m (OA = 79.2 %); [START_REF] Vyas | Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation[END_REF] classified successfully tropical vegetation using the Hyperion (EO-1) sensor (OA = 80 %)).

The Regularized Logistic Regression (RLR) is the combination of a linear model (logistic regression) and a regularization term. It is usually used for feature selection (e.g. [START_REF] Pant | Logistic regression-based spectral band selection for tree species classification: effects of spatial scale and balance in training samples[END_REF] applied it to reduce the 64 spectral bands from the hyperspectral AisaEAGLE II sensor to classify tree species in boreal forest using SVM; [START_REF] Pal | Multinomial logistic regression-based feature selection for hyperspectral data[END_REF] applied it for reducing the 79 bands from the hyperspectral Digital Airborne Imaging Spectrometer (DAIS) sensor and the 220 bands from the hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor to classify different land covers using SVM) is investigated in this paper as a classifier.

Discriminating and classifying plant species can be done. Firstly, using different techniques hyperspectral measurements thanks to a portable spectroradiometer (FieldSpec Pro FR, Analytical Spectral Devices -ASD) which ranges on the reflective domain ([350-2500 nm] with a spectral resolution of 3 nm in Visible and Near InfraRed (VNIR) and approximatively 10 nm in the ShortWave InfraRed (SWIR)) either on laboratory [START_REF] Vaiphasa | A hyperspectral band selector for plant species discrimination[END_REF] or immediately after the leaf was cut using the leaf clip accessory [START_REF] Prospere | Plant species discrimination in a tropical wetland using in situ hyperspectral data[END_REF]. This can be an indicator of the ability of discriminating plant species using specific wavelengths or evaluating the performance of a classifier. Then, the wetlands heterogeneity mixing vegetation types can be catched still using a portable spectroradiometer: [START_REF] Torbick | Characterizing field-level hyperspectral measurements for identifying wetland invasive plant species[END_REF] used the ASD spectroradiometer, Ground Field of View (GFOV) = 0.43 m; [START_REF] Schmidt | Spectral discrimination of vegetation types in a coastal wetland[END_REF] used the GER 3700 (Geophysical and Environmental Research Corporation) which ranges from 350 nm to 2509 nm) with a spectral resolution of 2 nm below 1000 nm and from 6 to 10 nm beyond 1000 nm, GFOV = 0.13 m. Secondly, with airborne imageries, hyperspectral sensors (SOC-700: 120 spectral bands between 394 and 890 nm with a 4 nm bandwidth and a spatial resolution of 0.5 m and a spatial resolution of 3 m [START_REF] Hamada | Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery[END_REF]; HyMap: 128 bands in the visible and near infrared (VNIR: 0.45-1.50 µm with a 10 nm bandwidth) through the shortwave infrared (SWIR: 1.50-2.50 µm with a 15-20 nm bandwidth [START_REF] Hestir | Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem[END_REF]). Thirdly, with spaceborne imageries using hyperspectral sensors (Hyperion: 242 spectral bands from 357 to 2756 nm with a spectral interval of 10 nm and a spatial resolution of 30 m [START_REF] Jia | Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data[END_REF]) or multispectral sensors (SPOT-5: 4 bands with 10 m resolution [START_REF] Jia | Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data[END_REF]) can be used to map wetlands.

This study aims at inventorying and evaluating the performance of discrimination techniques for peatland habitats based on in situ spectra. These habitats are characterized by more or less homogeneous vegetation mixing and have been chosen because of their ecological values (i.e. biodiversity). As defined by [START_REF] Merot | A Method for Improving the Management of Controversial Wetland[END_REF], mapping these habitats is therefore important to identify potential and/or effective areas with (at least) a floristic biodiversity function. For instance, we do not aim at detecting Drosera rotundifolia but at mapping the habitat favorable to this species (Sphagnum ...). Similarity measures and classifiers were applied on spectral signatures and some of their transformations (first and second derivatives, continuum removal, first derivative of continuum removal, normalized spectral signatures, log transformation). These transformations have been chosen because they enhance biophysical components which may help to distinguish plant species. These techniques were applied on different spectral ranges that either characterize specific biophysical components [START_REF] Asner | Biophysical and biochemical sources of variability in canopy reflectance[END_REF]. Classifiers were applied on spectral vegetation indices, characterizing specific biophysical components such as chlorophyll, pigments, nitrogen, cellulose, water.

This paper is organized as follows. After presenting the study site located in the Pyrenees (France) and associated data collection in Section 2, the methodology is detailed in Section 3. Then Section 4 presents and discussed the results of the different classifications that are suitable for distinguishing vegetation types. Finally, in Section 5, the conclusion summarizes main results and some perspectives are arisen for applying these techniques to hyperspectral imageries.

Material

Study site

The study site is the Bernadouze peatbog (Latitude: 42 • 47 N , Longitude: 1 • 24 E ; approximatively 2 ha), which is part of Human-Nature Observatory "Haut-Vicdessos" located in Ariège (Pyrénées, France) (Figure 1)

and supported by the French CNRS and the LabEx DRIIHM. It is a long term monitored study site where hydrological, climatological, botanical, archeological, remotely sensed surveys are regularly conducted.

Field data collection

In this study, thirteen vegetation units with ecological values and potentials (i.e. biodiversity) have been identified in the Bernadouze peatbog. These units are named hereafter "vegetation types" according to the dominant land cover type or to the potential development of interesting plant species which may have ecological values (Table 1). For each type, several locations have been surveyed to characterize their plant species composition (Table A.1).

For all these 32 sample locations (Figure 1 2. To measure the reflectance of a sample plot (ρ) the reflectance of a white reference (ρ ref ) is required. This latter was obtained with a Spectralon (Labsphere, North Sutton, NH, USA) panel. Finally, after dark current correction, ρ is given by: 

ρ = L sam L ref ρ ref , (1) 
where L sam is the measured radiance from the sample plot and L ref is the measured radiance from the white reference.

The sensor was positioned approximatively 1 m over the target with a 10 • field of view. Consequently the ground spatial resolution is 0.18 m. The ASD was configured to collect 20 samples and automatically average in order to provide a single mean spectral measurement. Then a total of 7 to 53 field spectroradiometer measurements, i.e. spectral signatures, depending on vegetation type was taken. 

Data preprocessing

Some spectral bands (1350 nm to 1450 nm, 1810 nm to 1940 nm and 2400 nm to 2500 nm) have been removed due to a small signal-to-noise ratio resulting from strong atmospheric absorption mainly due to the presence of water vapour. More precisely, if the atmospheric transmittance value of the U.S. Standard profile was lower than 0.8 for a given wavelength, this wavelength was not taken into account in the analyse. Thus, each measured spectrum has been smoothed using a Savitzky-Golay filter [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF] for reducing the noise. Figure 2 graphs the mean spectral reflectance of each vegetation type and the atmospheric transmittance. For the sake of clarity, standard deviation of each vegetation type is not printed on Figure 2 but can be seen in Appendix B.

Method description

The flowchart to evaluate the potential of hyperspectral data to discriminate and classify wetland vegetation types is given in Figure 3. More precisely, three classes of methods have been investigated and compared: • similarity measures calculated on spectral reflectance,

• supervised classification based on "local" information (spectral vegetation indices),

• supervised classification based on "global" information (spectral ranges). Indeed, spectral matching can be used to discriminate different vegetation types, because it is assumed that the spectral signatures of a given vegetation type must have similarities. To catch those similarities, several mathematical transformations -enhancing absorption features are applied on spectral signatures -(Section 3.1) and several similarity criteria -related to distances or spectral shapes or probabilistic behaviour -(Section 3.2) are investigated. Furthermore those similarity measures are applied on several spectral ranges which characterize specific biophysical properties (Section 3.5) and compared to a reference spectral database using relative spectral discriminatory probability (Section 3.3).

On the other hand as it may be difficult to have a spectral reference database, different supervised classifiers are used (Section 3.6). Besides, we assume that specific biophysical properties/components may help discriminating vegetation types. Biophysical components can be used in a local way considering spectral vegetation indices (Section 3.4) or in a global way considering spectral ranges and transformed spectral signatures as explained above.

To evaluate performance of similarity measures and supervised classification, the overall accuracy and F1-score are used (Section 3.7).

Transformed spectral signatures

As vegetation types are composed by a mix of various plant species that can be found in various vegetation types, different transformations are used (Table 3). Brightness-normalized spectral signature and second derivative are relatively insensible to variations in illumination intensity causes by changes in sun angle [START_REF] Feilhauer | Brightness-normalized partial least squares regression for hyperspectral data[END_REF][START_REF] Tsai | Derivative analysis of hyperspectral data[END_REF].

Other transformations (first derivative, second derivative, log transformation, Continuum Removal, Continuum Removed Derivative Reflectance (CRDR)) are linked to absorption features that may differ from one vegetation type to another, depending on the floristic composition. 

i,λ = ρ i,λ L ∑ λ=1 ρ 2 i,λ 1 2 
, ∀λ ∈ [1, ..., L]. [START_REF] Feilhauer | Brightness-normalized partial least squares regression for hyperspectral data[END_REF] First derivative dρ dλ i ρ λjρ λi ∆λ , where ∆λ is the separation between adjacent bands, ∆λ = λ jλ i and

λ j > λ i [34] Second derivative d 2 ρ dλ 2 j = d dλ dρ dλ j ρ λi -2ρ λj + ρ λk (∆λ) 2
, where

∆λ = λ k -λ j = λ j -λ i , λ k > λ j > λ i .
[34] log transformation or pseudo absorbance ρ i,λ = log 1

ρ i,λ , ∀λ ∈ [1, ..., L]. [35] Continuum Removal CR λ = ρ λ C λ
, where C is a convex hull fitting over the top of the spectrum to connect local spectrum maxima. [START_REF] Clark | Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications[END_REF][START_REF] Kokaly | Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[END_REF] Continuum removal derivative reflectance dCR λ dλ i [START_REF] Mutanga | Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[END_REF] L is the number of wavelengths.

Similarity measures

Let ρ i be a spectral signature, ρ i,λ its reflectance at wavelength λ and [1, ..., L] its spectral range. Several criteria have been used (Table 4). Some criteria characterize the difference between reflectance levels (like the distances) and other ones are related to the difference of the spectral shape (e.g. SAM) and other ones are related to probabilistic behaviour (e.g. SID, ...). Table 4 inventories main similarity measurement techniques described in the literature. Canberra distance

D Canberra (ρ i , ρ j ) = L ∑ λ=1 |ρ i,λ -ρ j,λ | |ρ i,λ | + |ρ j,λ | .
It is a weighted version of the Manhattan distance [START_REF] Lance | Computer programs for hierarchical polythetic classification ("similarity analyses[END_REF] Spectral Angle Mapper (SAM)

SAM(ρ i , ρ j ) = cos -1        L ∑ λ=1 ρ i,λ ρ j,λ L ∑ λ=1 ρ 2 i,λ 1/2 L ∑ λ=1 ρ 2 j,λ 1/2        .
Since the angle between two vectors is invariant with respect to the length of the vectors, this technique is relatively insensitive to illumination and albedo effects [START_REF] Sobhan | Species discrimination from a hyperspectral perspective[END_REF][START_REF] Kruse | The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data[END_REF] Spectral Information Divergence (SID)

SID(ρ i , ρ j ) = D(ρ i ||ρ j ) + D(ρ j ||ρ i ),
It calculates the probabilistic behaviour between spectral signatures [START_REF] Chang | An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis[END_REF] where

D(ρ i ||ρ j ) = ∑ L λ=1 p λ log p λ q λ , where pκ = ρ i,κ L ∑ λ=1 ρ i,λ , qκ = ρ j,κ L ∑ λ=1 ρ j,λ SAM-SID SID-Tan(ρ i , ρ j ) = SID(ρ i , ρ j ) × tan SAM(ρ i , ρ j ) ,
It is a combination of probability and geometry spaces that improves discrimination ability

[46] SID-Sin(ρ i , ρ j ) = SID(ρ i , ρ j ) × sin SAM(ρ i , ρ j ) . Spectral Correlation Measure (SCM) SCM(ρ i , ρ j ) = L L ∑ λ=1 ρ i,λ ρ j,λ - L ∑ λ=1 ρ i,λ L ∑ λ=1 ρ j,λ L L ∑ λ=1 ρ 2 i,λ L ∑ λ=1 ρ i,λ 2 1/2 L L ∑ λ=1 ρ 2 j,λ L ∑ λ=1 ρ j,λ 2 1/2 .
It is calculated as the correlation coefficient of the pixel and their respective spectral signatures [START_REF] Van Der Meer | Cross correlogram spectral matching: application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada[END_REF] Pearson Correlation Coefficient (PCC)

PCC(ρ i , ρ j ) = L ∑ λ=1 (ρ i,λ -µ i )(ρ j,λ -µ j ) L ∑ λ=1 (ρ i,λ -µ i ) 2 1/2 L ∑ λ=1 ρ j,λ -µ j 2 1/2
, where µ i is the mean of ρ i .

Spectral Similarity

Value (SSV)

SSV(ρ i , ρ j ) = D2(ρ i , ρ j ) 2 + 1 -PCC(ρ i , ρ j ) 2 2 
.

Low value of SSV means high similarity and vice versa [START_REF] Farifteh | Similarity measures for spectral discrimination of salt-affected soils[END_REF] Spectral Correlation Angle (SCA)

SCA(ρ i , ρ j ) = cos -1 1 + PCC(ρ i , ρ j ) 2 .
It is an improvement of SAM derivated from PCC that has been shown to be able to distinguish between positive and negative correlations and to yield better estimates in some experiments [START_REF] De Carvalho Jr | Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM)[END_REF][START_REF] Robila | An analysis of spectral metrics for hyperspectral image processing[END_REF] Spectral Gradient Angle (SGA)

SGA(ρ i , ρ j ) = SAM |∇ρ i |, |∇ρ j | , = cos -1        L-1 ∑ λ=1 |ρ i,λ+1 -ρ i,λ ||ρ j,λ+1 -ρ j,λ | L-1 ∑ λ=1 ρ i,λ+1 -ρ i,λ 2 1/2 L-1 ∑ λ=1 ρ j,λ+1 -ρ j,λ 2 1/2        .
It is invariant to illumination conditions [START_REF] Angelopoulou | Spectral Gradient: A Material Descriptor Invariant to Geometry and Incident Illumination[END_REF] 

Relative spectral discriminatory probability

To determine if a spectral signature belongs to a class, the method proposed by [START_REF] Chang | An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis[END_REF] is used. Let {ρ j } J j=1 J spectral signatures in ∆ an existing spectral reference database and τ be a target signature to be identified using ∆. Let m(•, •) be a given hyperspectral measure, the spectral discriminatory probabilities of all ρ j in ∆ with respect to τ as is defined as follows:

p m τ,∆ (i) = m(τ, ρ i ) J ∑ j=1 m(τ, ρ j ) , for i = 1, 2, ..., J, (2) 
where J ∑ j=1 m(τ, ρ j ) is a normalization constant determined by τ and ∆. The resulting probability vector is defined as

p m τ,∆ = p m τ,∆ (1), p m τ,∆ (2), ..., p m τ,∆ (J) T . (3) 
Using Equation (3), the target signature can be identified by selecting the one with the smallest spectral discriminatory probability because τ and the selected one have the minimum spectral discrimination.

Spectral reference database

To build the spectral reference database, spectra of mean reflectance, spectra of median reflectance and median spectra are used. Spectra of mean reflectance is defined as the mean of reflectances for each wavelength λ:

ρ λ = 1 N N ∑ i=1 ρ i,λ , ∀λ ∈ [1, ..., L], (4) 
where N is the number of spectra for a plant species. Similarly, spectra of median reflectance is defined as the median of reflectances for each wavelength λ. Median spectra is defined as the "closest" spectrum of the median reflectance considering a vegetation type. In other words, giving a spectrum of median reflectance, the spectrum that minimize the Minkowski distance between them is considered as the median spectrum (Figure 4 shows differences between the median reflectances spectrum which is an theoretic spectral signature and the different median spectra which were investigated). As distances are not equivalent considering high-dimensional data, three Minkowski distances are investigated for this study: the Euclidean distance, the Canberra distance and the City Block or Manhattan distance (which are reminded in Section 3.1). 

(Carotenoid Concentration Index) 1 R 515 - 1 R 550 Carotenoid [59], [60] CaCoI[515,700] 1 R 515 - 1 R 700 Carotenoid CaCoI2[770,510,700] R 770 1 R 510 - 1 R 700 Carotenoid [59], [60] CaCoI2[770,510,550] R 770 1 R 510 - 1 R 550 Carotenoid Datt[850] R 850 -R 710 R 850 -R 680 Chlorophyll [61] Datt[780] R 780 -R 710 R 780 -R 680 Chlorophyll [61] Datt2[850,710] R 850 R 710 Chlorophyll Datt2[672,550] R 672 R 550 Chlorophyll Datt_prime D 754 D 704 Chlorophyll Datt3[672] R 672 R 550 R 708 Chlorophyll [62] Datt3[860] R 860 R 550 R 708 Chlorophyll [62] DCI D 723 D 703 [63]
Table 5: continued from previous page. 

DCNI (Double-peak Canopy Nitrogen

Index) R 720 -R 700 R 700 -R 670 R 720 -R 670 + 0.03 Nitrogen [64] DD (Double Difference Index) (R 749 -R 720 ) -(R 701 -R 672 ) Chlorophyll [65] DDn (new Double Difference Index) 2 R 710 -R (710-50) -R (710+50) Chlorophyll [
GEMI (Global Environment Monitoring Index) η(1 -0.25η) - R 660 -0.25 1 -R 660 , [ 70 
]
where

η = 2 R 2 830 -R 2 660 + 1.5R 830 + 0.5R 660 R 830 + R 660 + 0.5 GI (Greeness Index) R 554 R 677 Chlorophyll [71] Gitelson 1 R 700 Chlorophyll [72] Gitelson2 R 750 -R 800 R 965 -R 740 -1 Chlorophyll [59]
GMI (Gitelson and Merzlyak Index)

R 750 R 550 Chlorophyll [73] Green NDVI R 800 -R 550 R 800 + R 550 Chlorophyll [74] Maccioni R 780 -R 710 R 780 -R 680 Chlorophyll [75] MARI (Modified Anthocyanin Reflectance Index) R 800 1 R 550 - 1 R 700 Anthocyanin [76], [77] MCARI[700,670] (Modified Chlorophyll Absorption Index) (R 700 -R 670 ) -0.2(R 700 -R 550 ) R 700 R 670 Chlorophyll, Leaf Area Index [78] MCARI[750,705] (R 750 -R 705 ) -0.2(R 750 -R 550 ) R 750 R 705 Chlorophyll [79] MCARI[700,670]/OSAVI[800,670] (R 700 -R 670 ) -0.2(R 700 -R 550 ) R 700 R 670 (1 + 0.16) R 800 -R 670 R 800 +R 670 +0.16 Chlorophyll [80] MCARI[750,705]/OSAVI[750,705] R 750 -R 705 ) -0.2(R 750 -R 550 ) R 750 R 705 (1 + 0.16) R 750 -R 705 R 750 +R 705 +0.16 Chlorophyll [79] MCARI[750,705]/MTVI2[750] MCARI[750,705] MTVI2[750] Nitrogen [81] MNDVI[800,680] (Modified NDVI) R 800 -R 680 R 800 + R 680 -2R 445 Chlorophyll [82] MNDVI[750,705] R 750 -R 705 R 750 + R 705 -2R 445 Chlorophyll MSAVI (Modified Soil Adjusted Vegetation Index) 0.5 2R 800 + 1 -(2R 800 + 1) 2 -8(R 800 -R 670 ) Chlorophyll [83] MSI (Moisture Stress Index) R 1599 R 819 Water stress [84] MSR[800,680] (modified Simple Ratio) R 800 -R 445 R 680 -R 445 Chlorophyll [82] MSR[750,705] R 750 -R 445 R 705 -R 445 Chlorophyll MSR2 R 750 R 705 - 1 R 750 R 705 + 1 Chlorophyll, Leaf Area Index [85]
Table 5: continued from previous page.

MTCI (MERIS

1 Terrestrial Chlorophyll Index) R 754 -R 709 R 709 -R 681 Chlorophyll [86] MTVI[800] (Modified Triangular Vegetation Index) 1.5 1.2(R 800 -R 550 ) -2.5(R 670 -R 550 ) Leaf Area Index [87] MTVI[750] 1.5 1.2(R 750 -R 550 ) -2.5(R 670 -R 550 ) Leaf Area Index [87] MTVI2 [800] 1.5 1.2(R 800 -R 550 ) -2.5(R 670 -R 550 ) (2R 800 + 1) 2 -(6R 800 -5 √ R 670 ) -0.5 Leaf Area Index [87] MTVI2 [750] 1.5 1.2(R 750 -R 550 ) -2.5(R 670 -R 550 ) (2R 750 + 1) 2 -(6R 750 -5 √ R 670 ) -0.5 [87] NDII (Normalized Difference Infrared Index) R 850 -R 1650 R 850 + R 1650 Water status [88] R 819 -R 1649 R 819 + R 1649 NDLI (Normalized Difference Lignin Index) log 1 R 1754 -log 1 R 1680 log 1 R 1754 + log 1 R 1680
Lignin [START_REF] Serrano | Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals[END_REF] NDNI (Normalized Difference Nitrogen Index)

log 1 R 1510 -log 1 R 1680 log 1 R 1510 + log 1 R 1680 Nitrogen [35] NDRE (Normalized Difference Red Edge) R 830 -R red R 830 + R red , with R red = 0.5(R 670 + R 780 ) [57] NDVI[800,670] (Normalised Difference Vegetation Index) R 800 -R 670 R 800 + R 670 Chlorophyll, Leaf Area Index [89] NDVI[750,705] R 750 -R 705 R 750 + R 705 Chlorophyll [73] NDVI[682,553] R 682 -R 553 R 682 + R 553 Chlorophyll [90] NDVI[573,440] R 573 -R 440 R 573 + R 440 Nitrogen [91]
NDWI[860,1240] (Normalized Difference Water Index)

R 860 -R 1240 R 860 + R 1240 NDWI[860,1640] R 860 -R 1640 R 860 + R 1640 Water status [92] NDWI[860,2130] R 860 -R 2130 R 860 + R 2130 NDWI[1100,1450] R 1100 -R 1450 R 1100 + R 1450 Water stress [93] NDWI[1280,1450] R 1280 -R 1450 R 1280 + R 1450 Water stress [93] NPCI (Normalised Pigment Chlorophyll Index) R 680 -R 430 R 680 + R 430 (Total pigments) / chlorophyll [94] VI_opt (Vegetation Index optimal) (1 + 0.45) R 2 800 + 1 R 670 + 0.45 Nitrogen [95] OSAVI[800,670] (Optimised Soil-Adjust Vegetation Index) (1 + 0.16) R 800 -R 670 R 800 + R 670 + 0.16 Chlorophyll [96] OSAVI[750,705] (1 + 0.16) R 750 -R 705 R 750 + R 705 + 0.16 Chlorophyll [79] PRI (Photochemical Reflectance Index) R 531 -R 570 R 531 + R 570 Stress [97] RDVI (Renormalised Difference Vegetation Index) R 800 -R 670 √ R 800 + R 670 Chlorophyll, Leaf Area Index [98] REIP (Red-Edge Inflexion Point) i max i∈[[680,750]] D i Chlorophyll, Leaf Area Index [67,99,100] REMI (Red-Edge Model Index) R 750 R 720 -1 Chlorophyll [101] 1
MEdium Resolution Imaging Spectroradiometer significant difference between the median spectral index value between pairs of plant species.
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The null hypothesis for N = 13 vegetation types and I = 129 spectral vegetation indices per reflectance measurements is:

H 0 : η n (i) = η n+1 (i), (5) 
where η n is the median spectral index value for vegetation type number n = 0, ..., N, and i = pairs of indices by frequency discrimination. To stop the process, a maximum number of subset is then defined.
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In our case, the maximum subset consists of not more than three indices. Indeed, longer is the tuple length, 
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For a better understanding of the feature selection method, an example is given. We consider 4 vegetation 

229 types named: V 1 , V 2 , V 3 , V
V 1 from V 3 nor V 2 from V 4 nor V 3 from V 4 . But different single indices can separate V 1 from V 2 , V 1 from V 4 and V 2 from V 3
. This is summarized in the following table:

V 2 V 3 V 4 V 1 I 1 , I 3 ∅ I 2 , I 3 V 2 - I 2 , I 3 ∅ V 3 - - ∅
We obtain the first subset . We suppose that {I 3 -

S 1 = {I 1 , I 2 , I 3 }. To discriminate V 1 from V 3 , V 2 from V 4 and V 3 from V 4 ,
I 1 } can discriminate V 1 from V 3 and V 2
from V 4 but there is still no index that can discriminate V 3 from V 4 . For the latter case, possible combinations are looking among {I 3 -

I 1 -I 2 }, {I 3 -I 1 -I 4 }, {I 3 -I 1 -I 5 }.
Whatever a combination of spectral vegetation indices can be found to discriminate or not those plant species, the process will stop in our case.

The Bhattacharyya coefficient and the Hellinger distance For two arbitrary discrete probability distributions p and q, the amount of overlap between those distributions can be measured using the Bhattacharyya coefficient:

C(p, q) = n ∑ i=1 √ p i q i , ( 6 
)
where n is the partition number. To measure the similarity between two statistical distributions in remote sensing the Hellinger distance (also known as the Matusita distance) is commonly used. It is defined as:

H(p, q) = 1 2 n ∑ i=1 √ p i - √ q i 2 , ( 7 
) = 1 -C(p, q). ( 8 
)
The Hellinger distance defined in Equation ( 8) has upper bound equal to 1, indicating the total separability of the class pairs characterized by their distribution. As a general rule adapted from [121],

• if H(p, q) ≥ 0.95 then the classes can be separated,

• if 0.85 ≤ H(p, q) < 0.95 the separation is fairly good,

• if H(p, q) < 0.85 the separation is poor.

Spectral ranges

The transformed spectral signatures defined in Section 3.2 and the spectral ranges adapted from [START_REF] Asner | Biophysical and biochemical sources of variability in canopy reflectance[END_REF] (Table 6) were investigated:

• visible: 350 nm-750 nm,

• near infrared: 750 nm-1350 nm,

• shortwave infrared a: 1410 nm-1810 nm,

• shortwave infrared b: 1940 nm-2400 nm.

The shortwave infrared domain is split in 2 parts. The near infrared and the shortwave infrared are not continuous because of atmospheric water absorption.

Supervised classification

All the classifications are performed using Python scikit-learn package [129]. SVM is a supervised non-parametric statistical learning technique therefore there is no assumption on the distribution of the data [132]. The main idea of SVM classification is to construct a hyperplane as a decision surface in a way that the margin of separation between two classes is maximized. To do this, the original feature space is mapped into a space with a higher dimensionality, where classes can be modelled to be linearly separable. This transformation is implicitly performed by applying kernel functions to the original data.

The learning of the classifier is performed using a constrained optimization process that is associated with a complex cost function. For problems that involve identification of multiple classes, adjustments are made to the simple SVM binary classifier to operate as a multi-class classifier using methods such as one-against-all, one-against-others.

For this study, two kernels are retained: a linear kernel (SVM linear) and a Gaussian kernel (SVM RBF).

Regularized Logistic Regression (RLR)

RLR is a linear model based on logistic regression with an additional regularization term. This classifier has been successfully used with high dimensional data (gene selection in cancer classification [133], feature selection in remote sensing [START_REF] Pant | Logistic regression-based spectral band selection for tree species classification: effects of spatial scale and balance in training samples[END_REF][START_REF] Pal | Multinomial logistic regression-based feature selection for hyperspectral data[END_REF]134] ).

For this study, the 1 -norm and 2 -norm regularization term are investigated. For this study the number of latent variables is fixed to the number of vegetation types -1 [138]. This method is not applied on spectral vegetation indices selected but on spectral signatures and their transformations on spectral ranges because it is commonly used when the number of features is much bigger than the number of spectra.

Classification accuracy evaluation

To evaluate the classification accuracy of supervised classifiers, a 30 fold cross-validation is used and six training samples size were investigated: 50 %, 45 %, 40 %, 35 %, 30 % and 25 % of all spectra.

To evaluate the classifier precision overall accuracy and F1-score are used. Overall accuracy computes number of correct spectra over all spectra, whereas F1-score is given by:

F1-score = 2 • PA • UA PA + UA , (9) 
where PA (Producer's Accuracy) is the fraction of retrieved classes that are relevant whereas UA (User's Accuracy) is the fraction of relevant classes that are retrieved.

Results and discussion

Similarity measures

Considering all transformed spectral signatures, spectral ranges and similarity measures, only the Canberra distance on [350 nm to 2500 nm] gives an overall accuracy higher than 50 % whatever the spectral reference database (Table 7). Indeed, the Canberra distance gives the higher overall accuracy because it is sensitive to a small change when both coordinates are closed to zero [140,141].

Because of the high variability of some vegetation types (Appendix B), spectral reference database built from median spectra, that are real spectra, gave worse results than spectral reference database built from median and mean spectra, that are theoretical spectra not representative of a in situ measured vegetation type (Table 7).

There is a need to collect more spectral signatures to build a consistent spectral database.

As spectral signatures can be considered as high dimensional vectors, a specific distance is needed to compare them. It is well known that Euclidean distance is not good when comparing high dimension data [142]. Table 8 shows that the Canberra distance always outperforms other distances, including SAM, which is commonly used in remote sensing, when considering the whole spectral range (1823 wavelengths). Using the Canberra distance, best results (overall accuracy higher than 60 %) are given with the second derivative, first derivative and CRDR (Table 7), that are closely related to absorption features rather than reflectance magnitude [START_REF] Mutanga | Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[END_REF]. Indeed, vegetation types can be discriminated thanks to their biophysical 

Supervised classification based on feature selection of spectral vegetation indices

Feature selection

The Kruskal-Wallis method (Section 3.4, p. 14) does not show any significant index (frequency discrimination > 75 %) that allow discrimination between vegetation types (Figure 5, only the first 69 indices x * : index selected on first step.

x * * : index selected on second step.

x * * * : index selected on third step. 13). Unlike an index related to water content (Figure 9), an index related to the chlorophyll will discriminate SPHA from AQ_A. Indeed, the right side of Figure 9 shows that some AQ_A plant species can not be distinguished from SPHA because it is a dry moss and the left side of Figure 9 shows that SPHA and non discerned AQ_A have the same spectral signature shape. The right side of Figure 10 shows that these two vegetation species can clearly be separated despite the class variability of AQ_A.

A complex biophysical component such as F_WP will differentiate SPHA from CAVU (left side of Figure 11)

shows that different spectral shapes between those vegetation types can be exploited on the [1220-1280 nm] domain. The right side of Figure 10 shows that the wavelengths corresponding to the maximum of the first derivatives can clearly discern these two vegetation types even if these vegetation types can be mixed. In most case, a single biophysical component is sufficient to class a vegetation type from the others (except for CA_HV), but a pair of biophysical components is needed to discriminate more specifically some vegetation types (Table 12), apart from some particular cases where a pair of biophysical components is needed CA_HV (Figure 12). Indeed, CAVU and SALI are differentiated with the stress index (CARTER[695, 420]) and the water index (NDII).

Among the 78 combinations of pair of vegetation types, only two require three indices to be separated:

CA_HV vs PING and AQ_A vs METR. Indeed, because of its within class variability (Table A.1), only 33.33 % of single biophysical component can discriminate CA_HV from all other vegetation types (Table 13). Besides, as mentioned in Section 4.1, none of the main plant species of PING represents more than 50 % of this vegetation type. The advent of a third index only improves significantly their discrimination (Figure 13). 15). Moreover, these selected indices are robust because no significant difference between classifiers score (except for RF) regardless of the training size is noted (Figure 14). As expected, worst results are given by the Kruskal-Wallis method (to compare performance of the two features selection methods, 26 first indices given by Kruskal-Wallis method have been selected).

RLR gives better results than SVM and RF (Table 15, Figure 14) except when the size of training set equals 50 % for the Hellinger distance. That may be explained by the possible confusion between some vegetation types due to their plant species composition. Indeed, SVM aims to find the best hyperplane that can separate data, whereas RLR aims to find a probability (according to a logistic function) to separate them.

Considering RLR-2 some vegetation types are not easily discriminated whatever the indices. Table 16 and [350-1350 nm], [350-2500 nm]) and the spectral signature as reference and the three transformed spectral signatures (second derivative, first derivative, Continuum Removed Derivative Reflectance).

Table 18 to Table 21 show the best results obtained with RLR-2 on [350-1350 nm] whatever the transformed spectral signatures.

Considering wavelengths used by selected indices (Section 4. Considering RLR-2 in [350-1350 nm], Table 22 shows that the best overall accuracies are given by first derivative, second derivative and CRDR. First and second derivatives overall accuracies are very close (difference lower than 1 %). However, those transformations are sensitive to noise. But CRDR delivered better results than spectral signatures and similar performances than the first and second derivatives (difference is lower than 4 %). As mentioned in Section 4.1, those transformations are closely related to absorption features rather than reflectance magnitude [START_REF] Mutanga | Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[END_REF], and are helpful to discriminate peatland vegetation types which are clearly characterized by different biophysical components as mentioned in Section 4.2.

Considering RLR, 1 regularization, which controls the selection or the removal of variables, always underperforms 2 -regularization, which handles with collinear variables [START_REF] Prospere | Plant species discrimination in a tropical wetland using in situ hyperspectral data[END_REF]. Because of mixed plant species, it is difficult to remove variables that are not involved in the classification of all the vegetation types. Although, SVM and RF are popular classifiers in remote sensing community, they are outclassed by RLR in [350 nm to 1350 nm] which is the spectral range where results are the best (Figure 16). Results given by SVM RBF are lower than those obtained with RLR and can be explained by the difficulty to find adapted parameters considering this high dimensionality problem. However, it is interesting to note that results from SVM linear are close to RLR ones considering first derivative, second derivative and CRDR. Further investigations should be conducted to better understand the link between those classifiers and improve the choice of the parameters. Figure 16 

Conclusions and Perspectives

This study aimed at inventorying and evaluating the performance of discrimination techniques for peatland habitats based on in situ hyperspectral measurements with a high spectral resolution and high signal-to-noise ratio. To evaluate the potential of hyperspectral data to separate and classify those habitats, three classes of methods were investigated and compared:

• similarity measures calculated on spectral reflectance,

• supervised classification based on "local" information (spectral vegetation indices),

• supervised classification based on "global" information (spectral ranges).

This study demonstrated that peatland vegetation types could be discriminated using the Canberra distance on the whole spectral range [350-2500 nm]. This distance is sensitive to a small change when both coordinates approach zero which is the case of reflectance especially in the visible ranges and in the SWIR (Figure 2). Further investigations should be conducted to see if combinations of spectral range can improve overall accuracy or if the lack of spectral signatures in the reference database (which is a weakness of this method) may explain why the whole spectral range is needed to compare spectra in that case. Besides, it is of importance to collect more spectral signatures from peatland vegetation types to build a spectral reference database of peatland vegetation types that can catch more spectral variability.

Although, there is no spectral vegetation indices built to discriminate peatland vegetation types, this study showed that some indices could be selected using the Hellinger distance. Although all the results strongly depended on the current dataset, this study illustrated promising methods for classifying peatland vegetation types using in situ hyperspectral measurements. The next step concerns the application or adaptation of those methods to airborne hyperspectral imageries with high spatial resolution acquired on September 2014 (simultaneously with in situ measurements). With the objective of evaluating the benefits of airborne or spaceborne sensors with a lower spectral resolution a lower signal-to-noise ratio, these conclusions may change. For that purpose, some indices (involving wavelengths lower than 480 nm) will not be used because of the camera spectral range sensitivity and some transformed spectral signatures such as second derivative will neither be used because of signal-to-noise ratio. Similarly, the first derivative transformation is very sensitive to the noise coming from the instrument but also from the atmosphere correction and thus can lead to degrade its performance... 

Additional

  ), radiances are measured at three different dates over 9 days in September 2014 (09/04/2014, 09/05/2014, 09/12/2014) under sunny and cloudless conditions between 10:00 a.m. and 1:00 p.m. and Sun's azimuth angle ranging from 106 • and 160 • . Data have been collected using an Analytical Spectral Device (ASD) spectroradiometer which ranges on the reflective domain (350-2500 nm) with a 3-12 nm spectral resolution depending on the spectral domain. Its spectral specifications are summarized in Table

Figure 1 .

 1 Figure 1. Location of the in situ spectroradiometer measurements -True color composite made from hyperspectral (HySpex) aerial imageries acquired on the 09/12/2014 (R = 639.98 nm, G = 549.06 nm, B = 461.79 nm).

Figure 2 .

 2 Figure 2. Mean spectral reflectances of the 13 vegetation types and the U.S. Standard atmospheric transmittance.

Figure 3 .

 3 Figure 3. Flowchart showing the different methods used to classify the vegetation types.

Figure 4 .

 4 Figure 4. Median spectra, spectrum of mean reflectances, spectrum of median reflectances of Eleocharis quinqueflora (ELQU).

3. 4 .

 4 Feature selection of spectral indices 200 Spectral index description 201 Spectral indices are combinations of surface reflectance (or the derivated reflectance) at two or more 202 wavelengths or narrow spectral bands. Lots of spectral indices can be found in literature (
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  more difficult it is to explained why such combinations of indices or such biophysical components combination 226 can discriminate such pairs. Finally, selected vegetation indices come from each subset and single spectral 227 vegetation indices or spectral index combinations are retained.

  [START_REF] Kent | Vegetation Description and Analysis: A Practical Approach[END_REF] and 5 spectral vegetation indices named: I 1 , I 2 , I 3 , I 4 , I 5 . We suppose that no single spectral vegetation index can discriminate neither

  we are looking among the following combinations: {I 3 -I 2 }, {I 3 -I 1 }, {I 3 -I 4 }, {I 3 -I 5 } because indices are ordered by frequency discrimination: [I 3 , I 2 , I 1 , I 4 , I 5 ]

3. 6 . 4 .

 64 Partial Least Squares-Discriminant analysis (PLS-DA) PLS-DA is based upon the classical partial least square regression method for constructing predictive models[135]. The goal of PLS regression is to provide dimension reduction in an application where the response variable is related to the predictor variables. In the case of PLS-DA, the response variable (i.e. vegetation types) is binary and expresses class membership[136,137]. This classifier has been successfully used with high dimensional data (gene selection [138], tree species discrimination [139]).

Figure 5 .

 5 Figure 5. Frequency distribution of the Kruskal-Wallis test for the 129 spectral indices for paired species across the 13 vegetation types. The horizontal red line stands for 75 % of all 78 possible combinations of the 13 vegetation types.

Figure 6 .

 6 Figure 6. Mean spectral reflectance of the 13 vegetation types. Dashed lines represent the wavelengths used by WI.

Figure 7 .

 7 Figure 7. Mean first derivative spectral signatures of the 13 vegetation types on [695-730 nm]. The green dashed line represents the wavelength used by the Boochs2 index.

Figure 8 .

 8 Figure 8. Left: spectral signatures of AQ_B (blue) and AQ_C (dark slate gray). Red dashed lines are the wavelengths used by the NDWI[860,1240] index. Right: NDWI[860,1240] values for each vegetation type, H is the Hellinger distance.

Figure 9 .

 9 Figure 9. Left: spectral signatures of SPHA (black) and AQ_A (green). Red dashed lines are WI wavelengths. Right: WI values for each vegetation type, H is the Hellinger distance.

Figure 10 .

 10 Figure 10. Left: spectral signatures of SPHA (black) and AQ_A (green). Red dashed lines are OSAVI[800,670] wavelengths. Right: OSAVI[800,670] values for each vegetation type, H is the Hellinger distance.

Figure 11 .

 11 Figure 11. Left: spectral signatures of SPHA (black) and CAVU (gray). Right: F_WP values for each vegetation type, H is the Hellinger distance.

Figure 12 .

 12 Figure 12. Left: spectral signatures of CAVU (gray) and SALI (cyan). Right: map of CARTER[695,420] and NDII values for each vegetation type, H is the Hellinger distance.

Figure 13 .

 13 Figure 13. Left: spectral signatures of CA_HV (pink) and PI_CV (magenta). Right: map of OSAVI[800,670] and GITELSON values for each vegetation type, H is the Hellinger distance value.

Figure 14 .

 14 Figure 14. Vegetation types identification accuracies (overall accuracy) with indices.

  2), most of them use spectral bands located on [350-1350 nm] either: 50 % are located in visible range and 32.35 % in near-infrared range. Indeed, in this spectral range all the biophysical components discriminating the peatland vegetation types can be taken into account. That is confirmed by Figure 15 which shows that the best results are given by [350-1350 nm] considering the training size = 25 % regardless the transformed spectral signatures and the the classifier, except

Figure 15 .

 15 Figure 15. Vegetation type identification accuracies with the training size = 25 %.

Figure B. 15 .

 15 Figure B.15.Location of the in situ spectroradiometer measurements for the plots of Salix sp. (SALI).

Figure B. 16 .Figure B. 17 .

 1617 Figure B.16. Mean reflectance (µ) and standard deviation (σ) of Salix sp. (SALI).

Figure B. 18 .

 18 Figure B.18. Mean reflectance (µ) and standard deviation (σ) of Aquatic type a (AQ_A).

Figure B. 23 .

 23 Figure B.23.Location of the in situ spectroradiometer measurements for the plots of Carex sp. homogeneous vegetation (CA_HV).

Figure B. 24 .

 24 Figure B.24. Mean reflectance (µ) and standard deviation (σ) of Carex sp. homogeneous vegetation (CA_HV).

Figure B. 25 .

 25 Figure B.25.Location of the in situ spectroradiometer measurements for the plots of Pinguicula sp. combined vegetation (PI_CV).

Figure B. 26 .

 26 Figure B.26. Mean reflectance (µ) and standard deviation (σ) of Pinguicula sp. combined vegetation (PI_CV).

  

Table 1 .

 1 Species names, number of measurements, number of locations and total number of spectra collected.

	Vegetation types	Code		Measurements		No. of	No. of
			09/04/2014 09/05/2014 09/12/2014 locations spectra
	Calluna vulgaris	CAVU		2	2	2	14
	Sphagnum sp.	SPHA		2	4	5	22
	Eleocharis quinqueflora	ELQU	1	2	1	2	15
	Pinguicula sp.	PING	1	1		1	8
	Menyanthes trifoliata	METR	1	1	1	1	12
	Juniperus communis	JUCO	1	2	2	2	19
	Rhododendron ferrugineum	RHFR		2	2	2	14
	Salix sp.	SALI	1		3	3	17
	Aquatic environment a	AQ_A	3	6	7	6	53
	Aquatic environment b	AQ_B		1	1	1	7
	Aquatic environment c	AQ_C	1	1	1	1	12
	Carex sp. homogeneous vegetation	CA_HV	2	2	3	4	26
	Pinguicula sp. combined vegetation PI_CV	1	2	1	2	15

Table 2 .

 2 ASD FieldSpec Pro specifications.

		Spectral range	Spectral resolution	Spectral sampling
	VNIR (Visible and Near InfraRed) 0.35 µm -1.00 µm	3.00 nm at 0.70 µm	1.40 nm (0.35 µm -1.05 µm)
	SWIR (Short Wave InfraRed)	1.00 µm -2.50 µm	10 nm at 1.40 µm 12 nm at 2.10 µm	2.00 nm (1.05 µm -2.50 µm)

Table 3 .

 3 Transformed spectral signatures.

	Transformation	Formulation	Reference
	Brightness-normalized spectral signature	ρ	

Table 4 .

 4 Similarity measures.

	Similarity	Formulation					Comments	Reference
	measures							
		Dp(ρ i , ρ j ) = ρ i -ρ j p,				
	Minkowski distance	=	L ∑	|ρ i,λ -ρ j,λ | p	1/p	.	Spectral signatures are represented by vectors from R L . D2 is the usual Euclidean distance ; D 1	D2: [24,39,40] ; D 1 : [41,42]
			λ=1				is the Manhattan or City Block distance	

Table 5

 5 

	) to characterize
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Table 5 .

 5 Spectral vegetation indices.

	Index name	Formulation		Vegetation	Reference
				properties	
				highlighted by	
				the index	
	Boochs	D 703		Chlorophyll	[52]
	Boochs2	D 720		Chlorophyll	
	CAI (Cellulose Absorption Index)	R 2000 + R 2200 2	-R 2100	litter Cellulose, soil	[53]
	CARI(Chlorophyll Absorption Ratio Index) CI (Curvature Index) CCI (Canopy Chlorophyll Index) CCCI (Canopy Chlorophyll Content Index) Carter[695,420] Carter[695,760] Carter[605,760] Carter[710,760] Carter[695,670]	R 700 (670a + R 670 + b) 2 R 670 √ a 2 + 1 where a = R 700 -R 550 ; b = R 550 -550a 150 R 675 R 690 R 2 683 D 720 D 700 NDRE NDVI R 695 R 420 R 695 R 760 R 605 R 760 R 710 R 760 R 695 R 670	Chlorophyll Chlorophyll Chlorophyll Chlorophyll Stress Stress Stress Stress Stress	[54] [55] [56] [57] [58]
	Carter2	R 550			
	CaCoI[515,550]				

Table 5 :

 5 continued from previous page. c 2 m 1m 2where m 1 and c 1 represent the slope and the intercept of the far-red line and m 2 and c 2 represent the slope and the intercept of the NIR lineR 670 ) -1.2 (R 530 -R 670 ) 2 Chlorophyll × R 550 ) -200(R 670 -R 550 ))

	REP_LE (Red-Edge Position Linear	-	c 1 Nitrogen,	[102]
	Extrapolation)					chlorophyll
	REP_LI (Red-Edge Position Linear Interpolation) RVI[810,660] (Ratio Vegetation Index) RVI[810,560] RVI[800,670] SIPI (Structure Insensitive Pigment Index)	700 + 40 R 810 R 660 R 810 R 560 R 800 R 670 R 800 -R 445 0.5(R 800 + R 780 ) R 740 -R 700 R 800 -R 680		Chlorophyll Nitrogen Nitrogen chlorophyll, Pigments /	[103] [104] [105] [106]
						stress
	SPVI (Spectral Polygon Vegetation Index)	0.4 3.7(R 800 -Leaf Area Index	[107]
	SR[800,680] (Simple Ratio Index) SR[750,700] SR[752,690] SR[750,550] SR[700,670] SR[675,700] SR[750,710] SR[440,690] SRPI (Simple Ratio Pigment Index)	R 800 R 680 R 750 R 700 R 752 R 690 R 750 R 550 R 700 R 670 R 675 R 700 R 750 R 710 R 440 R 690 R 430 R 680			Chlorophyll Chlorophyll Chlorophyll Chlorophyll Stress / chlorophyll, (Total pigments)	[108] [73] [109] [110] [111] [112] [106]
						stress
		795		
	Sum_Dr[625,795]	∑	D i		Chlorophyll	[113]
		i=625		
		780		
	Sum_Dr[680,780]	∑	D i		Chlorophyll,	[67]
		i=680			Leaf Area Index
	TCARI[700,670] (Transformed Chlorophyll Absorption Ratio Index)				R 700 R 670	Chlorophyll	[80]
	TCARI[750,705] TCARI[700,670]/OSAVI[800,670] TCARI[750,705]/OSAVI[750,705]	3 R 750 -R 705 -0.2(R 750 -R 550 ) TCARI OSAVI TCARI2 OSAVI2	R 750 R 705	Chlorophyll Chlorophyll Chlorophyll	[79] [80] [79]
	TVI (Triangular Vegetation Index)	0.5(120(R 750 -Leaf Area Index,	[114]
						Canopy
						chlorophyll
						density
	Vogelmann Vogelmann2 Vogelmann3	R 740 R 720 R 734 -R 747 R 715 + R 726 D 715 D 705		Chlorophyll Chlorophyll Chlorophyll	[115]
	Maximum first derivatives of 8 different regions whithin the spectra	A_1D: 495-550 nm B_1D: 550-650 nm C_1D: 680-780 nm D_1D: 970-1090 nm E_1D: 1110-1205 nm F_1D: 1205-1285 nm H_1D: 1455-1640 nm		Pigments absorption, w., c., s., l absorption ; refer to Table 2 in [116] for a full description.	[116]

3 R 700 -R 670 -0.2(R 700 -R 550 )

Table 5 :

 5 continued from previous page.

		J_1D: 1925-2200 nm		
	Corresponding spectral positions of the maximum first derivatives	A_WP: 495-550 nm B_WP: 550-650 nm C_WP: 680-780 nm D_WP: 970-1090 nm E_WP: 1110-1205 nm F_WP: 1205-1285 nm H_WP: 1455-1640 nm J_WP: 1925-2200 nm	Pigments absorption, w., c., s., l. absorption ; refer to Table 2 in [116] for a full description.	[116]
	WI (Water Index) WI[1100,1450] WI[1280,1450] WI2	R 900 R 970 R 1100 R 1450 R 1280 R 1450 1 R 1450	Water status Water stress Water stress Water stress	[117] [93] [93] [93]
	R			

x represents reflectance at wavelength x nm. D x represents the derivative of the reflectance spectrum at wavelength x nm. w., c., s., l = water, cellulose, starch, lignin Classical feature selection method -the

Kruskal

-Wallis H-test 207 As some spectra per vegetation types were quite small (8 spectra for Pinguicula sp. (PING), 7 spectra for 208 Aquatic type b (AQ_B)), usual ANOVA [118] test or Mann-Whitney U-test [119] can not be used. That is the 209 reason why Kruskal-Wallis H-test [120], a non-parametric test is proposed. Moreover this test is adapted to not 210 independent data and not normally distributed data. The H-test is used to test the hypothesis that there was no 211

Table 6 .

 6 The spectral reflectances of green vegetation on the four regions of electromagnetic spectrum from[START_REF] Asner | Biophysical and biochemical sources of variability in canopy reflectance[END_REF].

	Wavelength range	Description	Spectral reflectance of vegetation	References
	[nm]			
	400-700	Visible	Low reflectance and transmittance due to chlorophyll and	[122,123]
			biologically active pigments (such as carotene) absorptions	
	680-750	Red-edge	The reflectance is strongly correlated with plant biochemical	[124,125]
			and biophysical parameters	
	700-1300	Near infrared	High reflectance and transmittance, very low absorption	[126,127]
			resulting from photon scattering at the air-cell interfaces	
			within the leaf spongy mesophyll	
	1300-2500	Shortwave infrared Lower reflectance than other spectral regions due to strong	[126,128]
			water absorption and minor absorption of biochemical	
			contents such as lignin and carbon constituants	

3.6.1. Random Forest (RF)

RF is an ensemble classifier that uses a set of Classification And Regression Trees (CARTs) to make a prediction

[130]

. The trees are created by drawing a subset of training samples through replacement (a bagging approach). In standard classification trees, each node is split using the best split among all variables. In RF, each node is split using the best predictor, among a user-defined number of features (Mtry that is usually set to the square root of the number of input variables [131]). By growing the forest up to a user-defined number of trees (Ntree that is usually set to 500 but different values such as 100, 1000 or 5000 have been investigated [131]), the algorithm creates trees that have high variance and low bias. The final classification decision is taken by averaging (using the arithmetic mean) the class assignment probabilities calculated by all produced trees. For this study, Mtry = 500 and Ntree ∈ [500, 1000, 2000, 5000].

3.6.2. Support Vector Machines (SVM)

Table 7 .

 7 Overall accuracy (%) for Canberra distance on [350-2500 nm].

			Median spectra		Median	Mean
		Canberra dist. City Block dist. Euclidean dist. reflectance reflectance
	Spectral signature	53.62	52.34	51.91	57.02	50.64
	Normalized spectral signature	51.91	52.34	50.64	55.74	57.87
	log transformation of spectral signature	52.34	52.34	51.49	55.74	51.91
	First Derivative	70.64	70.21	67.23	74.47	71.49
	Second Derivative	71.06	68.51	64.68	81.70	77.45
	Continuum removed Reflectance	51.06	50.64	51.06	54.04	52.77
	Continuum Removed Derivative Reflectance	64.68	62.98	61.28	78.30	75.32

Table 8 .

 8 Overall accuracy (%) for different distances on [350-2500 nm] considering Median reflectances as spectral reference database. be discussed in details in Section 4.2. Furthermore, Table9shows that the whole spectral range gives the best results. Although spectral ranges are related to specific biophysical components (Table6), the whole spectral range is needed to discriminate the 13 vegetation types because some of them are sharing same plant species (TableA.1) and the spectral signatures are mixed. Worse results are obtained in [1940-2400 nm] whatever the transformed spectral signature. Table9show that worse results are obtained by the spectral signature whatever the spectral range. Indeed those transformations are related to absorption features as explained above, which confirm that transformed spectral signatures are more suitable to discriminate vegetation types than spectral signatures.

		Distance Euclid Manhattan Canberra	SAM
	Spectral signature	50.21	51.06	57.02	41.70
	First Derivative	62.98	70.64	74.47	59.15
	Second Derivative	65.96	74.04	81.70	63.83
	CRDR	71.06	74.47	78.30	69.36
	components which will				

Table 9 .

 9 Overall classification accuracy (%) for different spectral ranges considering Median reflectances as spectral reference database and Canberra distance. Calluna vulgaris (CAVU) and Aquatic type a (AQ_A). However, only around 57 % of spectral signatures are well identified for CAVU and AQ_A. This can be explained by the high variability of these sample plots. Contrary to SPHA, JUCO, AQ_B and SALI, there is not a single dominated plant species neither for CAVU nor for AQ_A (TableA.1). Worse F1-score is obtained by Pinguicula sp. (PING) ( 54 %) which is not dominated by only one plant species: this vegetation type is mainly dominated by Eleocharis quinqueflora (ELQU) (40 %), bare ground (15 %), Molinia caerulea ssp caerulae (10 %) and Tomenthypnum nitens (10 %). It can explain the difficulty to identify this vegetation type in particular rather than the low number of spectra: PING has 8 spectra whereas AQ_B has 7 spectra.

		350-750 nm 750-1350 nm 1410-1810 nm 1940-2400 nm 350-2500 nm
	Spectral signature	47.23	47.66	37.87	34.47	57.02
	First Derivative	59.15	64.68	60.43	55.74	74.47
	Second Derivative	72.34	69.79	72.34	53.19	81.70
	CRDR	74.47	57.87	59.57	59.57	78.30

Considering classification accuracy for each vegetation type, Table

10

shows that best F1-score is obtained by Sphagnum sp. (SPHA) ( 98 %), Juniperus communis (JUCO) ( 97 %), Aquatic type b (AQ_B) ( 93 %) and Salix sp. (SALI) ( 92 %). Excepting JUCO, all of these vegetation types are well classified and their user's accuracy is higher than 85 %. Indeed these vegetation types are less mixed than others: Table

A

.1 shows that SPHA is mainly dominated by different kinds of sphagnum; AQ_B is dominated by Utricularia sp; JUCO is dominated by Juniperus communis and SALI is dominated by Salix. Only 3 other vegetation types have user's accuracy equal to 100 %: Rhododendron ferrugineum (RHFR),

Table 10 .

 10 Confusion matrix of the classification based on Second derivative, Canberra Distance on [350-2500 nm] with Median reflectance as reference spectral database. The producer's and user's accuracies, the overall accuracy and the F1-score are also shown. Table13) because AQ_B vegetation type is mainly composed of Utricularia sp. and water (TableA.1). The AQ_B spectral signatures are lower than the spectral reflectance values of the other vegetation types and the water absorption band at 900 nm and 970 nm are highlighted.

		SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUQO ELQU METR PI_CV AQ_B AQ_C Producer's accuracy (%)
	SPHA	22	0	0	0	0	0	0	0	0	0	0	0	0	100.00
	CAVU	0	8	0	2	0	0	1	0	0	0	3	0	0	57.14
	RHFR	0	0	11	0	0	3	0	0	0	0	0	0	0	78.57
	CA_HV	0	0	0	22	0	0	1	0	1	0	3	0	0	81.48
	AQ_A	0	0	0	0	30	0	8	0	3	4	1	1	6	56.60
	SALI	0	0	0	0	0	17	0	0	0	0	0	0	0	100.00
	PING	0	0	0	1	0	0	7	0	0	0	0	0	0	87.50
	JUCO	0	0	0	0	0	0	0	18	0	0	1	0	0	94.74
	ELQU	0	0	0	1	0	0	0	0	13	1	0	0	0	86.67
	METR	1	0	0	0	0	0	0	0	0	11	0	0	0	91.67
	PI_CV	0	0	0	0	0	0	1	0	0	0	14	0	0	93.33
	AQ_B	0	0	0	0	0	0	0	0	0	0	0	7	0	100.00
	AQ_C	0	0	0	0	0	0	0	0	0	0	0	0	12	100.00
	User's accuracy (%) 95.65	100.00	100.00	84.62	100.00 85.00 38.89	100.00 76.47	68.75	63.64	87.50	66.67	Overall accuracy: 81.70
	F1-score (%)	97.78	72.73	88.00	83.02	72.29	91.89 53.85	97.30	81.25	78.57	75.68	93.33	80.00	

are drawn). The best vegetation index (NDWI

[860, 2130]

) only allows us to discriminate 49 pairs of vegetation types, that may be explained by the plant species mixing within several vegetation types. The proposed method reduced the number of selected indices from 129 to 26 (Table

11

). More precisely, on the first step of the method, only 17 single indices amongst 26 are needed to discriminate 59 pairs of vegetation types amongst 78. On the second step, these single indices must be completed by 7 additional spectral vegetation indices to discriminate 17 more pairs of vegetation types (Table

12

; ∅ means either a pair of vegetation type can not be discriminated thanks to a pair of spectral vegetation indices built from single ones selected on the first step, either more than two vegetation indices are needed to discriminate a pair of vegetation type). On the last step, a single index is added to discriminate two vegetation types whereas a combination of previous selected indices allows us to discriminate another pair of vegetation type (Table

11

). Finally several different -single or pair or triplet -vegetation indices allow us to discriminate pairs of vegetation types. However, none single spectral index allows us to discriminate all pairs of vegetation types nor the majority: e.g. the most discriminating single spectral index, the Water Index (WI), only discriminates around 45 % pairs of vegetation types (Table

11

).

Table

13

shows that one single biophysical component can discriminate most of vegetation types except Carex sp. homogeneous vegetation (CA_HV). More precisely, three kinds of vegetation types (Sphagnum sp. (SPHA), Aquatic type b (AQ_B) and Aquatic type c (AQ_C)) are separated thanks to a single biophysical component. However, some biophysical components are more discriminant than others according to vegetation types: e.g. the chlorophyll is more discriminant than the water content for AQ_C whereas the water content is the only discriminant biophysical component for AQ_B ; the water content, the chlorophyll and water, cellulose, starch, lignin (w., c., s., l.) equally discriminate SPHA from all other vegetation types.

Only two indices related to water content are needed to separate AQ_B from all other vegetation types: WI and NDWI[860,1240] (Boochs2 index, they can be discriminated thanks to a water index (right side of Figure

8

shows that those vegetation types can be clearly separated ; indeed, those vegetation types have different shapes and values that characterize each type).

Table 11 .

 11 Single selected indices from the Hellinger distance and their occurrences.

	Biophysical component	Index name	No. of all occurrences No. of single occurrences No. of occurrences within pair No. of occurrences within triple
		CCCI *	35	24	10
		GMI *	33	25	8
		DPI * *	33	16	17
		NDVI[750,705] * *	32	25	7
	Chlorophyll	BOOCHS2 * SR[700,670] *	32 31	24 25	8 6
		OSAVI[800,670] *	31	20	8
		DDN * *	26	18	8
		MNDVI[800,680] *	23	18	5
		GITELSON * * *	13	5	5
		WI *	40	33	6
		MSI *	39	31	8
	Water	NDWI[860,1240] * NDII * *	38 38	31 28	7 9
		NDWI[860,2130] *	35	24	11
		NDWI[1100,1450] * *	32	22	10
	Stress	CARTER[695,670] * CARTER[695,420] * *	36 36	26 16	9 20
	Pigment	MARI * PRI *	75 35	13 9	62 26
	Nitrogen	NDNI * MCARI/MTVI2[750,705] * *	37 30	18 22	19 8
	(Total pigments)/chlorophyll	NPCI * SRPI *	31 29	18 16	13 13
	Water, cellulose, starch, lignin	F_1D * F_WP *	89 20	27 15	62 5

Table 12 .

 12 Single spectral index or pairs of spectral indices retained to discriminate vegetation types pairs. a pair of vegetation type can not be discriminated thanks to a pair of spectral vegetation indices built from single ones selected on the first step, either more than two vegetation indices are needed to discriminate a pair of vegetation type.

			CAVU	RHFR	CA_HV		AQ_A	SALI
	SPHA		F_WP	F_WP	WI		OSAVI[800,670]	F_WP
	CAVU		-	∅		∅		F_1D	∅
	RHFR		NPCI-F_1D	-		∅		∅	∅
	CA_HV		MARI-WI	CARTER[695, 670]-MCARI/MTVI2[750, 705]	-		∅	∅
	AQ_A		-	F_1D-WI	NDNI-NDWI[1100,1450]	-	∅
	SALI	CARTER[695, 420]-NDII	CARTER[695, 670]-BOOCHS2	SRPI-NDVI[750,705]	F_1D-MSI	-
	PING		-	-		NDNI-WI	DDN-NDWI[860,2130]	-
	JUCO		-	F_1D-WI	-		-	-
	ELQU		-	-		MARI-WI	MARI-MSI	-
	METR		-	-		CCCI-NDWI[860,1240]	-	-
	PI_CV		-	-		-		-	-
	AQ_B		-	-		-		-	-
	∅ means either PING	JUCO	ELQU	METR	PI_CV	AQ_B	AQ_C
	SPHA		MSI	F_WP	CCCI	CCCI	WI	WI	OSAVI[800,670]
	CAVU	GMI	MARI	CCCI	GMI	GMI	WI	SR[700, 670]
	RHFR	MNDVI[800, 680]	∅	SRPI	CCCI	WI	WI	MNDVI[800, 680]
	CA_HV		∅	F_WP		∅	∅	∅	WI	CCCI
	AQ_A		∅	F_1D		∅	∅	NDNI	WI	MSI
	SALI	NPCI	F_WP	NPCI	NPCI	NPCI	WI	MNDVI[800,680]
	PING		-	NDWI[860, 2130]	PRI	∅	BOOCHS2	NDWI[860,1240]	BOOCHS2
	JUCO		-	-	F_WP	F_WP	F_WP	WI	MNDVI[800,680]
	ELQU		-	-		-	MARI	CARTER[695,420] NDWI[860,1240]	BOOCHS2
	METR	DPI-F_1D	-		-	-	∅	NDWI[860,1240]	BOOCHS2
	PI_CV		-	-		-	PRI-WI	-	NDWI[860,1240]	OSAVI[800,670]
	AQ_B		-	-		-	-	-	-	NDWI[860,1240]

Table 13 .

 13 Single main discriminating biophysical components for each vegetation type and their occurrences (%).

	Biophysical components	SPHA CAVU RHFR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B AQ_C
	Water	33.33	8.33	16.67	16.67	16.67	8.33	25.00	16.67	8.33	8.33	25.00 100.00	16.67
	Chlorophyll	33.33	41.67	25.00	8.33	8.33	8.33	33.33	8.33	25.00	33.33	25.00	0.00	83.33
	Stress	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.33	0.00	8.33	0.00	0.00
	Nitrogen	0.00	0.00	0.00	0.00	8.33	0.00	0.00	0.00	0.00	0.00	8.33	0.00	0.00
	Pigment	0.00	8.33	0.00	0.00	0.00	0.00	8.33	8.33	16.67	8.33	0.00	0.00	0.00
	(Total pigments)/chlorophyll	0.00	0.00	8.33	0.00	0.00 33.33	8.33	0.00	16.67	8.33	8.33	0.00	0.00
	W., c., s., l.	33.33	16.67	8.33	8.33	16.67 16.67	0.00	58.33	8.33	8.33	8.33	0.00	0.00
	Total	100.00	75.00	58.33	33.33	50.00 66.67	75.00	91.67	83.33	66.67	83.33 100.00 100.00
	W., c., s., l. = Water, cellulose, starch, lignin.												

Table 14 .

 14 Pairs of main discriminating biophysical components for each vegetation type and their occurrences (%).

	Biophysical components	CAVU RHFR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV
	Water -chlorophyll	0.00	0.00	8.33	8.33	0.00	8.33	0.00	0.00	8.33	0.00
	Water -stress	8.33	0.00	0.00	0.00	8.33	0.00	0.00	0.00	0.00	0.00
	Water -nitrogen	0.00	0.00	16.67	8.33	0.00	8.33	0.00	0.00	0.00	0.00
	Water -pigment	8.33	0.00	16.67	8.33	0.00	0.00	0.00	16.67	8.33	8.33
	Water -w., c., s., l.	0.00	16.67	0.00	16.67	8.33	0.00	8.33	0.00	0.00	0.00
	Chlorophyll -stress	0.00	8.33	0.00	0.00	8.33	0.00	0.00	0.00	0.00	0.00
	Chlorophyll -(total pigments)/chlorophyll	0.00	0.00	8.33	0.00	8.33	0.00	0.00	0.00	0.00	0.00
	Chlorophyll -w., c., s., l.	0.00	0.00	0.00	0.00	0.00	8.33	0.00	0.00	8.33	0.00
	Stress -nitrogen	0.00	8.33	8.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	(Total pigments)/chlorophyll -w., c., s., l.	8.33	8.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

W., c., s., l. = Water, cellulose, starch, lignin.

  In some case, there is no single biophysical component allowing us to discriminate vegetation types: e.g. both water content (33.33 %), chlorophyll (33.33 %) and w., c., s., l. (33.33 %) are needed to distinguish SPHA from all other vegetation types. More precisely, biophysical components related to water (WI, MSI) are discriminating SPHA from CA_HV, Pinguicula sp. (PING), Pinguicula sp. combined vegetation (PI_CV) and

	AQ_B ; biophysical components related to chlorophyll (CCCI, OSAVI[800,670]) are differentiating SPHA from
	AQ_A, AQ_C, Eleocharis quinqueflora (ELQU) and Menyanthes trifoliata (METR) ; biophysical components related
	to w., c., s., l. (F_WP) are separating SPHA from Calluna vulgaris (CAVU), Rhododendron ferrugineum (RHFR),
	Salix sp. (SALI) and Juniperus communis (JUCO) (Table

Table 17

 17 show that PING has the lowest F1-score (20.99 % and 33.13 % respectively) which can be explained by the mixed composition of this habitat (TableB) and not the low number of spectra. Indeed, AQ_B has about the same number of spectra: 7 spectra whereas 8 spectral measurements have been collected for PING. Yet it has a F1-score = 91.95 % considering all indices and F1-score = 91.66 % considering indices selected by the Hellinger distance that can be explained by its composition dominated by Utricularia sp.Focusing on shrubs, JUCO has the best performances (F1-score = 94.83 %) whereas SALI and RHFR are often confounded. Table17shows that on average 2.53 spectra of RHFR ( 20.02 %) are classified as SALI and

on average 2.30 spectra of SALI ( 19.15 %) are classified as RHFR. Indeed, as JUCO has a higher foliage density, the overall spatial signature is less sensitive to the ground influence and as a result JUCO spectral reflectance is close to a pure endmember (Appendix B). In the latter case, the spectral measurements are composed of soil and more affected by mixed signatures. Another pair of vegetation types is hardly discriminated: PI_CV and CA_HV. Table

17

shows that on average 4.93 spectra of CA_HV ( 25 %) are classified as PI_CV which may be explained by the plant species they have in common: Carex (50 %-100 % depending on the location) and Molinia caerulea ssp. caerulae (40 %-70 %) (Appendix B).

Table 15 .

 15 Vegetation types identification (overall accuracy (± standard deviation) in %) with indices.

	Training size	Classifier	Overall accuracy (± Standard deviation) (%) All indices Kruskal-Wallis Hellinger distance
		SVM linear	79.17 (± 3.51)	75.45 (± 3.95)	83.31 (± 3.95)
		SVM RBF	77.63 (± 2.82)	75.45 (± 3.65)	83
	50 %			

.55(±3.65) RLR-1 80.58(±3.05) 78.37(±3.54)

  

					82.84 (± 3.54)
		RLR-2	80.55 (± 3.33)	78.07 (± 3.48)	83.22 (± 3.48)
		RF	78.71 (± 3.34)	71.05 (± 3.56)	81.60 (± 3.56)
		SVM linear	78.44 (± 3.09)	74.82 (± 3.86)	82.46 (± 3.86)
		SVM RBF	76.59 (± 4.39)	74.49 (± 4.53)	83.21 (± 4.53)
	45 %	RLR-1	80.26(±4.25)	77.26 (± 4.16)	83.51(±4.16)
		RLR-2	79.85 (± 3.36)	77.64(±3.80)	83.13 (± 3.80)
		RF	77.26 (± 4.14)	70.33 (± 3.04)	80.26 (± 3.04)
		SVM linear	76.95 (± 3.59)	73.33 (± 3.48)	81.89 (± 3.48)
		SVM RBF	76.28 (± 3.27)	73.43 (± 3.84)	81.68 (± 3.84)
	40 %	RLR-1	79.69 (± 3.43)	77.72 (± 3.62)	83.19(±3.62)
		RLR-2	79.74(±2.47)	78.25(±3.34)	82.97 (± 3.34)
		RF	76.86 (± 3.41)	70.34 (± 3.96)	80.96 (± 3.96)
		SVM linear	76.02 (± 3.35)	70.41 (± 3.57)	80.02 (± 3.57)
		SVM RBF	73.44 (± 4.38)	71.02 (± 4.17)	79.20 (± 4.17)
	35 %	RLR-1	74.98 (± 2.74)	74.87 (± 3.78)	80.89 (± 3.78)
		RLR-2	77.25(±2.80)	75.06(±2.76)	81.04(±2.76)
		RF	75.32 (± 3.32)	67.79 (± 3.55)	79.37 (± 3.55)
		SVM linear	73.62 (± 3.84)	70.53 (± 3.18)	78.34 (± 3.18)
		SVM RBF	72.71 (± 2.82)	69.68 (± 4.33)	79.13 (± 4.33)
	30 %	RLR-1	74.08 (± 4.03)	73.66(±3.23)	79.25 (± 3.23)
		RLR-2	75.74(±3.99)	73.39 (± 3.33)	80.36(±3.33)
		RF	72.53 (± 2.60)	66.00 (± 2.74)	77.17 (± 2.74)
		SVM linear	71.37 (± 3.18)	68.38 (± 3.44)	75.91 (± 3.44)
		SVM RBF	69.85 (± 3.54)	67.63 (± 2.67)	75.76 (± 2.67)
	25 %	RLR-1	69.42 (± 4.06)	70.90 (± 3.34)	76.35 (± 3.34)
		RLR-2	73.31(±3.34)	71.22(±3.72)	77.21(±3.72)
		RF	70.79 (± 2.95)	65.10 (± 3.31)	75.05 (± 3.31)

Table 16 .

 16 Confusion

	SPHA	15.20	0.73	0.43	0.33	0.00	0.17	0.00	0.00	0.07	0.03	0.03	0.00	0.00	89.46
	CAVU	2.30	6.20	0.67	0.83	0.00	0.07	0.30	0.20	0.17	0.10	0.17	0.00	0.00	56.31
	RHFR	1.13	0.77	4.20	0.00	0.07	1.67	0.70	1.57	0.50	0.17	0.23	0.00	0.00	38.15
	CA_HV	0.00	0.17	0.00	12.17	1.03	0.00	0.53	0.07	0.57	0.57	4.90	0.00	0.00	60.82
	AQ_A	0.00	0.00	0.07	0.47	33.40	0.20	0.83	0.00	0.80	1.60	1.00	0.17	1.47	83.48
	SALI	0.00	0.30	1.00	0.13	1.33	8.57	0.23	0.00	0.30	0.40	0.70	0.00	0.03	65.97
	PING	0.00	0.23	0.23	1.57	1.13	0.00	1.10	0.00	0.60	0.27	0.83	0.00	0.03	18.36
	JUCO	0.07	0.00	0.10	0.00	0.13	0.00	0.10	13.40	0.00	0.00	0.20	0.00	0.00	95.71
	ELQU	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	10.93	0.00	0.00	0.00	0.00	99.36
	METR	0.07	0.00	0.00	1.17	1.40	0.00	0.23	0.00	0.63	4.43	1.03	0.00	0.03	49.28
	PI_CV	0.00	0.00	0.07	1.83	0.40	0.03	0.37	0.00	0.03	0.10	8.03	0.00	0.13	73.07
	AQ_B	0.23	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.07	4.40	0.00	88.00
	AQ_C	0.00	0.07	0.00	0.10	0.67	0.03	0.03	0.00	0.00	0.07	0.30	0.00	7.73	85.89
	User's accuracy (%) 80.00	73.20	62.04	65.43	83.79	79.80 24.50	87.93	74.86	57.24	45.91	96.28	82.06	OAA: 73.31
	F1-score (%)	84.47	63.66	47.24	63.04	83.64	72.23 20.99	91.66	85.39	52.96	56.39	91.95	83.93	
	4.3. Supervised classification according to the spectral ranges							
	Only the best results are presented, obtained with the four spectral ranges ([350-750 nm], [750-1350 nm],

matrix of the classification based on RLR-2 with all indices and training size = 25 %. The producer's and user's accuracies and the overall accuracy average (OAA) are also shown. SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B AQ_C Producer's accuracy (%)

Table 17 .

 17 Confusion matrix of the classification based on RLR-2 with indices selected by the Hellinger distance and training size = 25 %. The producer's and user's accuracies and the overall accuracy average (OAA) are also shown.

		SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B	AQ_C Producer's accuracy (%)
	SPHA	15.40	0.90	0.13	0.47	0.00	0.00	0.00	0.00	0.03	0.07	0.00	0.00	0.00	90.59
	CAVU	0.90	8.03	0.67	0.47	0.00	0.03	0.70	0.00	0.03	0.03	0.13	0.00	0.00	73.07
	RHFR	0.47	0.30	6.70	0.03	0.00	2.53	0.43	0.20	0.13	0.20	0.00	0.00	0.00	60.96
	CA_HV	0.00	0.17	0.20	11.93	0.77	0.00	0.77	0.03	0.57	0.63	4.93	0.00	0.00	59.65
	AQ_A	0.00	0.00	0.23	0.40	33.40	0.43	1.50	0.03	0.43	1.63	1.33	0.00	0.60	83.54
	SALI	0.00	0.00	2.30	0.00	0.87	7.77	0.80	0.07	0.03	0.40	0.60	0.00	0.17	59.72
	PING	0.00	0.27	0.17	1.67	0.37	0.00	2.20	0.00	0.17	0.40	0.73	0.00	0.03	36.61
	JUCO	0.00	0.03	0.20	0.07	0.10	0.17	0.07	12.93	0.00	0.07	0.37	0.00	0.00	92.29
	ELQU	0.00	0.00	0.00	0.07	0.00	0.00	0.33	0.00	10.60	0.00	0.00	0.00	0.00	96.36
	METR	0.00	0.00	0.03	0.87	0.73	0.00	0.07	0.00	0.03	6.23	1.03	0.00	0.00	69.30
	PI_CV	0.00	0.00	0.10	1.23	0.17	0.07	0.23	0.00	0.00	0.37	8.83	0.00	0.00	80.27
	AQ_B	0.03	0.00	0.47	0.00	0.10	0.00	0.07	0.00	0.00	0.10	0.00	4.23	0.00	84.60
	AQ_C	0.00	0.00	0.00	0.03	0.47	0.00	0.10	0.00	0.00	0.00	0.00	0.00	8.40	93.33
	User's accuracy (%) 91.67	82.78	59.82	69.20	90.32	70.64 30.26	97.51	88.19	61.50	49.19	100.00 91.30	OAA: 77.21
	F1-score (%)	91.12	77.62	60.39	64.07	86.80	64.72 33.13	94.83	92.09	65.17	61.00	91.66	92.31	

Table 18 .

 18 Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on [350-750 nm].

	Training size	Classifier		Overall accuracy (± Standard deviation) (%)	Continuum
			Spectral signature Second derivative	First derivative	Removed Derivative
						Reflectance
		SVM linear	80.99 (± 6.61)	86.94 (± 5.21)	85.95 (± 3.81)	88.26(±2.53)
		SVM RBF	67.44 (± 4.69)	78.35 (± 2.74)	81.32 (± 2.13)	86.94 (± 3.11)
	50 %	RLR-1 RLR-2	86.45 (± 3.57) 88.10(±3.64)	86.94 (± 4.10) 88.43(±2.02)	89.75 (± 2.48) 90.91(±2.86)	86.94 (± 1.76) 87.44 (± 1.84)
		RF	62.98 (± 3.52)	84.79 (± 4.92)	73.88 (± 2.84)	86.45 (± 4.07)
		PLS-DA	75.21 (± 3.88)	71.90 (± 4.99)	73.72 (± 3.52)	75.04 (± 3.28)
		SVM linear	81.38 (± 4.80)	85.85 (± 1.79)	84.62 (± 1.54)	87.69(±1.88)
		SVM RBF	64.15 (± 2.41)	73.54 (± 4.71)	76.92 (± 2.06)	86.00 (± 1.02)
	45 %	RLR-1 RLR-2	83.85 (± 4.01) 85	84.00 (± 2.64)	85.85 (± 4.63)	86.00 (± 1.57)

.85(±2.78) 86.92(±2.01) 87.08(±2.64)

  

					85.69 (± 1.66)
	RF	59.85 (± 3.35)	82.31 (± 4.43)	72.46 (± 3.13)	85.23 (± 3.13)
	PLS-DA	75.38 (± 2.18)	72.62 (± 2.86)	72.15 (± 1.23)	71.08 (± 2.60)
	SVM linear	75.97 (± 4.31)	83.60 (± 3.23)	84	
	40 %				

.89(±2.69) 87.77(±2.77)

  

		SVM RBF	62.45 (± 3.07)	73.09 (± 4.50)	72.52 (± 4.69)	83.45 (± 2.41)
		RLR-1	80.72 (± 2.06)	82.16 (± 1.47)	83.88 (± 2.83)	82.73 (± 1.11)
		RLR-2	84.46(±3.48)	85.18(±3.17)	84.60 (± 3.85)	84.32 (± 1.79)
		RF	56.69 (± 1.95)	80.29 (± 4.50)	70.36 (± 3.17)	83.74 (± 2.93)
		PLS-DA	76.69 (± 2.75)	72.52 (± 1.79)	72.81 (± 1.32)	70.22 (± 1.62)
		SVM linear	69.74 (± 7.38)	80.52(±5.15)	80.00 (± 3.22)	83.77(±2.63)
		SVM RBF	56.23 (± 3.09)	68.05 (± 4.01)	68.31 (± 3.86)	80.39 (± 2.07)
	35 %	RLR-1 RLR-2	77.92 (± 4.11) 82.08(±2.80)	77.79 (± 3.37) 78.96 (± 3.55)	80.00 (± 4.78) 82.47(±3.36)	79.74 (± 3.35) 81.69 (± 2.07)
		RF	53.25 (± 3.05)	77.27 (± 3.15)	67.27 (± 2.12)	80.52 (± 2.17)
		PLS-DA	75.45 (± 3.42)	69.48 (± 2.63)	70.52 (± 2.12)	68.70 (± 1.71)
		SVM linear	70.42 (± 3.08)	79.52(±5.22)	79.64 (± 1.78)	84.48(±1.82)
		SVM RBF	55.39 (± 5.74)	67.03 (± 4.17)	68.61 (± 3.48)	80.73 (± 1.50)
	30 %	RLR-1 RLR-2	78.30 (± 2.08) 80.85(±2.98)	74.91 (± 7.86) 77.33 (± 9.20)	77.94 (± 3.77) 81.94(±3.42)	78.79 (± 6.37) 81.70 (± 4.01)
		RF	54.30 (± 1.86)	76.97 (± 4.58)	68.00 (± 0.97)	79.88 (± 3.33)
		PLS-DA	72.00 (± 3.54)	69.09 (± 4.58)	68.73 (± 3.20)	68.48 (± 4.85)
		SVM linear	65.65 (± 4.57)	74.69(±2.46)	74.46 (± 2.33)	80.45(±2.49)
		SVM RBF	52.54 (± 5.26)	60.45 (± 5.24)	63.28 (± 4.33)	78.42 (± 3.36)
	25 %	RLR-1 RLR-2	75.59 (± 2.49) 77.74(±3.81)	71.98 (± 3.33) 72.99 (± 6.61)	75.25 (± 4.25) 79.77(±3.79)	75.25 (± 4.92) 77.63 (± 2.52)
		RF	52.66 (± 4.40)	73.79 (± 1.41)	65.42 (± 1.69)	77.40 (± 2.34)
		PLS-DA	71.53 (± 0.92)	69.72 (± 3.96)	70.40 (± 2.44)	70.40 (± 4.18)

Table 19 .

 19 Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on [750-1350 nm].

	Training size	Classifier		Overall accuracy (± Standard deviation) (%)	Continuum
			Spectral signature Second derivative	First derivative	Removed Derivative
						Reflectance
		SVM linear	83.31 (± 1.10)	89.09 (± 2.05)	90.91 (± 1.38)	84.13 (± 2.42)
		SVM RBF	57.69 (± 4.03)	79.34 (± 4.37)	87.60 (± 2.34)	78.68 (± 2.93)
	50 %	RLR-1 RLR-2	90.41(±2.00) 86.28 (± 3.25)	88.76 (± 2.19) 91.07(±1.42)	89.92 (± 1.42) 94.88(±1.10)	87.44 (± 2.42) 90.91(±2.45)
		RF	53.88 (± 2.05)	86.28 (± 1.70)	79.83 (± 1.44)	80.66 (± 1.53)
		PLS-DA	77.52 (± 2.30)	73.72 (± 1.91)	77.69 (± 2.96)	70.74 (± 2.84)
		SVM linear	78.15 (± 5.43)	84.15 (± 1.86)	86.31 (± 4.17)	82.77 (± 3.85)
		SVM RBF	59.54 (± 2.21)	72.77 (± 3.82)	82.77 (± 4.20)	75.85 (± 2.31)
	45 %	RLR-1 RLR-2	86.46(±3.46) 85.23 (± 3.49)	85.38 (± 3.67) 85.69(±2.86)	87.69 (± 2.43) 90.46(±2.46)	82.92 (± 1.78) 85.85(±1.58)
		RF	53.54 (± 1.79)	80.15 (± 2.73)	76.77 (± 3.87)	77.54 (± 2.20)
		PLS-DA	73.54 (± 3.97)	70.46 (± 2.31)	74.15 (± 3.56)	68.15 (± 3.53)
		SVM linear	77.70 (± 5.46)	80.72 (± 3.98)	83.88 (± 3.82)	80.43 (± 6.11)
		SVM RBF	58.85 (± 2.20)	69.64 (± 4.20)	80.29 (± 3.04)	72.95 (± 1.62)
	40 %	RLR-1 RLR-2	85.32(±3.88) 82.88 (± 2.25)	84.46 (± 3.60) 86.19(±2.38)	88.06 (± 3.24) 89.64(±3.39)	81.29 (± 2.91) 82.73(±3.83)
		RF	53.24 (± 2.61)	77.99 (± 2.75)	74.96 (± 3.29)	73.96 (± 3.48)
		PLS-DA	72.09 (± 1.54)	72.09 (± 2.89)	74.96 (± 3.07)	68.35 (± 3.61)
		SVM linear	72.86 (± 4.33)	78.44 (± 4.81)	80.65 (± 4.47)	75.84 (± 2.83)
		SVM RBF	55.06 (± 2.03)	67.14 (± 4.69)	76.23 (± 3.50)	66.88 (± 2.87)
	35 %	RLR-1 RLR-2	80.39(±3.71) 78.57 (± 3.46)	79.22 (± 3.60) 82	84.55 (± 2.89)	73.90 (± 3.27)

.86(±5.61) 87.27(±3.22) 78.57(±4.19)

  

		RF	52.99 (± 2.08)	73.64 (± 2.89)	73.51 (± 3.00)	69.61 (± 3.14)
		PLS-DA	70.65 (± 2.80)	70.52 (± 2.92)	72.47 (± 3.66)	66.23 (± 2.82)
		SVM linear	74.18 (± 1.70)	80.48 (± 3.37)	81.58 (± 2.83)	75.39 (± 2.53)
		SVM RBF	55.27 (± 2.93)	70.06 (± 3.81)	76.24 (± 4.72)	67.39 (± 7.39)
	30 %	RLR-1 RLR-2	80.97(±1.19) 80.00 (± 3.49)	79.88 (± 2.61) 83	84.73 (± 3.05)	76.12 (± 1.61)

.88(±3.38) 87.64(±3.31) 78.79(±2.06)

  

		RF	52.00 (± 1.69)	74.42 (± 2.58)	73.21 (± 2.61)	70.55 (± 2.35)
		PLS-DA	72.36 (± 3.69)	70.06 (± 4.35)	73.45 (± 3.31)	64.48 (± 0.82)
		SVM linear	67.80 (± 3.52)	75.48 (± 2.59)	78.19 (± 1.37)	73.11 (± 0.68)
		SVM RBF	53.11 (± 2.20)	60.90 (± 3.90)	69.94 (± 3.63)	66.78 (± 2.98)
	25 %	RLR-1 RLR-2	75.14 (± 3.31) 76.84(±2.88)	77.29 (± 2.93) 78.87(±3.46)	80.90 (± 2.46) 83.05(±4.55)	72.77 (± 1.65) 76.95(±2.66)
		RF	48.59 (± 4.14)	71.64 (± 3.87)	73.11 (± 2.04)	69.83 (± 2.36)
		PLS-DA	70.62 (± 2.70)	69.83 (± 0.68)	72.09 (± 2.28)	63.95 (± 3.12)

Table 20 .

 20 Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) in [350-1350 nm].

	Training size	Classifier		Overall accuracy (± Standard deviation) (%)	Continuum
			Spectral signature Second derivative	First derivative	Removed Derivative
						Reflectance
		SVM linear	83.47 (± 2.77)	93.22 (± 0.96)	92.40 (± 1.42)	91.57 (± 2.24)
		SVM RBF	69.75 (± 2.98)	55.04 (± 4.10)	76.20 (± 4.66)	78.02 (± 1.53)
	50 %	RLR-1 RLR-2	89.26 (± 1.65) 91.07(±3.56)	92.73 (± 1.69) 94.05(±1.32)	94.05 (± 2.63) 96.36(±2.00)	90.41 (± 1.34) 94.05(±1.76)
		RF	69.75 (± 2.80)	90.25 (± 1.91)	85.45 (± 1.44)	89.26 (± 2.45)
		PLS-DA	78.51 (± 2.45)	80.83 (± 2.05)	81.49 (± 2.80)	79.17 (± 2.24)
		SVM linear	80.15 (± 4.02)	87.38 (± 2.15)	88.62 (± 3.05)	91.54 (± 1.61)
		SVM RBF	65.69 (± 3.91)	49.38 (± 3.87)	67.54 (± 4.70)	72.77 (± 2.31)
	45 %	RLR-1 RLR-2	86.31 (± 3.49) 90.15(±3.35)	90.46 (± 1.43) 92.15(±2.09)	90.15 (± 3.01) 92.77(±1.73)	88.62 (± 0.58) 91.85(±2.21)
		RF	65.54 (± 3.99)	85.85 (± 3.25)	81.54 (± 3.08)	86.31 (± 4.28)
		PLS-DA	78.15 (± 1.79)	79.85 (± 3.17)	79.69 (± 2.04)	76.92 (± 1.54)
		SVM linear	77.55 (± 3.71)	86.76 (± 1.62)	88.49 (± 3.44)	89.93(±4.07)
		SVM RBF	63.31 (± 3.37)	50.79 (± 3.60)	66.76 (± 5.62)	69.35 (± 3.24)
	40 %	RLR-1 RLR-2	83.17 (± 1.91) 87.48(±2.79)	88.06 (± 1.33) 91.22(±0.95)	89.64 (± 1.33) 91.80(±1.41)	85.04 (± 3.26) 89.64 (± 1.96)
		RF	64.60 (± 2.51)	84.46 (± 3.17)	80.86 (± 2.64)	85.32 (± 4.70)
		PLS-DA	77.99 (± 1.68)	80.00 (± 2.00)	79.42 (± 1.33)	76.40 (± 1.24)
		SVM linear	68.05 (± 5.02)	83.90 (± 3.77)	84.16 (± 2.68)	85.58 (± 2.74)
		SVM RBF	59.61 (± 3.06)	44.03 (± 3.37)	63.12 (± 4.81)	64.03 (± 3.69)
	35 %	RLR-1 RLR-2	80.52 (± 2.25) 84	85.71 (± 2.79)	85.32 (± 2.04)	80.52 (± 5.08)

.68(±2.83) 85.97(±3.71) 89.09(±1.99) 87.27(±3.73)

  

		RF	63.25 (± 2.42)	80.26 (± 3.33)	77.92 (± 1.74)	82.21 (± 3.35)
		PLS-DA	75.58 (± 1.86)	76.36 (± 2.65)	79.61 (± 1.95)	75.19 (± 1.04)
		SVM linear	72.61 (± 1.93)	84.61 (± 3.22)	85.58 (± 1.97)	83.76 (± 4.10)
		SVM RBF	60.24 (± 2.62)	42.42 (± 3.36)	62.79 (± 7.09)	65.21 (± 3.08)
	30 %	RLR-1 RLR-2	80.48 (± 2.11) 84	82.55 (± 4.01)	85.58 (± 2.95)	83.03 (± 4.29)

.12(±4.12) 87.39(±4.76) 89.70(±4.22) 86.30(±4.48)

  

		RF	65.21 (± 3.31)	79.52 (± 4.22)	77.21 (± 1.98)	81.58 (± 3.08)
		PLS-DA	76.24 (± 3.37)	76.85 (± 4.99)	77.58 (± 4.20)	74.79 (± 3.27)
		SVM linear	70.28 (± 2.44)	80.90 (± 2.16)	83.73 (± 2.75)	82.94 (± 2.59)
		SVM RBF	51.64 (± 1.54)	39.89 (± 1.91)	52.54 (± 2.84)	61.58 (± 2.34)
	25 %	RLR-1 RLR-2	77.40 (± 1.96) 81.47(±1.10)	82.15(±3.64) 80.79 (± 4.42)	83.95(±1.70) 83.16 (± 6.33)	79.66 (± 2.02) 83.84(±3.17)
		RF	62.03 (± 3.86)	76.16 (± 3.20)	76.84 (± 1.86)	80.45 (± 3.67)
		PLS-DA	75.93 (± 2.74)	74.58 (± 2.88)	78.76 (± 2.28)	72.66 (± 2.49)

Table 21 .

 21 Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on [350-2500 nm]. RF applied on the spectral signature. In this case, considering the whole spectral range improves the result by 1 % compared with [350-1350 nm].

	Training size	Classifier		Overall accuracy (± Standard deviation) (%)	Continuum
			Spectral signature Second derivative	First derivative	Removed Derivative
						Reflectance
		SVM linear	83.47 (± 2.34)	85.29 (± 4.10)	87.44(±1.21)	91.90(±1.76)
		SVM RBF	61.98 (± 4.31)	19.34 (± 5.95)	22.81 (± 0.40)	25.12 (± 0.84)
	50 %	RLR-1 RLR-2	91.07 (± 2.30) 91.57(±1.42)	82.31 (± 3.16) 81.49 (± 2.37)	83.80 (± 3.07) 82.81 (± 2.05)	88.26 (± 1.60) 84.79 (± 2.37)
		RF	71.24 (± 2.63)	89.92(±1.98)	84.96 (± 2.42)	90.58 (± 0.40)
		PLS-DA	75.04 (± 2.05)	78.35 (± 4.91)	75.70 (± 2.98)	79.83 (± 0.84)
		SVM linear	79.08 (± 1.32)	79.38 (± 1.57)	82.31(±1.61)	90.62(±1.78)
		SVM RBF	55.38 (± 6.10)	22.31 (± 0.00)	22.46 (± 0.31)	24.15 (± 1.58)
	45 %	RLR-1 RLR-2	85.23 (± 2.25) 86.00(±2.73)	79.69 (± 2.86) 79.23 (± 2.33)	81.08 (± 2.56) 79.54 (± 2.36)	84.77 (± 2.89) 77.69 (± 3.61)
		RF	69.08 (± 4.42)	85.08(±2.46)	80.92 (± 1.32)	87.69 (± 2.96)
		PLS-DA	73.08 (± 3.34)	75.23 (± 4.31)	72.00 (± 3.29)	77.69 (± 1.88)
		SVM linear	76.12 (± 0.84)	79.42 (± 0.86)	82.30(±2.35)	88.06(±1.68)
		SVM RBF	53.24 (± 3.61)	23.02 (± 0.00)	23.45 (± 0.58)	25.18 (± 1.02)
	40 %	RLR-1 RLR-2	83.88 (± 3.69) 84.75(±2.86)	79.28 (± 1.79) 81.01 (± 3.11)	79.86 (± 3.83) 79.57 (± 2.35)	82.59 (± 3.98) 79.28 (± 3.57)
		RF	65.90 (± 3.48)	84.17(±3.34)	79.28 (± 2.67)	86.04 (± 2.60)
		PLS-DA	73.67 (± 1.85)	74.39 (± 2.07)	71.94 (± 3.75)	76.55 (± 4.31)
		SVM linear	69.74 (± 1.13)	77.27 (± 1.09)	79.87(±1.79)	84.42(±4.35)
		SVM RBF	49.87 (± 3.64)	20.00 (± 5.45)	20.13 (± 5.53)	22.21 (± 4.69)
	35 %	RLR-1 RLR-2	82.47 (± 3.74) 83.64(±3.19)	74.42 (± 2.38) 77.27 (± 2.87)	76.23 (± 2.04) 77.14 (± 1.99)	78.05 (± 1.26) 74.94 (± 2.80)
		RF	64.03 (± 3.01)	79.35(±2.83)	77.27 (± 1.23)	82.47 (± 2.82)
		PLS-DA	71.95 (± 2.19)	72.34 (± 2.27)	70.65 (± 3.57)	74.42 (± 3.20)
		SVM linear	69.94 (± 3.90)	77.33 (± 1.82)	79.64(±2.59)	84.36(±5.88)
		SVM RBF	48.85 (± 4.05)	22.42 (± 0.00)	22.42 (± 0.00)	24.12 (± 0.89)
	30 %	RLR-1 RLR-2	79.39 (± 2.24) 83.27(±3.48)	71.27 (± 3.29) 75.88 (± 4.64)	76.36 (± 3.27) 75.52 (± 3.03)	78.06 (± 5.44) 75.15 (± 4.11)
		RF	65.21 (± 3.83)	78.06(±2.22)	77.21 (± 2.67)	80.00 (± 4.25)
		PLS-DA	70.18 (± 2.80)	71.27 (± 3.61)	68.85 (± 4.67)	73.45 (± 2.58)
		SVM linear	65.31 (± 4.24)	74.24 (± 1.54)	77.51(±1.49)	83.05(±3.29)
		SVM RBF	43.05 (± 1.31)	22.60 (± 0.00)	22.60 (± 0.00)	24.07 (± 0.58)
	25 %	RLR-1 RLR-2	74.92 (± 1.70) 80.23(±0.80)	67.46 (± 3.44) 73.79 (± 3.57)	71.64 (± 2.35) 74.35 (± 2.19)	75.03 (± 5.27) 70.73 (± 1.84)
		RF	62.49 (± 4.15)	74.58(±2.14)	76.61 (± 2.22)	79.10 (± 2.95)
		PLS-DA	70.17 (± 1.40)	70.96 (± 4.00)	70.06 (± 3.24)	72.43 (± 2.64)

for

Table 22 .

 22 Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on [350-1350nm] for RLR-2 .

	Training size			Overall accuracy (± Standard deviation) (%)	Continuum	
	Spectral signature Second derivative	First derivative	Continuum Removal	Removed Derivative	log transformation
						Reflectance	
	50 %	91.07 (± 3.56)	94.05 (± 1.32)	96.36(±2.00)	89.59 (± 1.93)	94.05 (± 1.76)	93.72 (± 2.13)
	45 %	90.31 (± 3.39)	92.15 (± 2.09)	92.77(±1.73)	87.85 (± 2.59)	91.85 (± 2.21)	89.69 (± 4.03)
	40 %	87.48 (± 2.79)	91.22 (± 0.95)	91.80(±1.41)	83.31 (± 3.79)	89.64 (± 1.96)	88.35 (± 2.15)
	35 %	84.68 (± 2.83)	85.97 (± 3.71)	89.09(±1.99)	81.56 (± 3.45)	87.27 (± 3.73)	86.23 (± 3.45)
	30 %	84.24 (± 4.07)	87.39 (± 4.76)	89.70(±4.22)	82.79 (± 4.09)	86.30 (± 4.48)	84.36 (± 4.22)
	25 %	81.47 (± 1.10)	80.79 (± 4.42)	83.16 (± 6.33)	80.45 (± 2.62)	83.84(±3.17)	82.15 (± 2.13)
	shows that PLS-DA is the least sensitive classifier to training size regardless transformed spectral signatures in
	[350-1350 nm].						

Table 23

 23 shows that Pinguicula sp. (PING) has the lowest F1-score (66.67 % and 56.00 % respectively) as well as for the spectral vegetation indices (Section 4.2). Besides, this vegetation type is hardly discriminated from the other ones (Producer's accuracy (PA) = 53.33 %) and some Pinguicula sp. combined vegetation (PI_CV) spectra are classified as PING). However, it should be kept in mind that PING has a small number of spectra. Juniperus communis (JUCO), Eleocharis quinqueflora (ELQU) and Aquatic type c (AQ_C) have about the same F1-score considering spectral vegetation indices or [350-1350 nm]: less than 2 % difference. However, they have better PA on the continuous spectral range (PA = 100.00 % for JUCO; 95.56 % for AQ_C) which means that this spectral range contains discriminant wavelengths able to catch characteristic of those vegetation types. Rhododendron ferrugineum (RHFR), Carex sp. homogeneous vegetation (CA_HV), Salix sp. (SALI) and Menyanthes trifoliata (METR) have better results considering [350-1350 nm]. This can be explained by the fact that the spectral vegetation indices used have not been built for that kind of vegetation types. Further investigations can be lead to find specific indices that can discriminate those vegetation types from other ones.

Considering Aquatic type b (AQ_B) which has about the same number of spectra (7 spectra against 8 for PING), User's Accuracy (UA) = 60.98 % and some Aquatic type a (AQ_A) spectra are predicted as AQ_B ones. These poor UA results compared to one obtained by spectral vegetation indices can not be explained by the spectral domain. Indeed, the best spectra vegetation index (NDWI[860, 1240]) that discriminate AQ_A from AQ_B has both wavelengths in [350-1350 nm]. However, this result may be qualified by PA. Indeed, on [350-1350 nm] domain, UA = 100.00 % whereas UA = 84.60 % for spectral vegetation indices. Nevertheless, using a continuous spectral domain can lead to worse results for other vegetation types such as Sphagnum sp. (SPHA), Calluna vulgaris (CAVU), AQ_A: F1-score is always better considering the same classifier (RLR-2 ) applied on spectral vegetation indices selected by the Hellinger distance (SPHA: 91.12 % vs 82.80 %; CAVU: 77.62 % vs 71.43 %; AQ_A: 86.80 % vs 82.81 %). Considering SPHA, if PA = 90.59 % for spectral vegetation indices or for [350-1350 nm], the latter predicts more SPHA than observed (UA = 76.24 %) and is more confused with CAVU. This can be explained by plot 7 which is mainly composed of Calluna vulgaris (20 %), Carex rostrata (25 %), Molinia caerulea ssp. caerulae (20 %) and Sphagnum palustre (20 %) (Appendix B).

In our case, reducing feature space by selecting most discriminant wavelengths (using PCA or MNF) has not been implemented, whereas it can be an interesting track to explore to see if it improves results for RLR-2 .

  More precisely, the discriminant wavelength is located in the SWIR and all concerned vegetation indices are linked to the water status. Further investigations should be conducted on the extraction or the reduction of features of this spectral range to understand why this domain gave sometimes worse results than spectral vegetation indices depending on the vegetation type.Among the three methods, the best results are obtained considering a specific spectral domain [350-1350 nm with RLR regardless the transformed spectral signatures and the size of the training size (overall accuracy ranges from 81.47 % to 96.36 %). However, it should be of interest to apply feature reduction methods usually applied on remote sensing (such as PCA or MNF) to see it results are improved or specific spectral wavelength can be selected. To our knowledge, although not popular in remote sensing for classifying (but already used for feature selection), RLR classifier achieves best overall classification accuracy whether applied to the spectral vegetation indices selected by the Hellinger distance (77.21 %) on the [350-1350 nm] domain (83.84 %) considering training size = 25 %.Furthermore, this study showed that CRDR gave encouraging results event if it is slightly below those obtained by the first derivative and the second derivative considering RLR classifier.Considering the habitats, some vegetation types were more easily separated. For instance, JUCO had the best F1-score with the spectral vegetation indices selected by the Hellinger distance (94.83 %) or on the [350-1350 nm] (95.24 %) with RLR and the training size = 25 %. In some case this specific spectral domain gave better results (F1-score = 92.21 % whereas with spectral vegetation indices F1-score = 64.72 % for SALI) while in other case, the spectral vegetation indices gave better results (F1-score = 91.12 % whereas F1-score = 82.80 % for SPHA). As mentioned earlier, reducing feature space have to be investigated to see if a particular feature space exists that can discriminate and classify all vegetation types or if we need to consider either spectral vegetation indices or a specific spectral domain depending on the vegetation type to classify.

	Contrary to similarity measures which had best results considering the whole spectral range, supervised
	classification on specific spectral range as defined by [31] achieved best overall accuracy considering
	[350-1350 nm] domain. This is in agreement with the spectral vegetation indices: only 4 indices (NDWI[860,
	1240], NDWI[860, 2130], NDWI[1110, 1450], MSI) over the 26 selected have a discriminant wavelength which is
	not in this spectral range.

Although those indices have not been built to discriminate peatland vegetation types, they were able to classify them because they focus on biochemical properties such as chlorophyll, nitrogen, water stress, ... Further investigations have to be done to see the impact of spectral bandwidth around the wavelength of selected indices instead of working with one particular wavelength. For instance there are lots of indices that catch the same biochemical property but wavelengths of interest change because they focus on specific plant species (e.g. for the chlorophyll, SR

[700, 670] 

is built for field corn, whereas SR[675, 700] is built for soy beans leaves; contrary to SR[675, 700], SR[700,670] has been selected with the Hellinger distance).

Composition of vegetation types 553Table A . 1 .

 A1 imageries acquired in October 2012 and July 2013 would allow us to test these methods with spectral signatures extracted from the ancillary dataset. Multi-temporal analysis could also be conducted to discriminate vegetation types thanks to the phenological changes. This step would be of interest to evaluate the robustness of spectral measurements, spectral vegetation indices and classifiers selected previously from in situ hyperspectral measurements to airborne data. Presence (+) and actual cover percentage of plant species collected on Bernadouze peatbog (Ariège, France) by Florence MAZIER & Nicolas DE MUNIK (09/04/2014 & 09/11/2014).

	Appendix A. Plant Species / Plots 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	20	21	22	23	24
	Code	SPHA SPHA SPHA SPHA SPHA CAVU CAVU ELQU ELQU PING METR JUCO JUCO RHFR RHFR SALI SALI SALI AQ_A AQ_A AQ_A AQ_A AQ_A AQ_A
	Alchemilla glabra																						
	Anthoxanthum odoratum	2	2	2	1	+																	
	Apiaceae																						
	Bare ground							1	5	4	15												
	Briza media								2		+												
	Calluna vulgaris		2		5	15	70	25			+												
	Caltha palustris																5	10		2			
	Campylium stellatum								35														
	Cardamine pratensis				+							+											
	Carex demissa																						
	Carex echinata	5	2	2	+	2				+	+	5							1				
	Carex flava								+		+												
	Carex nigra	5	2	2		2				10	5												
	Carex panicea				+				+		+	5			1								
	Carex paniculata																	50					
	Carex rostrata																5			70			40	10
	Carex sp						2	25															
	Circaea lutetiana													4									
	Cirsium palustre													2									
	Dactylorhiza masculata	2				+		+							+	1							
	Drepanocladus revolvens											30											+
	Drosera rotundifolia				+	+	1					+											
	Dryopteraceae													+									
	Eleocharis quinqueflora								60	40	40											70	
	Epikeros pyrenaeus				+		+								+								
	Equisetum sp	1	+	+				+									5		5	1	30		+	+
	Eriophorum angustifolium				5		10																
	Festuca rubra				3																		
	Galium palustre																	+	2				
	Galium saxatile											1		2			5			+			
	Gentiana ciliata										+												
	Hylocomium brevirostre																	+					
	Hypnum cupressiforme													2									
	Juncus alpinus										+												
	Juncus bulbosus																						
	Juncus sp																+						
	Juniperus communis						5						95	80									
	Lathyrus montanus						5						+										
	Leotodon hispidus																						
	Lotus sp				+	2																	
	Luzula sp																						
	Lychnis floscuculi											4					+	+					
	Mentha arvensis																3			+			
	Menyanthes trifoliata											10					25	5	10	10				4
	Molinia caerulea ssp. caerulae	15	25	30	15	20	10	20	15	5	10	30		5	25				5				
	Narthecium ossifragum							2															
	Parnassia palustris					1	4	+	1		2	3					1	+					
	Pedicularis sylvatica				1	+																	
	Pilosella lactucella					+					1												
	Pinguicula sp									1													
	Pinguicula vulgaris								+		5												
	Plagiomnium elatum																+						
	Plantago lanceolata																						
	Polytrichum sp		2																				
	Potentilla erecta	5	5	5	5	10	5	6			5		2	+	5	5							
	Potentilla sp																	+					
	Prunella vulgaris					+					2												
	Ranunculus acris													+			1						
	Rhododendron ferrugineum														80	40							
	Salix atrocinerea																90	90	100				
	Scorpidium sp																						
	Selaginella selaginoides									+	1								1				
	Sphagnum capillifolium	10	5	5	70		25																
	Sphagnum cuspidatum																						
	Sphagnum palustre	90	75	65	10	80	20	20				8			50	80							
	Sphagnum papillosum		15	25																			
	Succisa pratensis							+															
	Tofieldia calyculata										+												
	Tomenthypnum nitens							3		30	10												
	Trichophorum cespitosum	+																					
	Trifolium arvense																						
	Trifolium pratense					1						1											
	Utricularia sp.																					5	
	Vaccinium myrtillus										+		3		30	15							
	Vicia sepium														+								
	Viola palustris	2													+								
	Viola sp					+								5				+					
	Water																			25	70	30	60	90

Salix sp. (SALI)

Aquatic type a (AQ_A)

Carex sp. homogeneous vegetation (CA_HV)

Pinguicula sp. combined vegetation (PI_CV)
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