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Abstract: This study aims at evaluating three classes of methods to discriminate 13 peatland vegetation types1

using reflectance data. These vegetation types were empirically defined according to their composition, strata2

and biodiversity richness. On one hand, it is assumed that same vegetation type spectral signatures have3

similarities. Consequently they can be compared to a reference spectral database. To catch those similarities,4

several similarities criteria (related to distances (Euclidean distance, Manhattan distance, Canberra distance)5

or spectral shapes (Spectral Angle Mapper) or probabilistic behaviour (Spectral Information Divergence) and6

several mathematical transformations of spectral signatures enhancing absorption features (such as the first7

derivative or the second derivative, the normalized spectral signature, the continuum removal, the continuum8

removal derivative reflectance, the log transformation) were investigated. Furthermore those similarity9

measures were applied on spectral ranges which characterize specific biophysical properties. On the other10

hand, we suppose that specific biophysical properties/components may help to discriminate vegetation types11

applying supervised classification such as Random Forest (RF), Support Vector Machines (SVM), Regularized12

Logistic Regression (RLR), Partial Least Squares-Discriminant Analysis (PLS-DA). Biophysical components can13

be used in a local way considering vegetation spectral indices or in a global way considering spectral ranges14

and transformed spectral signatures as explained above. RLR classifier applied on spectral vegetation indices15

(training size = 25 %) was able to achieve 77.21 % overall accuracy in discriminating peatland vegetation types.16

It was also able to discriminate 83.95 % vegetation types considering specific spectral range [350–1350 nm], first17

derivative of spectral signatures and training size = 25 %. Conversely, similarity criterion was able to achieve18

81.70 % overall accuracy using the Canberra distance computed on the full spectral range [350–2500 nm]. The19

results of this study suggest that RLR classifier and similarity criteria are promising to map the different20

vegetation types with high ecological values despite vegetation heterogeneity and mixture.21

Keywords: Biodiversity; peatland; vegetation type; classification; hyperspectral; in situ measurements22

1. Introduction23

Peatlands represent a diverse array of wetlands that accumulate partially decomposed organic material.24

Whilst they may only cover a small proportion (∼ 3 %) of the Earth’s land surface, these ecosystems are highly25
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important in terms of functional and ecological values. Indeed, undisturbed, global peatland systems act as26

net atmospheric carbon sinks, storing approximately a third of the world’s soil organic carbon [1], the vast27

majority of which (450–547 GtC (Gigatons of Carbon)) is held in northern peatlands (those above 45◦N [2]).28

From an ecological perspective, these environments also provide important habitats for a number of rare plant29

and animal species [3].30

Traditionally, species discrimination for floristic mapping needs intensive field work, including taxonomical31

information and the visual estimation of percentage cover for each species which are costly and time-consuming32

and sometimes inapplicable due to their poor accessibility [4]. Remote sensing is a technique that gathers data33

regularly about the earth’s features. The main advantages that make remote sensing preferable to field-based34

methods in land cover classification, are that it has repeat coverage potential, allowing continuous monitoring,35

and its digital data can be easily integrated into a geographic information system (GIS) for more analysis which36

is less costly and less time-consuming [5,6].37

Historically, aerial photography was the first remote sensing method to be employed for mapping wetland38

vegetation [7]. Currently, a variety of remotely sensed images are available for mapping wetland vegetation39

thanks to of airborne and space-borne vectors with multi-spectral sensors or hyperspectral sensors which40

operate within the different optical spectrum [8].41

Mapping and monitoring wetlands (and even though peatland) floristic diversity is really challenging.42

Indeed, both temporal and spatial resolutions of remotely sensed imageries and in situ plant diversity and43

mixing contribute to the limitation of such techniques. Wetland plants are not as easily detectable as terrestrial44

plants since herbaceous wetland vegetations exhibits high spectral and spatial variabilities because of its steep45

environmental gradients [5,8]. Besides, the reflectance spectra of wetland vegetation canopies are often very46

similar and can be combined with reflectance spectra of the underlying soil, hydrologic regime and atmospheric47

vapour [9,10].48

However, plant species have been successfully classified in estuarine [11], palustrine [12] and riparian49

habitats [13], as well in saltmarsh [5], in mangrove [14,15], in swamp [16] but not in peatlands, to our knowledge.50

Peatland mapping faces two great challenges at local and global scales due to their high environmental function51

(biodiversity hotspot, greenhouse gas fluxes, etc.): characterizing their internal diversity [8] and delineating52

their extent [17]. This study focuses on the first challenge for which only high - spectral or spatial - resolution53

imageries appear appropriate (see for instance [18–20]).54

Plant species classification can benefit from several existing and recent techniques commonly used in55

remote sensing. Two main methods are applied for vegetation discrimination: the similarity measurement56

techniques and the supervised classification methods with sometimes application of a preliminary spectral57

band reduction technique. On one hand, similarity measures enable to discriminate similar classes from a set of58

spectra, extracted from images or acquired on the field. Some spectral measures, such as the Spectral Angle59

Mapper (SAM) are related to the difference of the spectral shape (e.g. [21] identified forests of the Liege oaks60

from other forests, grain crops and steppes using the multispectral Advanced Very High Resolution Radiometer61

(AVHRR) with five bands from 580 nm to 1250 nm, 1 km spatial resolution (Overall Accuracy (OA) = 94.10 %,62

κ = 0.93); [22] discriminated tree species using the multispectral Advanced Spaceborne Thermal Emission and63

Reflection Radiometer (ASTER) sensor with 9 spectral bands from 520 nm to 2430 nm and a spatial resolution64

of 15 m or 30 m (κ = 0.66)). Other spectral measures, such as the Spectral Information Divergence (SID) are65

related to probabilistic behaviour (e.g. [23] classified different tree species at leaf and vegetation cover scales66

using the hyperspectral HyMap sensor: 126 spectral bands from 436 nm to 2485 nm and a spatial resolution67

of 4 m (OA = 91.10 %, κ = 0.87)). On the other hand, the supervised classification methods may contribute as68

well to discriminate (group of) spectral signatures for plant species discrimination. The Linear Discriminant69

Analysis (LDA) is a method assuming that independent variables are normally distributed and which attempts70

to look for linear combination of variables to model the difference between the classes of the data (e.g. [24]71

succeeded in classifying different tree species at leaf and vegetation cover scales using the HYperspectral Digital72

Imagery Collection Experiment (HYDICE) sensor with 210 spectral bands from 400 nm to 2500 nm, 1.6 m spatial73

resolution (OA = 86 % using an object-based approach)). The Random Forest is an ensemble learning method74
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based on the construction of multiple decision trees (e.g. [25] succeeded in mapping invasive plants using75

the hyperspectral Probe-1 sensor: 128 bands from 450 nm to 2507 nm, 5 m spatial resolution (OA = 86 % for76

the leafy spurge classification)). The Support Vector Machines (SVM) is a classifier that looks for the best77

separating hyperplane (e.g. [26] succeeded in classifying different tree species in boreal forest using HySpex78

VNIR-1600-instrument: 160 spectral bands ranging from 410 nm to 990 nm , with a spatial resolution of 0.4 m79

(OA = 79.2 %); [27] classified successfully tropical vegetation using the Hyperion (EO-1) sensor (OA = 80 %)).80

The Regularized Logistic Regression (RLR) is the combination of a linear model (logistic regression) and a81

regularization term. It is usually used for feature selection (e.g. [28] applied it to reduce the 64 spectral bands82

from the hyperspectral AisaEAGLE II sensor to classify tree species in boreal forest using SVM; [29] applied it83

for reducing the 79 bands from the hyperspectral Digital Airborne Imaging Spectrometer (DAIS) sensor and the84

220 bands from the hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor to classify85

different land covers using SVM) is investigated in this paper as a classifier.86

Discriminating and classifying plant species can be done. Firstly, using different techniques hyperspectral87

measurements thanks to a portable spectroradiometer (FieldSpec Pro FR, Analytical Spectral Devices – ASD)88

which ranges on the reflective domain ([350–2500 nm] with a spectral resolution of 3 nm in Visible and Near89

InfraRed (VNIR) and approximatively 10 nm in the ShortWave InfraRed (SWIR)) either on laboratory [14] or90

immediately after the leaf was cut using the leaf clip accessory [16]. This can be an indicator of the ability of91

discriminating plant species using specific wavelengths or evaluating the performance of a classifier. Then, the92

wetlands heterogeneity mixing vegetation types can be catched still using a portable spectroradiometer: [12]93

used the ASD spectroradiometer, Ground Field of View (GFOV) = 0.43 m; [5] used the GER 3700 (Geophysical94

and Environmental Research Corporation) which ranges from 350 nm to 2509 nm) with a spectral resolution of95

2 nm below 1000 nm and from 6 to 10 nm beyond 1000 nm, GFOV = 0.13 m. Secondly, with airborne imageries,96

hyperspectral sensors (SOC-700: 120 spectral bands between 394 and 890 nm with a 4 nm bandwidth and a97

spatial resolution of 0.5 m and a spatial resolution of 3 m [13]; HyMap: 128 bands in the visible and near infrared98

(VNIR: 0.45–1.50 µm with a 10 nm bandwidth) through the shortwave infrared (SWIR: 1.50–2.50 µm with a99

15–20 nm bandwidth [11]). Thirdly, with spaceborne imageries using hyperspectral sensors (Hyperion: 242100

spectral bands from 357 to 2756 nm with a spectral interval of 10 nm and a spatial resolution of 30 m [15]) or101

multispectral sensors (SPOT-5: 4 bands with 10 m resolution [15]) can be used to map wetlands.102

This study aims at inventorying and evaluating the performance of discrimination techniques for peatland103

habitats based on in situ spectra. These habitats are characterized by more or less homogeneous vegetation104

mixing and have been chosen because of their ecological values (i.e. biodiversity). As defined by [30],105

mapping these habitats is therefore important to identify potential and/or effective areas with (at least) a106

floristic biodiversity function. For instance, we do not aim at detecting Drosera rotundifolia but at mapping the107

habitat favorable to this species (Sphagnum ...). Similarity measures and classifiers were applied on spectral108

signatures and some of their transformations (first and second derivatives, continuum removal, first derivative109

of continuum removal, normalized spectral signatures, log transformation). These transformations have been110

chosen because they enhance biophysical components which may help to distinguish plant species. These111

techniques were applied on different spectral ranges that either characterize specific biophysical components112

[31]. Classifiers were applied on spectral vegetation indices, characterizing specific biophysical components113

such as chlorophyll, pigments, nitrogen, cellulose, water.114

This paper is organized as follows. After presenting the study site located in the Pyrenees (France) and115

associated data collection in Section 2, the methodology is detailed in Section 3. Then Section 4 presents and116

discussed the results of the different classifications that are suitable for distinguishing vegetation types. Finally,117

in Section 5, the conclusion summarizes main results and some perspectives are arisen for applying these118

techniques to hyperspectral imageries.119



Version July 13, 2017 submitted to Remote Sens. 4 of 59

2. Material120

2.1. Study site121

The study site is the Bernadouze peatbog (Latitude: 42◦47′ N , Longitude: 1◦24′ E ; approximatively 2 ha),122

which is part of Human-Nature Observatory “Haut-Vicdessos” located in Ariège (Pyrénées, France) (Figure 1)123

and supported by the French CNRS and the LabEx DRIIHM. It is a long term monitored study site where124

hydrological, climatological, botanical, archeological, remotely sensed surveys are regularly conducted.125

2.2. Field data collection126

In this study, thirteen vegetation units with ecological values and potentials (i.e. biodiversity) have127

been identified in the Bernadouze peatbog. These units are named hereafter “vegetation types” according to128

the dominant land cover type or to the potential development of interesting plant species which may have129

ecological values (Table 1). For each type, several locations have been surveyed to characterize their plant130

species composition (Table A.1).131

For all these 32 sample locations (Figure 1), radiances are measured at three different dates over 9 days in132

September 2014 (09/04/2014, 09/05/2014, 09/12/2014) under sunny and cloudless conditions between 10:00133

a.m. and 1:00 p.m. and Sun’s azimuth angle ranging from 106◦ and 160◦. Data have been collected using an134

Analytical Spectral Device (ASD) spectroradiometer which ranges on the reflective domain (350–2500 nm) with135

a 3–12 nm spectral resolution depending on the spectral domain. Its spectral specifications are summarized in136

Table 2.137

Figure 1. Location of the in situ spectroradiometer measurements – True color composite made from hyperspectral
(HySpex) aerial imageries acquired on the 09/12/2014 (R = 639.98 nm, G = 549.06 nm, B = 461.79 nm).

To measure the reflectance of a sample plot (ρ) the reflectance of a white reference (ρref) is required. This138

latter was obtained with a Spectralon (Labsphere, North Sutton, NH, USA) panel. Finally, after dark current139

correction, ρ is given by:140
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Table 1. Species names, number of measurements, number of locations and total number of spectra collected.

Vegetation types Code Measurements No. of No. of
09/04/2014 09/05/2014 09/12/2014 locations spectra

Calluna vulgaris CAVU 2 2 2 14
Sphagnum sp. SPHA 2 4 5 22
Eleocharis quinqueflora ELQU 1 2 1 2 15
Pinguicula sp. PING 1 1 1 8
Menyanthes trifoliata METR 1 1 1 1 12
Juniperus communis JUCO 1 2 2 2 19
Rhododendron ferrugineum RHFR 2 2 2 14
Salix sp. SALI 1 3 3 17
Aquatic environment a AQ_A 3 6 7 6 53
Aquatic environment b AQ_B 1 1 1 7
Aquatic environment c AQ_C 1 1 1 1 12
Carex sp. homogeneous vegetation CA_HV 2 2 3 4 26
Pinguicula sp. combined vegetation PI_CV 1 2 1 2 15

ρ =
Lsam

Lref
ρref, (1)

where Lsam is the measured radiance from the sample plot and Lref is the measured radiance from the white141

reference.142

The sensor was positioned approximatively 1 m over the target with a 10◦ field of view. Consequently143

the ground spatial resolution is 0.18 m. The ASD was configured to collect 20 samples and automatically144

average in order to provide a single mean spectral measurement. Then a total of 7 to 53 field spectroradiometer145

measurements, i.e. spectral signatures, depending on vegetation type was taken.146

Table 2. ASD FieldSpec Pro specifications.

Spectral range Spectral resolution Spectral sampling

VNIR (Visible and Near InfraRed) 0.35 µm− 1.00 µm 3.00 nm at 0.70 µm 1.40 nm (0.35 µm− 1.05 µm)

SWIR (Short Wave InfraRed) 1.00 µm− 2.50 µm 10 nm at 1.40 µm 2.00 nm (1.05 µm− 2.50 µm)12 nm at 2.10 µm

2.3. Data preprocessing147

Some spectral bands (1350 nm to 1450 nm, 1810 nm to 1940 nm and 2400 nm to 2500 nm) have been removed148

due to a small signal-to-noise ratio resulting from strong atmospheric absorption mainly due to the presence of149

water vapour. More precisely, if the atmospheric transmittance value of the U.S. Standard profile was lower than150

0.8 for a given wavelength, this wavelength was not taken into account in the analyse. Thus, each measured151

spectrum has been smoothed using a Savitzky-Golay filter [32] for reducing the noise. Figure 2 graphs the mean152

spectral reflectance of each vegetation type and the atmospheric transmittance. For the sake of clarity, standard153

deviation of each vegetation type is not printed on Figure 2 but can be seen in Appendix B.154

3. Method description155

The flowchart to evaluate the potential of hyperspectral data to discriminate and classify wetland vegetation156

types is given in Figure 3. More precisely, three classes of methods have been investigated and compared:157
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Figure 2. Mean spectral reflectances of the 13 vegetation types and the U.S. Standard atmospheric transmittance.

• similarity measures calculated on spectral reflectance,158

• supervised classification based on “local” information (spectral vegetation indices),159

• supervised classification based on “global” information (spectral ranges).160

Indeed, spectral matching can be used to discriminate different vegetation types, because it is assumed161

that the spectral signatures of a given vegetation type must have similarities. To catch those similarities,162

several mathematical transformations – enhancing absorption features are applied on spectral signatures –163

(Section 3.1) and several similarity criteria – related to distances or spectral shapes or probabilistic behaviour –164

(Section 3.2) are investigated. Furthermore those similarity measures are applied on several spectral ranges165

which characterize specific biophysical properties (Section 3.5) and compared to a reference spectral database166

using relative spectral discriminatory probability (Section 3.3).167

On the other hand as it may be difficult to have a spectral reference database, different supervised168

classifiers are used (Section 3.6). Besides, we assume that specific biophysical properties/components may169

help discriminating vegetation types. Biophysical components can be used in a local way considering spectral170

vegetation indices (Section 3.4) or in a global way considering spectral ranges and transformed spectral171

signatures as explained above.172

To evaluate performance of similarity measures and supervised classification, the overall accuracy and173

F1-score are used (Section 3.7).174

3.1. Transformed spectral signatures175

As vegetation types are composed by a mix of various plant species that can be found in various vegetation176

types, different transformations are used (Table 3). Brightness-normalized spectral signature and second177

derivative are relatively insensible to variations in illumination intensity causes by changes in sun angle [33,34].178

Other transformations (first derivative, second derivative, log transformation, Continuum Removal, Continuum179

Removed Derivative Reflectance (CRDR)) are linked to absorption features that may differ from one vegetation180

type to another, depending on the floristic composition.181
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In situ data: 235 spectra

Transformed spectral signatures (Section 3.1)
and spectral ranges (Section 3.5)

Vegetation
indices (Table 5)

Similarity measures
(Section 3.2)

Feature selection
(Section 3.4)

Relative spectral
discriminatory

probability
(Section 3.3)

Supervised classification (Section 3.6)

Evaluation of the performances of the discrimination techniques (Section 3.7)

Figure 3. Flowchart showing the different methods used to classify the vegetation types.

Table 3. Transformed spectral signatures.

Transformation Formulation Reference

Brightness-normalized spectral signature ρ̃i,λ =
ρi,λ(

L

∑
λ=1

ρ2
i,λ

) 1
2

, ∀λ ∈ [1, ..., L]. [33]

First derivative
dρ

dλ

∣∣∣∣
i
'

ρλj − ρλi

∆λ
, where ∆λ is the separation

between adjacent bands, ∆λ = λj − λi and
λj > λi

[34]

Second derivative
d2ρ

dλ2

∣∣∣∣∣
j

=
d

dλ

(
dρ

dλ

)∣∣∣∣
j
'

ρλi − 2ρλj + ρλk

(∆λ)2 , where

∆λ = λk − λj = λj − λi, λk > λj > λi.

[34]

log transformation or pseudo absorbance ρ̃i,λ = log
(

1
ρi,λ

)
, ∀λ ∈ [1, ..., L]. [35]

Continuum Removal CRλ =
ρλ

Cλ
, where C is a convex hull fitting over

the top of the spectrum to connect local spectrum
maxima.

[36,37]

Continuum removal derivative reflectance
dCRλ

dλ

∣∣∣∣
i

[38]

L is the number of wavelengths.
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3.2. Similarity measures182

Let ρi be a spectral signature, ρi,λ its reflectance at wavelength λ and [1, ..., L] its spectral range. Several183

criteria have been used (Table 4). Some criteria characterize the difference between reflectance levels (like the184

distances) and other ones are related to the difference of the spectral shape (e.g. SAM) and other ones are related185

to probabilistic behaviour (e.g. SID, ...). Table 4 inventories main similarity measurement techniques described186

in the literature.187

Table 4. Similarity measures.

Similarity
measures

Formulation Comments Reference

Minkowski
distance

Dp(ρi, ρj) = ‖ρi − ρj‖p,

=

[
L

∑
λ=1
|ρi,λ − ρj,λ|p

]1/p

.
Spectral signatures are represented by vectors
from RL. D2 is the usual Euclidean distance ; D1
is the Manhattan or City Block distance

D2: [24,39,40] ;
D1: [41,42]

Canberra
distance

DCanberra(ρi, ρj) =
L

∑
λ=1

|ρi,λ − ρj,λ|
|ρi,λ|+ |ρj,λ|

. It is a weighted version of the Manhattan
distance

[43]

Spectral Angle
Mapper
(SAM)

SAM(ρi, ρj) = cos−1


L

∑
λ=1

ρi,λρj,λ(
L

∑
λ=1

ρ2
i,λ

)1/2( L

∑
λ=1

ρ2
j,λ

)1/2

 . Since the angle between two vectors is invariant
with respect to the length of the vectors, this
technique is relatively insensitive to illumination
and albedo effects

[23,44]

Spectral
Information
Divergence
(SID)

SID(ρi, ρj) = D(ρi||ρj) + D(ρj||ρi), It calculates the probabilistic behaviour between
spectral signatures [45]

where D(ρi||ρj) = ∑L
λ=1 pλ log

(
pλ

qλ

)
, where pκ =

ρi,κ
L

∑
λ=1

ρi,λ

, qκ =
ρj,κ

L

∑
λ=1

ρj,λ

SAM-SID SID-Tan(ρi, ρj) = SID(ρi, ρj)× tan
(

SAM(ρi, ρj)
)

, It is a combination of probability and geometry
spaces that improves discrimination ability [46]

SID-Sin(ρi, ρj) = SID(ρi, ρj)× sin
(

SAM(ρi, ρj)
)

.

Spectral
Correlation
Measure
(SCM)

SCM(ρi, ρj) =

L
L

∑
λ=1

ρi,λρj,λ −
L

∑
λ=1

ρi,λ

L

∑
λ=1

ρj,λ[
L

L

∑
λ=1

ρ2
i,λ

( L

∑
λ=1

ρi,λ

)2
]1/2[

L
L

∑
λ=1

ρ2
j,λ

( L

∑
λ=1

ρj,λ

)2
]1/2 . It is calculated as the correlation coefficient of the

pixel and their respective spectral signatures
[47]

Pearson
Correlation
Coefficient
(PCC)

PCC(ρi, ρj) =

L

∑
λ=1

(ρi,λ − µi)(ρj,λ − µj)[
L

∑
λ=1

(ρi,λ − µi)
2

]1/2[ L

∑
λ=1

(
ρj,λ − µj

)2
]1/2 , where µi is the mean of ρi.

Spectral
Similarity
Value (SSV)

SSV(ρi, ρj) =

√
D2(ρi, ρj)2 +

(
1−

[
PCC(ρi, ρj)

]2)2
. Low value of SSV means high similarity and vice

versa
[48]

Spectral
Correlation
Angle (SCA)

SCA(ρi, ρj) = cos−1

(
1 + PCC(ρi, ρj)

2

)
. It is an improvement of SAM derivated from PCC

that has been shown to be able to distinguish
between positive and negative correlations and
to yield better estimates in some experiments

[49,50]

Spectral
Gradient
Angle (SGA)

SGA(ρi, ρj) = SAM
(
|∇ρi|, |∇ρj|

)
,

= cos−1


L−1

∑
λ=1
|ρi,λ+1 − ρi,λ||ρj,λ+1 − ρj,λ|[

L−1

∑
λ=1

(
ρi,λ+1 − ρi,λ

)2
]1/2[ L−1

∑
λ=1

(
ρj,λ+1 − ρj,λ

)2
]1/2

 .
It is invariant to illumination conditions [51]

3.3. Relative spectral discriminatory probability188

To determine if a spectral signature belongs to a class, the method proposed by [45] is used. Let {ρj}J
j=1

J spectral signatures in ∆ an existing spectral reference database and τ be a target signature to be identified
using ∆. Let m(·, ·) be a given hyperspectral measure, the spectral discriminatory probabilities of all ρj in ∆
with respect to τ as is defined as follows:

pm
τ,∆(i) =

m(τ, ρi)
J

∑
j=1

m(τ, ρj)

, for i = 1, 2, ..., J, (2)
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where
J

∑
j=1

m(τ, ρj) is a normalization constant determined by τ and ∆. The resulting probability vector is defined

as

pm
τ,∆ =

(
pm

τ,∆(1), pm
τ,∆(2), ..., pm

τ,∆(J)
)T

. (3)

Using Equation (3), the target signature can be identified by selecting the one with the smallest spectral189

discriminatory probability because τ and the selected one have the minimum spectral discrimination.190

Spectral reference database191

To build the spectral reference database, spectra of mean reflectance, spectra of median reflectance and
median spectra are used. Spectra of mean reflectance is defined as the mean of reflectances for each wavelength
λ:

ρλ =
1
N

N

∑
i=1

ρi,λ, ∀λ ∈ [1, ..., L], (4)

where N is the number of spectra for a plant species. Similarly, spectra of median reflectance is defined as the192

median of reflectances for each wavelength λ. Median spectra is defined as the “closest” spectrum of the median193

reflectance considering a vegetation type. In other words, giving a spectrum of median reflectance, the spectrum194

that minimize the Minkowski distance between them is considered as the median spectrum (Figure 4 shows195

differences between the median reflectances spectrum which is an theoretic spectral signature and the different196

median spectra which were investigated). As distances are not equivalent considering high-dimensional data,197

three Minkowski distances are investigated for this study: the Euclidean distance, the Canberra distance and198

the City Block or Manhattan distance (which are reminded in Section 3.1).199

Figure 4. Median spectra, spectrum of mean reflectances, spectrum of median reflectances of Eleocharis quinqueflora
(ELQU).
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3.4. Feature selection of spectral indices200

Spectral index description201

Spectral indices are combinations of surface reflectance (or the derivated reflectance) at two or more202

wavelengths or narrow spectral bands. Lots of spectral indices can be found in literature (Table 5) to characterize203

some biochemical components of plant species such as chlorophyll, nitrogen, lignin, cellulose, water. Although204

these indices have never been selected in the literature to characterize wetlands plant species, we assume that205

some of them can still be useful to classify them.206

Table 5. Spectral vegetation indices.

Index name Formulation Vegetation
properties
highlighted by
the index

Reference

Boochs D703 Chlorophyll [52]
Boochs2 D720 Chlorophyll

CAI (Cellulose Absorption Index)
R2000 + R2200

2
− R2100 Cellulose, soil

litter
[53]

CARI(Chlorophyll Absorption Ratio Index)
R700

√
(670a + R670 + b)2

R670
√

a2 + 1
Chlorophyll [54]

where a =
R700 − R550

150
; b = R550 − 550a

CI (Curvature Index)
R675R690

R2
683

Chlorophyll [55]

CCI (Canopy Chlorophyll Index)
D720

D700
Chlorophyll [56]

CCCI (Canopy Chlorophyll Content Index)
NDRE
NDVI

Chlorophyll [57]

Carter[695,420]
R695

R420
Stress [58]

Carter[695,760]
R695

R760
Stress

Carter[605,760]
R605

R760
Stress

Carter[710,760]
R710

R760
Stress

Carter[695,670]
R695

R670
Stress

Carter2 R550

CaCoI[515,550] (Carotenoid Concentration
Index)

1
R515

− 1
R550

Carotenoid [59], [60]

CaCoI[515,700]
1

R515
− 1

R700
Carotenoid

CaCoI2[770,510,700] R770

(
1

R510
− 1

R700

)
Carotenoid [59], [60]

CaCoI2[770,510,550] R770

(
1

R510
− 1

R550

)
Carotenoid

Datt[850]
R850 − R710

R850 − R680
Chlorophyll [61]

Datt[780]
R780 − R710

R780 − R680
Chlorophyll [61]

Datt2[850,710]
R850

R710
Chlorophyll

Datt2[672,550]
R672

R550
Chlorophyll

Datt_prime
D754

D704
Chlorophyll

Datt3[672]
R672

R550R708
Chlorophyll [62]

Datt3[860]
R860

R550R708
Chlorophyll [62]

DCI
D723

D703
[63]
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Table 5: continued from previous page.

DCNI (Double-peak Canopy Nitrogen Index)
R720 − R700(

R700 − R670
)(

R720 − R670 + 0.03
) Nitrogen [64]

DD (Double Difference Index) (R749 − R720)− (R701 − R672) Chlorophyll [65]

DDn (new Double Difference Index) 2
(

R710 − R(710−50) − R(710+50)

)
Chlorophyll [66]

DPI (Double Peak Index)
D688D710

D2
967

Chlorophyll [55]

dG max
i∈[[500,580]]

Di Chlorophyll,
stress

dRE max
i∈[[680,750]]

Di Chlorophyll,
stress

[67]

D[730,706]
D730

D706
Chlorophyll [55]

D[705,722]
D705

D722

EVI (Enhanced Vegetation Index) 2.5
R800 − R670

R800 − 6R670 − 7.5R475 + 1
Chlorophyll [68]

EGFR (Edge-Green First derivative Ratio)
dRE
dG

Chlorophyll,
nitrogen

[69]

EGFN (Edge-Green first Derivative
Normalized difference)

dRE− dG
dRE + dG

Chlorophyll,
nitrogen

GEMI (Global Environment Monitoring Index) η(1− 0.25η)− R660 − 0.25
1− R660

, [70]

where η = 2
R2

830 − R2
660 + 1.5R830 + 0.5R660

R830 + R660 + 0.5

GI (Greeness Index)
R554

R677
Chlorophyll [71]

Gitelson
1

R700
Chlorophyll [72]

Gitelson2
R750 − R800

R965 − R740
− 1 Chlorophyll [59]

GMI (Gitelson and Merzlyak Index)
R750

R550
Chlorophyll [73]

Green NDVI
R800 − R550

R800 + R550
Chlorophyll [74]

Maccioni
R780 − R710

R780 − R680
Chlorophyll [75]

MARI (Modified Anthocyanin Reflectance
Index)

R800

(
1

R550
− 1

R700

)
Anthocyanin [76], [77]

MCARI[700,670] (Modified Chlorophyll
Absorption Index)

(
(R700 − R670)− 0.2(R700 − R550)

)R700

R670
Chlorophyll,
Leaf Area Index

[78]

MCARI[750,705]
(
(R750 − R705)− 0.2(R750 − R550)

)R750

R705
Chlorophyll [79]

MCARI[700,670]/OSAVI[800,670]

(
(R700 − R670)− 0.2(R700 − R550)

)
R700
R670

(1 + 0.16) R800−R670
R800+R670+0.16

Chlorophyll [80]

MCARI[750,705]/OSAVI[750,705]

(
R750 − R705)− 0.2(R750 − R550)

)
R750
R705

(1 + 0.16) R750−R705
R750+R705+0.16

Chlorophyll [79]

MCARI[750,705]/MTVI2[750]
MCARI[750,705]

MTVI2[750]
Nitrogen [81]

MNDVI[800,680] (Modified NDVI)
R800 − R680

R800 + R680 − 2R445
Chlorophyll [82]

MNDVI[750,705]
R750 − R705

R750 + R705 − 2R445
Chlorophyll

MSAVI (Modified Soil Adjusted Vegetation
Index)

0.5
(

2R800 + 1−
√
(2R800 + 1)2 − 8(R800 − R670)

)
Chlorophyll [83]

MSI (Moisture Stress Index)
R1599

R819
Water stress [84]

MSR[800,680] (modified Simple Ratio)
R800 − R445

R680 − R445
Chlorophyll [82]

MSR[750,705]
R750 − R445

R705 − R445
Chlorophyll

MSR2
R750

R705
− 1√

R750
R705

+ 1
Chlorophyll,
Leaf Area Index

[85]
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Table 5: continued from previous page.

MTCI (MERIS 1 Terrestrial Chlorophyll Index)
R754 − R709

R709 − R681
Chlorophyll [86]

MTVI[800] (Modified Triangular Vegetation
Index)

1.5
(

1.2(R800 − R550)− 2.5(R670 − R550)
)

Leaf Area Index [87]

MTVI[750] 1.5
(

1.2(R750 − R550)− 2.5(R670 − R550)
)

Leaf Area Index [87]

MTVI2 [800]
1.5
(

1.2(R800 − R550)− 2.5(R670 − R550)
)

√
(2R800 + 1)2 − (6R800 − 5

√
R670)− 0.5

Leaf Area Index [87]

MTVI2 [750]
1.5
(

1.2(R750 − R550)− 2.5(R670 − R550)
)

√
(2R750 + 1)2 − (6R750 − 5

√
R670)− 0.5

[87]

NDII (Normalized Difference Infrared Index)
R850 − R1650

R850 + R1650
Water status [88]

R819 − R1649

R819 + R1649

NDLI (Normalized Difference Lignin Index)
log
(

1
R1754

)
− log

(
1

R1680

)
log
(

1
R1754

)
+ log

(
1

R1680

) Lignin [35]

NDNI (Normalized Difference Nitrogen Index)
log
(

1
R1510

)
− log

(
1

R1680

)
log
(

1
R1510

)
+ log

(
1

R1680

) Nitrogen [35]

NDRE (Normalized Difference Red Edge)
R830 − Rred
R830 + Rred

, with Rred = 0.5(R670 + R780) [57]

NDVI[800,670] (Normalised Difference
Vegetation Index)

R800 − R670

R800 + R670
Chlorophyll,
Leaf Area Index

[89]

NDVI[750,705]
R750 − R705

R750 + R705
Chlorophyll [73]

NDVI[682,553]
R682 − R553

R682 + R553
Chlorophyll [90]

NDVI[573,440]
R573 − R440

R573 + R440
Nitrogen [91]

NDWI[860,1240] (Normalized Difference Water
Index)

R860 − R1240

R860 + R1240

NDWI[860,1640]
R860 − R1640

R860 + R1640
Water status [92]

NDWI[860,2130]
R860 − R2130

R860 + R2130

NDWI[1100,1450]
R1100 − R1450

R1100 + R1450
Water stress [93]

NDWI[1280,1450]
R1280 − R1450

R1280 + R1450
Water stress [93]

NPCI (Normalised Pigment Chlorophyll Index)
R680 − R430

R680 + R430
(Total pigments)
/ chlorophyll

[94]

VI_opt (Vegetation Index optimal) (1 + 0.45)
R2

800 + 1
R670 + 0.45

Nitrogen [95]

OSAVI[800,670] (Optimised Soil-Adjust
Vegetation Index)

(1 + 0.16)
R800 − R670

R800 + R670 + 0.16
Chlorophyll [96]

OSAVI[750,705] (1 + 0.16)
R750 − R705

R750 + R705 + 0.16
Chlorophyll [79]

PRI (Photochemical Reflectance Index)
R531 − R570

R531 + R570
Stress [97]

RDVI (Renormalised Difference Vegetation
Index)

R800 − R670√
R800 + R670

Chlorophyll,
Leaf Area Index

[98]

REIP (Red-Edge Inflexion Point)
{

i
∣∣∣∣ max

i∈[[680,750]]
Di

}
Chlorophyll,
Leaf Area Index

[67,99,100]

REMI (Red-Edge Model Index)
R750

R720
− 1 Chlorophyll [101]

1 MEdium Resolution Imaging Spectroradiometer
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Table 5: continued from previous page.

REP_LE (Red-Edge Position Linear
Extrapolation)

− c1 − c2

m1 −m2
where m1 and c1 represent the slope and the

intercept of the far-red line and m2 and c2 represent the
slope and the intercept of the NIR line

Nitrogen,
chlorophyll

[102]

REP_LI (Red-Edge Position Linear Interpolation) 700 + 40
0.5(R800 + R780)

R740 − R700
Chlorophyll [103]

RVI[810,660] (Ratio Vegetation Index)
R810

R660
Nitrogen [104]

RVI[810,560]
R810

R560
Nitrogen [105]

RVI[800,670]
R800

R670

SIPI (Structure Insensitive Pigment Index)
R800 − R445

R800 − R680
Pigments /
chlorophyll,
stress

[106]

SPVI (Spectral Polygon Vegetation Index) 0.4
[
3.7(R800 − R670)− 1.2

√
(R530 − R670)2

]
Chlorophyll ×
Leaf Area Index

[107]

SR[800,680] (Simple Ratio Index)
R800

R680
Chlorophyll [108]

SR[750,700]
R750

R700
[73]

SR[752,690]
R752

R690

SR[750,550]
R750

R550

SR[700,670]
R700

R670
Chlorophyll [109]

SR[675,700]
R675

R700
Chlorophyll [110]

SR[750,710]
R750

R710
Chlorophyll [111]

SR[440,690]
R440

R690
Stress [112]

SRPI (Simple Ratio Pigment Index)
R430

R680
(Total pigments)
/ chlorophyll,
stress

[106]

Sum_Dr[625,795]
795

∑
i=625

Di Chlorophyll [113]

Sum_Dr[680,780]
780

∑
i=680

Di Chlorophyll,
Leaf Area Index

[67]

TCARI[700,670] (Transformed Chlorophyll
Absorption Ratio Index)

3
(

R700 − R670 − 0.2(R700 − R550)
R700

R670

)
Chlorophyll [80]

TCARI[750,705] 3
(

R750 − R705 − 0.2(R750 − R550)
R750

R705

)
Chlorophyll [79]

TCARI[700,670]/OSAVI[800,670] TCARI
OSAVI Chlorophyll [80]

TCARI[750,705]/OSAVI[750,705] TCARI2
OSAVI2 Chlorophyll [79]

TVI (Triangular Vegetation Index) 0.5(120(R750 − R550)− 200(R670 − R550)) Leaf Area Index,
Canopy
chlorophyll
density

[114]

Vogelmann
R740

R720
Chlorophyll [115]

Vogelmann2
R734 − R747

R715 + R726
Chlorophyll

Vogelmann3
D715

D705
Chlorophyll

Maximum first derivatives of 8 different regions
whithin the spectra

Pigments
absorption,
w., c., s., l
absorption ;
refer to Table
2 in [116] for
a full
description.

[116]

A_1D: 495–550 nm
B_1D: 550–650 nm
C_1D: 680–780 nm
D_1D: 970–1090 nm
E_1D: 1110–1205 nm
F_1D: 1205–1285 nm
H_1D: 1455–1640 nm
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Table 5: continued from previous page.

J_1D: 1925–2200 nm

Corresponding spectral positions of the
maximum first derivatives

Pigments
absorption,
w., c., s., l.
absorption ;
refer to Table
2 in [116] for
a full
description.

[116]

A_WP: 495–550 nm
B_WP: 550–650 nm
C_WP: 680–780 nm
D_WP: 970–1090 nm
E_WP: 1110–1205 nm
F_WP: 1205–1285 nm
H_WP: 1455–1640 nm
J_WP: 1925–2200 nm

WI (Water Index)
R900

R970
Water status [117]

WI[1100,1450]
R1100

R1450
Water stress [93]

WI[1280,1450]
R1280

R1450
Water stress [93]

WI2
1

R1450
Water stress [93]

Rx represents reflectance at wavelength x nm.
Dx represents the derivative of the reflectance spectrum at wavelength x nm.
w., c., s., l = water, cellulose, starch, lignin

Classical feature selection method - the Kruskal-Wallis H-test207

As some spectra per vegetation types were quite small (8 spectra for Pinguicula sp. (PING), 7 spectra for208

Aquatic type b (AQ_B)), usual ANOVA [118] test or Mann-Whitney U-test [119] can not be used. That is the209

reason why Kruskal-Wallis H-test [120], a non-parametric test is proposed. Moreover this test is adapted to not210

independent data and not normally distributed data. The H-test is used to test the hypothesis that there was no211

significant difference between the median spectral index value between pairs of plant species.212

The null hypothesis for N = 13 vegetation types and I = 129 spectral vegetation indices per reflectance
measurements is:

H0 : ηn(i) = ηn+1(i), (5)

where ηn is the median spectral index value for vegetation type number n = 0, ..., N, and i = 1, ..., I the spectral213

index. The maximum frequency for this study is
(

13
2

)
= 13×(13−1)

2 = 78. The hypothesis was therefore tested214

78 times for all possible combinations of the 13 plant species at the adjusted Bonferroni significance level of215

α =
0.05
78

= 6.410−4.216

Principle of the applied feature selection method217

In order to discriminate the 78 pairs of vegetation types, the Hellinger distance, which is introduced further,218

is computed for each vegetation spectral index (Table 5). Then indices are ordered by frequency discrimination.219

A first subset of indices is composed of ones that can discriminate pairs of vegetation types and that are not220

redundant. If a pair of vegetation types is not discriminated, the Hellinger distance is computed for a pair of221

vegetation indices composed of the single most discriminating one and the other ones ordered by frequency222

distribution amongst previous selected. Then, a second subset of pairs of indices is composed by ordering those223

pairs of indices by frequency discrimination. To stop the process, a maximum number of subset is then defined.224

In our case, the maximum subset consists of not more than three indices. Indeed, longer is the tuple length,225

more difficult it is to explained why such combinations of indices or such biophysical components combination226

can discriminate such pairs. Finally, selected vegetation indices come from each subset and single spectral227

vegetation indices or spectral index combinations are retained.228

For a better understanding of the feature selection method, an example is given. We consider 4 vegetation229

types named: V1, V2, V3, V4 and 5 spectral vegetation indices named: I1, I2, I3, I4, I5. We suppose that no single230
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spectral vegetation index can discriminate neither V1 from V3 nor V2 from V4 nor V3 from V4. But different231

single indices can separate V1 from V2, V1 from V4 and V2 from V3. This is summarized in the following table:232

V2 V3 V4

V1 I1, I3 ∅ I2, I3

V2 - I2, I3 ∅
V3 - - ∅

233

We obtain the first subset S1 = {I1, I2, I3}. To discriminate V1 from V3, V2 from V4 and V3 from V4, we are234

looking among the following combinations: {I3 − I2}, {I3 − I1}, {I3 − I4}, {I3 − I5} because indices are ordered235

by frequency discrimination: [I3, I2, I1, I4, I5]. We suppose that {I3 − I1} can discriminate V1 from V3 and V2236

from V4 but there is still no index that can discriminate V3 from V4. For the latter case, possible combinations237

are looking among {I3 − I1 − I2}, {I3 − I1 − I4}, {I3 − I1 − I5}. Whatever a combination of spectral vegetation238

indices can be found to discriminate or not those plant species, the process will stop in our case.239

The Bhattacharyya coefficient and the Hellinger distance240

For two arbitrary discrete probability distributions p and q, the amount of overlap between those
distributions can be measured using the Bhattacharyya coefficient:

C(p, q) =
n

∑
i=1

√
piqi, (6)

where n is the partition number. To measure the similarity between two statistical distributions in remote
sensing the Hellinger distance (also known as the Matusita distance) is commonly used. It is defined as:

H(p, q) =

√
1
2

n

∑
i=1

(√
pi −
√

qi
)2, (7)

=
√

1− C(p, q). (8)

The Hellinger distance defined in Equation (8) has upper bound equal to 1, indicating the total separability241

of the class pairs characterized by their distribution. As a general rule adapted from [121],242

• if H(p, q) ≥ 0.95 then the classes can be separated,243

• if 0.85 ≤ H(p, q) < 0.95 the separation is fairly good,244

• if H(p, q) < 0.85 the separation is poor.245

3.5. Spectral ranges246

The transformed spectral signatures defined in Section 3.2 and the spectral ranges adapted from [31]247

(Table 6) were investigated:248

• visible: 350 nm–750 nm,249

• near infrared: 750 nm–1350 nm,250

• shortwave infrared a: 1410 nm–1810 nm,251

• shortwave infrared b: 1940 nm–2400 nm.252

The shortwave infrared domain is split in 2 parts. The near infrared and the shortwave infrared are not253

continuous because of atmospheric water absorption.254

3.6. Supervised classification255

All the classifications are performed using Python scikit-learn package [129].256
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Table 6. The spectral reflectances of green vegetation on the four regions of electromagnetic spectrum from [31].

Wavelength range
[nm]

Description Spectral reflectance of vegetation References

400-700 Visible Low reflectance and transmittance due to chlorophyll and
biologically active pigments (such as carotene) absorptions

[122,123]

680-750 Red-edge The reflectance is strongly correlated with plant biochemical
and biophysical parameters

[124,125]

700-1300 Near infrared High reflectance and transmittance, very low absorption
resulting from photon scattering at the air-cell interfaces
within the leaf spongy mesophyll

[126,127]

1300-2500 Shortwave infrared Lower reflectance than other spectral regions due to strong
water absorption and minor absorption of biochemical
contents such as lignin and carbon constituants

[126,128]

3.6.1. Random Forest (RF)257

RF is an ensemble classifier that uses a set of Classification And Regression Trees (CARTs) to make a258

prediction [130]. The trees are created by drawing a subset of training samples through replacement (a bagging259

approach). In standard classification trees, each node is split using the best split among all variables. In RF,260

each node is split using the best predictor, among a user-defined number of features (Mtry that is usually set to261

the square root of the number of input variables [131]). By growing the forest up to a user-defined number of262

trees (Ntree that is usually set to 500 but different values such as 100, 1000 or 5000 have been investigated [131]),263

the algorithm creates trees that have high variance and low bias. The final classification decision is taken by264

averaging (using the arithmetic mean) the class assignment probabilities calculated by all produced trees.265

For this study, Mtry = 500 and Ntree ∈ [500, 1000, 2000, 5000].266

3.6.2. Support Vector Machines (SVM)267

SVM is a supervised non-parametric statistical learning technique therefore there is no assumption on the268

distribution of the data [132]. The main idea of SVM classification is to construct a hyperplane as a decision269

surface in a way that the margin of separation between two classes is maximized. To do this, the original270

feature space is mapped into a space with a higher dimensionality, where classes can be modelled to be linearly271

separable. This transformation is implicitly performed by applying kernel functions to the original data.272

The learning of the classifier is performed using a constrained optimization process that is associated with a273

complex cost function. For problems that involve identification of multiple classes, adjustments are made to274

the simple SVM binary classifier to operate as a multi-class classifier using methods such as one-against-all,275

one-against-others.276

For this study, two kernels are retained: a linear kernel (SVM linear) and a Gaussian kernel (SVM RBF).277

3.6.3. Regularized Logistic Regression (RLR)278

RLR is a linear model based on logistic regression with an additional regularization term. This classifier279

has been successfully used with high dimensional data (gene selection in cancer classification [133], feature280

selection in remote sensing [28,29,134] ).281

For this study, the `1-norm and `2-norm regularization term are investigated.282

3.6.4. Partial Least Squares-Discriminant analysis (PLS-DA)283

PLS-DA is based upon the classical partial least square regression method for constructing predictive284

models [135]. The goal of PLS regression is to provide dimension reduction in an application where the response285

variable is related to the predictor variables. In the case of PLS-DA, the response variable (i.e. vegetation286
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types) is binary and expresses class membership [136,137]. This classifier has been successfully used with high287

dimensional data (gene selection [138], tree species discrimination [139]).288

For this study the number of latent variables is fixed to the number of vegetation types - 1 [138]. This289

method is not applied on spectral vegetation indices selected but on spectral signatures and their transformations290

on spectral ranges because it is commonly used when the number of features is much bigger than the number291

of spectra.292

3.7. Classification accuracy evaluation293

To evaluate the classification accuracy of supervised classifiers, a 30 fold cross-validation is used and six294

training samples size were investigated: 50 %, 45 %, 40 %, 35 %, 30 % and 25 % of all spectra.295

To evaluate the classifier precision overall accuracy and F1-score are used. Overall accuracy computes
number of correct spectra over all spectra, whereas F1-score is given by:

F1-score = 2 · PA ·UA
PA + UA

, (9)

where PA (Producer’s Accuracy) is the fraction of retrieved classes that are relevant whereas UA (User’s296

Accuracy) is the fraction of relevant classes that are retrieved.297

4. Results and discussion298

4.1. Similarity measures299

Considering all transformed spectral signatures, spectral ranges and similarity measures, only the Canberra300

distance on [350 nm to 2500 nm] gives an overall accuracy higher than 50 % whatever the spectral reference301

database (Table 7). Indeed, the Canberra distance gives the higher overall accuracy because it is sensitive to a302

small change when both coordinates are closed to zero [140,141].303

Because of the high variability of some vegetation types (Appendix B), spectral reference database built304

from median spectra, that are real spectra, gave worse results than spectral reference database built from median305

and mean spectra, that are theoretical spectra not representative of a in situ measured vegetation type (Table 7).306

There is a need to collect more spectral signatures to build a consistent spectral database.307

As spectral signatures can be considered as high dimensional vectors, a specific distance is needed to308

compare them. It is well known that Euclidean distance is not good when comparing high dimension data309

[142]. Table 8 shows that the Canberra distance always outperforms other distances, including SAM, which is310

commonly used in remote sensing, when considering the whole spectral range (1823 wavelengths).311

Table 7. Overall accuracy (%) for Canberra distance on [350–2500 nm].

Median spectra Median Mean
Canberra dist. City Block dist. Euclidean dist. reflectance reflectance

Spectral signature 53.62 52.34 51.91 57.02 50.64
Normalized spectral signature 51.91 52.34 50.64 55.74 57.87
log transformation of spectral signature 52.34 52.34 51.49 55.74 51.91
First Derivative 70.64 70.21 67.23 74.47 71.49
Second Derivative 71.06 68.51 64.68 81.70 77.45
Continuum removed Reflectance 51.06 50.64 51.06 54.04 52.77
Continuum Removed Derivative Reflectance 64.68 62.98 61.28 78.30 75.32

Using the Canberra distance, best results (overall accuracy higher than 60 %) are given with the second312

derivative, first derivative and CRDR (Table 7), that are closely related to absorption features rather than313

reflectance magnitude [38]. Indeed, vegetation types can be discriminated thanks to their biophysical314
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Table 8. Overall accuracy (%) for different distances on [350–2500 nm] considering Median reflectances as spectral
reference database.

Distance SAMEuclid Manhattan Canberra

Spectral signature 50.21 51.06 57.02 41.70
First Derivative 62.98 70.64 74.47 59.15
Second Derivative 65.96 74.04 81.70 63.83
CRDR 71.06 74.47 78.30 69.36

components which will be discussed in details in Section 4.2. Furthermore, Table 9 shows that the whole315

spectral range gives the best results. Although spectral ranges are related to specific biophysical components316

(Table 6), the whole spectral range is needed to discriminate the 13 vegetation types because some of them are317

sharing same plant species (Table A.1) and the spectral signatures are mixed. Worse results are obtained in318

[1940–2400 nm] whatever the transformed spectral signature. Table 9 show that worse results are obtained by the319

spectral signature whatever the spectral range. Indeed those transformations are related to absorption features320

as explained above, which confirm that transformed spectral signatures are more suitable to discriminate321

vegetation types than spectral signatures.322

Table 9. Overall classification accuracy (%) for different spectral ranges considering Median reflectances as
spectral reference database and Canberra distance.

350–750 nm 750–1350 nm 1410–1810 nm 1940–2400 nm 350–2500 nm

Spectral signature 47.23 47.66 37.87 34.47 57.02
First Derivative 59.15 64.68 60.43 55.74 74.47
Second Derivative 72.34 69.79 72.34 53.19 81.70
CRDR 74.47 57.87 59.57 59.57 78.30

Considering classification accuracy for each vegetation type, Table 10 shows that best F1-score is obtained323

by Sphagnum sp. (SPHA) (' 98 %), Juniperus communis (JUCO) (' 97 %), Aquatic type b (AQ_B) (' 93 %)324

and Salix sp. (SALI) (' 92 %). Excepting JUCO, all of these vegetation types are well classified and their325

user’s accuracy is higher than 85 %. Indeed these vegetation types are less mixed than others: Table A.1 shows326

that SPHA is mainly dominated by different kinds of sphagnum; AQ_B is dominated by Utricularia sp; JUCO327

is dominated by Juniperus communis and SALI is dominated by Salix. Only 3 other vegetation types have328

user’s accuracy equal to 100 %: Rhododendron ferrugineum (RHFR), Calluna vulgaris (CAVU) and Aquatic type329

a (AQ_A). However, only around 57 % of spectral signatures are well identified for CAVU and AQ_A. This can330

be explained by the high variability of these sample plots. Contrary to SPHA, JUCO, AQ_B and SALI, there is331

not a single dominated plant species neither for CAVU nor for AQ_A (Table A.1). Worse F1-score is obtained332

by Pinguicula sp. (PING) (' 54 %) which is not dominated by only one plant species: this vegetation type is333

mainly dominated by Eleocharis quinqueflora (ELQU) (40 %), bare ground (15 %), Molinia caerulea ssp caerulae334

(10 %) and Tomenthypnum nitens (10 %). It can explain the difficulty to identify this vegetation type in particular335

rather than the low number of spectra: PING has 8 spectra whereas AQ_B has 7 spectra.336

4.2. Supervised classification based on feature selection of spectral vegetation indices337

Feature selection338

The Kruskal-Wallis method (Section 3.4, p. 14) does not show any significant index (frequency339

discrimination > 75 %) that allow discrimination between vegetation types (Figure 5, only the first 69 indices340
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Table 10. Confusion matrix of the classification based on Second derivative, Canberra Distance on [350–2500 nm]
with Median reflectance as reference spectral database. The producer’s and user’s accuracies, the overall accuracy
and the F1-score are also shown.

SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUQO ELQU METR PI_CV AQ_B AQ_C Producer’s accuracy (%)

SPHA 22 0 0 0 0 0 0 0 0 0 0 0 0 100.00
CAVU 0 8 0 2 0 0 1 0 0 0 3 0 0 57.14
RHFR 0 0 11 0 0 3 0 0 0 0 0 0 0 78.57
CA_HV 0 0 0 22 0 0 1 0 1 0 3 0 0 81.48
AQ_A 0 0 0 0 30 0 8 0 3 4 1 1 6 56.60
SALI 0 0 0 0 0 17 0 0 0 0 0 0 0 100.00
PING 0 0 0 1 0 0 7 0 0 0 0 0 0 87.50
JUCO 0 0 0 0 0 0 0 18 0 0 1 0 0 94.74
ELQU 0 0 0 1 0 0 0 0 13 1 0 0 0 86.67
METR 1 0 0 0 0 0 0 0 0 11 0 0 0 91.67
PI_CV 0 0 0 0 0 0 1 0 0 0 14 0 0 93.33
AQ_B 0 0 0 0 0 0 0 0 0 0 0 7 0 100.00
AQ_C 0 0 0 0 0 0 0 0 0 0 0 0 12 100.00
User’s accuracy (%) 95.65 100.00 100.00 84.62 100.00 85.00 38.89 100.00 76.47 68.75 63.64 87.50 66.67 Overall accuracy: 81.70

F1-score (%) 97.78 72.73 88.00 83.02 72.29 91.89 53.85 97.30 81.25 78.57 75.68 93.33 80.00

are drawn). The best vegetation index (NDWI[860, 2130]) only allows us to discriminate 49 pairs of vegetation341

types, that may be explained by the plant species mixing within several vegetation types. The proposed method342

reduced the number of selected indices from 129 to 26 (Table 11). More precisely, on the first step of the method,343

only 17 single indices amongst 26 are needed to discriminate 59 pairs of vegetation types amongst 78. On the344

second step, these single indices must be completed by 7 additional spectral vegetation indices to discriminate345

17 more pairs of vegetation types (Table 12 ; ∅ means either a pair of vegetation type can not be discriminated346

thanks to a pair of spectral vegetation indices built from single ones selected on the first step, either more than347

two vegetation indices are needed to discriminate a pair of vegetation type). On the last step, a single index348

is added to discriminate two vegetation types whereas a combination of previous selected indices allows us349

to discriminate another pair of vegetation type (Table 11). Finally several different – single or pair or triplet350

– vegetation indices allow us to discriminate pairs of vegetation types. However, none single spectral index351

allows us to discriminate all pairs of vegetation types nor the majority: e.g. the most discriminating single352

spectral index, the Water Index (WI), only discriminates around 45 % pairs of vegetation types (Table 11).353

Table 13 shows that one single biophysical component can discriminate most of vegetation types except354

Carex sp. homogeneous vegetation (CA_HV). More precisely, three kinds of vegetation types (Sphagnum355

sp. (SPHA), Aquatic type b (AQ_B) and Aquatic type c (AQ_C)) are separated thanks to a single biophysical356

component. However, some biophysical components are more discriminant than others according to vegetation357

types: e.g. the chlorophyll is more discriminant than the water content for AQ_C whereas the water content is358

the only discriminant biophysical component for AQ_B ; the water content, the chlorophyll and water, cellulose,359

starch, lignin (w., c., s., l.) equally discriminate SPHA from all other vegetation types.360

Only two indices related to water content are needed to separate AQ_B from all other vegetation types: WI361

and NDWI[860,1240] (Table 13) because AQ_B vegetation type is mainly composed of Utricularia sp. and water362

(Table A.1). The AQ_B spectral signatures are lower than the spectral reflectance values of the other vegetation363

types and the water absorption band at 900 nm and 970 nm are highlighted.364

The chlorophyll is the main biophysical component (86.33 %) able to discriminate AQ_C from all other365

vegetation types, except with Aquatic type a (AQ_A) and AQ_B differentiated by considering additional water366

indices (MSI and NDWI[860,1240]). Indeed, dry matter can be seen on spectral signatures (Figure 7): AQ_B has367

the lowest slope on the spectral range [705–730 nm] whereas other vegetation types (except AQ_A and AQ_B)368

have higher values because they still contain chlorophyll. However, as AQ_B and AQ_C have low values of369

Boochs2 index, they can be discriminated thanks to a water index (right side of Figure 8 shows that those370

vegetation types can be clearly separated ; indeed, those vegetation types have different shapes and values that371

characterize each type).372
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Figure 5. Frequency distribution of the Kruskal-Wallis test for the 129 spectral indices for paired species across
the 13 vegetation types. The horizontal red line stands for 75 % of all 78 possible combinations of the 13 vegetation
types.
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Table 11. Single selected indices from the Hellinger distance and their occurrences.

Biophysical component Index name No. of all occurrences No. of single occurrences No. of occurrences within pair No. of occurrences within triple

Chlorophyll

CCCI∗ 35 24 10 1
GMI∗ 33 25 8 0
DPI∗∗ 33 16 17 0
NDVI[750,705]∗∗ 32 25 7 0
BOOCHS2∗ 32 24 8 0
SR[700,670]∗ 31 25 6 0
OSAVI[800,670]∗ 31 20 8 3
DDN∗∗ 26 18 8 0
MNDVI[800,680]∗ 23 18 5 0
GITELSON∗∗∗ 13 5 5 3

Water

WI∗ 40 33 6 1
MSI∗ 39 31 8 0
NDWI[860,1240]∗ 38 31 7 0
NDII∗∗ 38 28 9 1
NDWI[860,2130]∗ 35 24 11 0
NDWI[1100,1450]∗∗ 32 22 10 0

Stress CARTER[695,670]∗ 36 26 9 1
CARTER[695,420]∗∗ 36 16 20 0

Pigment MARI∗ 75 13 62 0
PRI∗ 35 9 26 0

Nitrogen NDNI∗ 37 18 19 0
MCARI/MTVI2[750,705]∗∗ 30 22 8 0

(Total pigments)/chlorophyll NPCI∗ 31 18 13 0
SRPI∗ 29 16 13 0

Water, cellulose, starch, lignin F_1D∗ 89 27 62 2
F_WP∗ 20 15 5 0

x∗: index selected on first step.
x∗∗: index selected on second step.
x∗∗∗: index selected on third step.

Table 12. Single spectral index or pairs of spectral indices retained to discriminate vegetation types pairs.

CAVU RHFR CA_HV AQ_A SALI

SPHA F_WP F_WP WI OSAVI[800,670] F_WP
CAVU - ∅ ∅ F_1D ∅
RHFR NPCI-F_1D - ∅ ∅ ∅
CA_HV MARI-WI CARTER[695, 670]-MCARI/MTVI2[750, 705] - ∅ ∅
AQ_A - F_1D-WI NDNI-NDWI[1100,1450] - ∅
SALI CARTER[695, 420]-NDII CARTER[695, 670]-BOOCHS2 SRPI-NDVI[750,705] F_1D-MSI -
PING - - NDNI-WI DDN-NDWI[860,2130] -
JUCO - F_1D-WI - - -
ELQU - - MARI-WI MARI-MSI -
METR - - CCCI-NDWI[860,1240] - -
PI_CV - - - - -
AQ_B - - - - -
∅ means either a pair of vegetation type can not be discriminated thanks to a pair of spectral vegetation indices built from single ones selected on the first step, either more than two vegetation indices are needed to discriminate a pair of vegetation type.

PING JUCO ELQU METR PI_CV AQ_B AQ_C

SPHA MSI F_WP CCCI CCCI WI WI OSAVI[800,670]
CAVU GMI MARI CCCI GMI GMI WI SR[700, 670]
RHFR MNDVI[800, 680] ∅ SRPI CCCI WI WI MNDVI[800, 680]
CA_HV ∅ F_WP ∅ ∅ ∅ WI CCCI
AQ_A ∅ F_1D ∅ ∅ NDNI WI MSI
SALI NPCI F_WP NPCI NPCI NPCI WI MNDVI[800,680]
PING - NDWI[860, 2130] PRI ∅ BOOCHS2 NDWI[860,1240] BOOCHS2
JUCO - - F_WP F_WP F_WP WI MNDVI[800,680]
ELQU - - - MARI CARTER[695,420] NDWI[860,1240] BOOCHS2
METR DPI-F_1D - - - ∅ NDWI[860,1240] BOOCHS2
PI_CV - - - PRI-WI - NDWI[860,1240] OSAVI[800,670]
AQ_B - - - - - - NDWI[860,1240]
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Table 13. Single main discriminating biophysical components for each vegetation type and their occurrences (%).

Biophysical SPHA CAVU RHFR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B AQ_Ccomponents

Water 33.33 8.33 16.67 16.67 16.67 8.33 25.00 16.67 8.33 8.33 25.00 100.00 16.67
Chlorophyll 33.33 41.67 25.00 8.33 8.33 8.33 33.33 8.33 25.00 33.33 25.00 0.00 83.33
Stress 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33 0.00 8.33 0.00 0.00
Nitrogen 0.00 0.00 0.00 0.00 8.33 0.00 0.00 0.00 0.00 0.00 8.33 0.00 0.00
Pigment 0.00 8.33 0.00 0.00 0.00 0.00 8.33 8.33 16.67 8.33 0.00 0.00 0.00
(Total pigments)/chlorophyll 0.00 0.00 8.33 0.00 0.00 33.33 8.33 0.00 16.67 8.33 8.33 0.00 0.00
W., c., s., l. 33.33 16.67 8.33 8.33 16.67 16.67 0.00 58.33 8.33 8.33 8.33 0.00 0.00
Total 100.00 75.00 58.33 33.33 50.00 66.67 75.00 91.67 83.33 66.67 83.33 100.00 100.00
W., c., s., l. = Water, cellulose, starch, lignin.

Table 14. Pairs of main discriminating biophysical components for each vegetation type and their occurrences
(%).

Biophysical CAVU RHFR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CVcomponents

Water - chlorophyll 0.00 0.00 8.33 8.33 0.00 8.33 0.00 0.00 8.33 0.00
Water - stress 8.33 0.00 0.00 0.00 8.33 0.00 0.00 0.00 0.00 0.00
Water - nitrogen 0.00 0.00 16.67 8.33 0.00 8.33 0.00 0.00 0.00 0.00
Water - pigment 8.33 0.00 16.67 8.33 0.00 0.00 0.00 16.67 8.33 8.33
Water - w., c., s., l. 0.00 16.67 0.00 16.67 8.33 0.00 8.33 0.00 0.00 0.00
Chlorophyll - stress 0.00 8.33 0.00 0.00 8.33 0.00 0.00 0.00 0.00 0.00
Chlorophyll - (total pigments)/chlorophyll 0.00 0.00 8.33 0.00 8.33 0.00 0.00 0.00 0.00 0.00
Chlorophyll - w., c., s., l. 0.00 0.00 0.00 0.00 0.00 8.33 0.00 0.00 8.33 0.00
Stress - nitrogen 0.00 8.33 8.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Total pigments)/chlorophyll - w., c., s., l. 8.33 8.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W., c., s., l. = Water, cellulose, starch, lignin.

Figure 6. Mean spectral reflectance of the 13 vegetation types. Dashed lines represent the wavelengths used by
WI.
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Figure 7. Mean first derivative spectral signatures of the 13 vegetation types on [695–730 nm]. The green dashed
line represents the wavelength used by the Boochs2 index.

Figure 8. Left: spectral signatures of AQ_B (blue) and AQ_C (dark slate gray). Red dashed lines are the
wavelengths used by the NDWI[860,1240] index. Right: NDWI[860,1240] values for each vegetation type, H is
the Hellinger distance.
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In some case, there is no single biophysical component allowing us to discriminate vegetation types:373

e.g. both water content (33.33 %), chlorophyll (33.33 %) and w., c., s., l. (33.33 %) are needed to distinguish374

SPHA from all other vegetation types. More precisely, biophysical components related to water (WI, MSI) are375

discriminating SPHA from CA_HV, Pinguicula sp. (PING), Pinguicula sp. combined vegetation (PI_CV) and376

AQ_B ; biophysical components related to chlorophyll (CCCI, OSAVI[800,670]) are differentiating SPHA from377

AQ_A, AQ_C, Eleocharis quinqueflora (ELQU) and Menyanthes trifoliata (METR) ; biophysical components related378

to w., c., s., l. (F_WP) are separating SPHA from Calluna vulgaris (CAVU), Rhododendron ferrugineum (RHFR),379

Salix sp. (SALI) and Juniperus communis (JUCO) (Table 13). Unlike an index related to water content (Figure 9),380

an index related to the chlorophyll will discriminate SPHA from AQ_A. Indeed, the right side of Figure 9 shows381

that some AQ_A plant species can not be distinguished from SPHA because it is a dry moss and the left side of382

Figure 9 shows that SPHA and non discerned AQ_A have the same spectral signature shape. The right side of383

Figure 10 shows that these two vegetation species can clearly be separated despite the class variability of AQ_A.384

A complex biophysical component such as F_WP will differentiate SPHA from CAVU (left side of Figure 11)385

shows that different spectral shapes between those vegetation types can be exploited on the [1220–1280 nm]386

domain. The right side of Figure 10 shows that the wavelengths corresponding to the maximum of the first387

derivatives can clearly discern these two vegetation types even if these vegetation types can be mixed.388

Figure 9. Left: spectral signatures of SPHA (black) and AQ_A (green). Red dashed lines are WI wavelengths.
Right: WI values for each vegetation type, H is the Hellinger distance.

In most case, a single biophysical component is sufficient to class a vegetation type from the others (except389

for CA_HV), but a pair of biophysical components is needed to discriminate more specifically some vegetation390

types (Table 12), apart from some particular cases where a pair of biophysical components is needed CA_HV391

(Figure 12). Indeed, CAVU and SALI are differentiated with the stress index (CARTER[695, 420]) and the water392

index (NDII).393

Among the 78 combinations of pair of vegetation types, only two require three indices to be separated:394

CA_HV vs PING and AQ_A vs METR. Indeed, because of its within class variability (Table A.1), only 33.33 %395

of single biophysical component can discriminate CA_HV from all other vegetation types (Table 13). Besides, as396

mentioned in Section 4.1, none of the main plant species of PING represents more than 50 % of this vegetation397

type. The advent of a third index only improves significantly their discrimination (Figure 13).398
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Figure 10. Left: spectral signatures of SPHA (black) and AQ_A (green). Red dashed lines are OSAVI[800,670]
wavelengths. Right: OSAVI[800,670] values for each vegetation type, H is the Hellinger distance.

Figure 11. Left: spectral signatures of SPHA (black) and CAVU (gray). Right: F_WP values for each vegetation
type, H is the Hellinger distance.
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Figure 12. Left: spectral signatures of CAVU (gray) and SALI (cyan). Right: map of CARTER[695,420] and NDII
values for each vegetation type, H is the Hellinger distance.

Figure 13. Left: spectral signatures of CA_HV (pink) and PI_CV (magenta). Right: map of OSAVI[800,670] and
GITELSON values for each vegetation type, H is the Hellinger distance value.
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Supervised classification399

The 26 indices selected WITH the Hellinger distance enables overall classification accuracy scores ranging400

from 72.90 % to 85.20 % depending on the training size, whereas when considering all indices overall accuracy401

scores range from 66.70 % to 82.80 % (Table 15). Moreover, these selected indices are robust because no significant402

difference between classifiers score (except for RF) regardless of the training size is noted (Figure 14). As403

expected, worst results are given by the Kruskal-Wallis method (to compare performance of the two features404

selection methods, 26 first indices given by Kruskal-Wallis method have been selected).405

RLR gives better results than SVM and RF (Table 15, Figure 14) except when the size of training set equals406

50 % for the Hellinger distance. That may be explained by the possible confusion between some vegetation407

types due to their plant species composition. Indeed, SVM aims to find the best hyperplane that can separate408

data, whereas RLR aims to find a probability (according to a logistic function) to separate them.409

Considering RLR-`2 some vegetation types are not easily discriminated whatever the indices. Table 16 and410

Table 17 show that PING has the lowest F1-score (20.99 % and 33.13 % respectively) which can be explained by411

the mixed composition of this habitat (Table B) and not the low number of spectra. Indeed, AQ_B has about the412

same number of spectra: 7 spectra whereas 8 spectral measurements have been collected for PING. Yet it has a413

F1-score = 91.95 % considering all indices and F1-score = 91.66 % considering indices selected by the Hellinger414

distance that can be explained by its composition dominated by Utricularia sp.415

Focusing on shrubs, JUCO has the best performances (F1-score = 94.83 %) whereas SALI and RHFR are416

often confounded. Table 17 shows that on average 2.53 spectra of RHFR (' 20.02 %) are classified as SALI and417

on average 2.30 spectra of SALI (' 19.15 %) are classified as RHFR. Indeed, as JUCO has a higher foliage density,418

the overall spatial signature is less sensitive to the ground influence and as a result JUCO spectral reflectance is419

close to a pure endmember (Appendix B). In the latter case, the spectral measurements are composed of soil420

and more affected by mixed signatures. Another pair of vegetation types is hardly discriminated: PI_CV and421

CA_HV. Table 17 shows that on average 4.93 spectra of CA_HV (' 25 %) are classified as PI_CV which may be422

explained by the plant species they have in common: Carex (50 %–100 % depending on the location) and Molinia423

caerulea ssp. caerulae (40 %–70 %) (Appendix B).424

Table 15. Vegetation types identification (overall accuracy (± standard deviation) in %) with indices.

Training size Classifier Overall accuracy (± Standard deviation) (%)
All indices Kruskal-Wallis Hellinger distance

50 %

SVM linear 79.17 (± 3.51) 75.45 (± 3.95) 83.31 (± 3.95)
SVM RBF 77.63 (± 2.82) 75.45 (± 3.65) 83.55(±3.65)
RLR-`1 80.58(±3.05) 78.37(±3.54) 82.84 (± 3.54)
RLR-`2 80.55 (± 3.33) 78.07 (± 3.48) 83.22 (± 3.48)
RF 78.71 (± 3.34) 71.05 (± 3.56) 81.60 (± 3.56)

45 %

SVM linear 78.44 (± 3.09) 74.82 (± 3.86) 82.46 (± 3.86)
SVM RBF 76.59 (± 4.39) 74.49 (± 4.53) 83.21 (± 4.53)
RLR-`1 80.26(±4.25) 77.26 (± 4.16) 83.51(±4.16)
RLR-`2 79.85 (± 3.36) 77.64(±3.80) 83.13 (± 3.80)
RF 77.26 (± 4.14) 70.33 (± 3.04) 80.26 (± 3.04)

40 %

SVM linear 76.95 (± 3.59) 73.33 (± 3.48) 81.89 (± 3.48)
SVM RBF 76.28 (± 3.27) 73.43 (± 3.84) 81.68 (± 3.84)
RLR-`1 79.69 (± 3.43) 77.72 (± 3.62) 83.19(±3.62)
RLR-`2 79.74(±2.47) 78.25(±3.34) 82.97 (± 3.34)
RF 76.86 (± 3.41) 70.34 (± 3.96) 80.96 (± 3.96)

35 %

SVM linear 76.02 (± 3.35) 70.41 (± 3.57) 80.02 (± 3.57)
SVM RBF 73.44 (± 4.38) 71.02 (± 4.17) 79.20 (± 4.17)
RLR-`1 74.98 (± 2.74) 74.87 (± 3.78) 80.89 (± 3.78)
RLR-`2 77.25(±2.80) 75.06(±2.76) 81.04(±2.76)
RF 75.32 (± 3.32) 67.79 (± 3.55) 79.37 (± 3.55)

30 %

SVM linear 73.62 (± 3.84) 70.53 (± 3.18) 78.34 (± 3.18)
SVM RBF 72.71 (± 2.82) 69.68 (± 4.33) 79.13 (± 4.33)
RLR-`1 74.08 (± 4.03) 73.66(±3.23) 79.25 (± 3.23)
RLR-`2 75.74(±3.99) 73.39 (± 3.33) 80.36(±3.33)
RF 72.53 (± 2.60) 66.00 (± 2.74) 77.17 (± 2.74)

25 %

SVM linear 71.37 (± 3.18) 68.38 (± 3.44) 75.91 (± 3.44)
SVM RBF 69.85 (± 3.54) 67.63 (± 2.67) 75.76 (± 2.67)
RLR-`1 69.42 (± 4.06) 70.90 (± 3.34) 76.35 (± 3.34)
RLR-`2 73.31(±3.34) 71.22(±3.72) 77.21(±3.72)
RF 70.79 (± 2.95) 65.10 (± 3.31) 75.05 (± 3.31)
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Figure 14. Vegetation types identification accuracies (overall accuracy) with indices.

Table 16. Confusion matrix of the classification based on RLR−`2 with all indices and training size = 25 %. The
producer’s and user’s accuracies and the overall accuracy average (OAA) are also shown.

SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B AQ_C Producer’s accuracy (%)

SPHA 15.20 0.73 0.43 0.33 0.00 0.17 0.00 0.00 0.07 0.03 0.03 0.00 0.00 89.46
CAVU 2.30 6.20 0.67 0.83 0.00 0.07 0.30 0.20 0.17 0.10 0.17 0.00 0.00 56.31
RHFR 1.13 0.77 4.20 0.00 0.07 1.67 0.70 1.57 0.50 0.17 0.23 0.00 0.00 38.15
CA_HV 0.00 0.17 0.00 12.17 1.03 0.00 0.53 0.07 0.57 0.57 4.90 0.00 0.00 60.82
AQ_A 0.00 0.00 0.07 0.47 33.40 0.20 0.83 0.00 0.80 1.60 1.00 0.17 1.47 83.48
SALI 0.00 0.30 1.00 0.13 1.33 8.57 0.23 0.00 0.30 0.40 0.70 0.00 0.03 65.97
PING 0.00 0.23 0.23 1.57 1.13 0.00 1.10 0.00 0.60 0.27 0.83 0.00 0.03 18.36
JUCO 0.07 0.00 0.10 0.00 0.13 0.00 0.10 13.40 0.00 0.00 0.20 0.00 0.00 95.71
ELQU 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 10.93 0.00 0.00 0.00 0.00 99.36
METR 0.07 0.00 0.00 1.17 1.40 0.00 0.23 0.00 0.63 4.43 1.03 0.00 0.03 49.28
PI_CV 0.00 0.00 0.07 1.83 0.40 0.03 0.37 0.00 0.03 0.10 8.03 0.00 0.13 73.07
AQ_B 0.23 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.07 4.40 0.00 88.00
AQ_C 0.00 0.07 0.00 0.10 0.67 0.03 0.03 0.00 0.00 0.07 0.30 0.00 7.73 85.89
User’s accuracy (%) 80.00 73.20 62.04 65.43 83.79 79.80 24.50 87.93 74.86 57.24 45.91 96.28 82.06 OAA: 73.31

F1-score (%) 84.47 63.66 47.24 63.04 83.64 72.23 20.99 91.66 85.39 52.96 56.39 91.95 83.93

4.3. Supervised classification according to the spectral ranges425

Only the best results are presented, obtained with the four spectral ranges ([350–750 nm], [750–1350 nm],426

[350–1350 nm], [350–2500 nm]) and the spectral signature as reference and the three transformed spectral427

signatures (second derivative, first derivative, Continuum Removed Derivative Reflectance).428

Table 18 to Table 21 show the best results obtained with RLR-`2 on [350–1350 nm] whatever the transformed429

spectral signatures.430

Considering wavelengths used by selected indices (Section 4.2), most of them use spectral bands located431

on [350–1350 nm] either: 50 % are located in visible range and 32.35 % in near-infrared range. Indeed, in432

this spectral range all the biophysical components discriminating the peatland vegetation types can be taken433

into account. That is confirmed by Figure 15 which shows that the best results are given by [350–1350 nm]434

considering the training size = 25 % regardless the transformed spectral signatures and the the classifier, except435
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Table 17. Confusion matrix of the classification based on RLR−`2 with indices selected by the Hellinger distance
and training size = 25 %. The producer’s and user’s accuracies and the overall accuracy average (OAA) are also
shown.

SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUCO ELQU METR PI_CV AQ_B AQ_C Producer’s accuracy (%)

SPHA 15.40 0.90 0.13 0.47 0.00 0.00 0.00 0.00 0.03 0.07 0.00 0.00 0.00 90.59
CAVU 0.90 8.03 0.67 0.47 0.00 0.03 0.70 0.00 0.03 0.03 0.13 0.00 0.00 73.07
RHFR 0.47 0.30 6.70 0.03 0.00 2.53 0.43 0.20 0.13 0.20 0.00 0.00 0.00 60.96
CA_HV 0.00 0.17 0.20 11.93 0.77 0.00 0.77 0.03 0.57 0.63 4.93 0.00 0.00 59.65
AQ_A 0.00 0.00 0.23 0.40 33.40 0.43 1.50 0.03 0.43 1.63 1.33 0.00 0.60 83.54
SALI 0.00 0.00 2.30 0.00 0.87 7.77 0.80 0.07 0.03 0.40 0.60 0.00 0.17 59.72
PING 0.00 0.27 0.17 1.67 0.37 0.00 2.20 0.00 0.17 0.40 0.73 0.00 0.03 36.61
JUCO 0.00 0.03 0.20 0.07 0.10 0.17 0.07 12.93 0.00 0.07 0.37 0.00 0.00 92.29
ELQU 0.00 0.00 0.00 0.07 0.00 0.00 0.33 0.00 10.60 0.00 0.00 0.00 0.00 96.36
METR 0.00 0.00 0.03 0.87 0.73 0.00 0.07 0.00 0.03 6.23 1.03 0.00 0.00 69.30
PI_CV 0.00 0.00 0.10 1.23 0.17 0.07 0.23 0.00 0.00 0.37 8.83 0.00 0.00 80.27
AQ_B 0.03 0.00 0.47 0.00 0.10 0.00 0.07 0.00 0.00 0.10 0.00 4.23 0.00 84.60
AQ_C 0.00 0.00 0.00 0.03 0.47 0.00 0.10 0.00 0.00 0.00 0.00 0.00 8.40 93.33
User’s accuracy (%) 91.67 82.78 59.82 69.20 90.32 70.64 30.26 97.51 88.19 61.50 49.19 100.00 91.30 OAA: 77.21

F1-score (%) 91.12 77.62 60.39 64.07 86.80 64.72 33.13 94.83 92.09 65.17 61.00 91.66 92.31

Table 18. Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on
[350–750 nm].

Training size Classifier Overall accuracy (± Standard deviation) (%)

Spectral signature Second derivative First derivative

Continuum
Removed
Derivative
Reflectance

50 %

SVM linear 80.99 (± 6.61) 86.94 (± 5.21) 85.95 (± 3.81) 88.26(±2.53)
SVM RBF 67.44 (± 4.69) 78.35 (± 2.74) 81.32 (± 2.13) 86.94 (± 3.11)
RLR-`1 86.45 (± 3.57) 86.94 (± 4.10) 89.75 (± 2.48) 86.94 (± 1.76)
RLR-`2 88.10(±3.64) 88.43(±2.02) 90.91(±2.86) 87.44 (± 1.84)
RF 62.98 (± 3.52) 84.79 (± 4.92) 73.88 (± 2.84) 86.45 (± 4.07)
PLS-DA 75.21 (± 3.88) 71.90 (± 4.99) 73.72 (± 3.52) 75.04 (± 3.28)

45 %

SVM linear 81.38 (± 4.80) 85.85 (± 1.79) 84.62 (± 1.54) 87.69(±1.88)
SVM RBF 64.15 (± 2.41) 73.54 (± 4.71) 76.92 (± 2.06) 86.00 (± 1.02)
RLR-`1 83.85 (± 4.01) 84.00 (± 2.64) 85.85 (± 4.63) 86.00 (± 1.57)
RLR-`2 85.85(±2.78) 86.92(±2.01) 87.08(±2.64) 85.69 (± 1.66)
RF 59.85 (± 3.35) 82.31 (± 4.43) 72.46 (± 3.13) 85.23 (± 3.13)
PLS-DA 75.38 (± 2.18) 72.62 (± 2.86) 72.15 (± 1.23) 71.08 (± 2.60)

40 %

SVM linear 75.97 (± 4.31) 83.60 (± 3.23) 84.89(±2.69) 87.77(±2.77)
SVM RBF 62.45 (± 3.07) 73.09 (± 4.50) 72.52 (± 4.69) 83.45 (± 2.41)
RLR-`1 80.72 (± 2.06) 82.16 (± 1.47) 83.88 (± 2.83) 82.73 (± 1.11)
RLR-`2 84.46(±3.48) 85.18(±3.17) 84.60 (± 3.85) 84.32 (± 1.79)
RF 56.69 (± 1.95) 80.29 (± 4.50) 70.36 (± 3.17) 83.74 (± 2.93)
PLS-DA 76.69 (± 2.75) 72.52 (± 1.79) 72.81 (± 1.32) 70.22 (± 1.62)

35 %

SVM linear 69.74 (± 7.38) 80.52(±5.15) 80.00 (± 3.22) 83.77(±2.63)
SVM RBF 56.23 (± 3.09) 68.05 (± 4.01) 68.31 (± 3.86) 80.39 (± 2.07)
RLR-`1 77.92 (± 4.11) 77.79 (± 3.37) 80.00 (± 4.78) 79.74 (± 3.35)
RLR-`2 82.08(±2.80) 78.96 (± 3.55) 82.47(±3.36) 81.69 (± 2.07)
RF 53.25 (± 3.05) 77.27 (± 3.15) 67.27 (± 2.12) 80.52 (± 2.17)
PLS-DA 75.45 (± 3.42) 69.48 (± 2.63) 70.52 (± 2.12) 68.70 (± 1.71)

30 %

SVM linear 70.42 (± 3.08) 79.52(±5.22) 79.64 (± 1.78) 84.48(±1.82)
SVM RBF 55.39 (± 5.74) 67.03 (± 4.17) 68.61 (± 3.48) 80.73 (± 1.50)
RLR-`1 78.30 (± 2.08) 74.91 (± 7.86) 77.94 (± 3.77) 78.79 (± 6.37)
RLR-`2 80.85(±2.98) 77.33 (± 9.20) 81.94(±3.42) 81.70 (± 4.01)
RF 54.30 (± 1.86) 76.97 (± 4.58) 68.00 (± 0.97) 79.88 (± 3.33)
PLS-DA 72.00 (± 3.54) 69.09 (± 4.58) 68.73 (± 3.20) 68.48 (± 4.85)

25 %

SVM linear 65.65 (± 4.57) 74.69(±2.46) 74.46 (± 2.33) 80.45(±2.49)
SVM RBF 52.54 (± 5.26) 60.45 (± 5.24) 63.28 (± 4.33) 78.42 (± 3.36)
RLR-`1 75.59 (± 2.49) 71.98 (± 3.33) 75.25 (± 4.25) 75.25 (± 4.92)
RLR-`2 77.74(±3.81) 72.99 (± 6.61) 79.77(±3.79) 77.63 (± 2.52)
RF 52.66 (± 4.40) 73.79 (± 1.41) 65.42 (± 1.69) 77.40 (± 2.34)
PLS-DA 71.53 (± 0.92) 69.72 (± 3.96) 70.40 (± 2.44) 70.40 (± 4.18)
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Table 19. Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on
[750–1350 nm].

Training size Classifier Overall accuracy (± Standard deviation) (%)

Spectral signature Second derivative First derivative

Continuum
Removed
Derivative
Reflectance

50 %

SVM linear 83.31 (± 1.10) 89.09 (± 2.05) 90.91 (± 1.38) 84.13 (± 2.42)
SVM RBF 57.69 (± 4.03) 79.34 (± 4.37) 87.60 (± 2.34) 78.68 (± 2.93)
RLR-`1 90.41(±2.00) 88.76 (± 2.19) 89.92 (± 1.42) 87.44 (± 2.42)
RLR-`2 86.28 (± 3.25) 91.07(±1.42) 94.88(±1.10) 90.91(±2.45)
RF 53.88 (± 2.05) 86.28 (± 1.70) 79.83 (± 1.44) 80.66 (± 1.53)
PLS-DA 77.52 (± 2.30) 73.72 (± 1.91) 77.69 (± 2.96) 70.74 (± 2.84)

45 %

SVM linear 78.15 (± 5.43) 84.15 (± 1.86) 86.31 (± 4.17) 82.77 (± 3.85)
SVM RBF 59.54 (± 2.21) 72.77 (± 3.82) 82.77 (± 4.20) 75.85 (± 2.31)
RLR-`1 86.46(±3.46) 85.38 (± 3.67) 87.69 (± 2.43) 82.92 (± 1.78)
RLR-`2 85.23 (± 3.49) 85.69(±2.86) 90.46(±2.46) 85.85(±1.58)
RF 53.54 (± 1.79) 80.15 (± 2.73) 76.77 (± 3.87) 77.54 (± 2.20)
PLS-DA 73.54 (± 3.97) 70.46 (± 2.31) 74.15 (± 3.56) 68.15 (± 3.53)

40 %

SVM linear 77.70 (± 5.46) 80.72 (± 3.98) 83.88 (± 3.82) 80.43 (± 6.11)
SVM RBF 58.85 (± 2.20) 69.64 (± 4.20) 80.29 (± 3.04) 72.95 (± 1.62)
RLR-`1 85.32(±3.88) 84.46 (± 3.60) 88.06 (± 3.24) 81.29 (± 2.91)
RLR-`2 82.88 (± 2.25) 86.19(±2.38) 89.64(±3.39) 82.73(±3.83)
RF 53.24 (± 2.61) 77.99 (± 2.75) 74.96 (± 3.29) 73.96 (± 3.48)
PLS-DA 72.09 (± 1.54) 72.09 (± 2.89) 74.96 (± 3.07) 68.35 (± 3.61)

35 %

SVM linear 72.86 (± 4.33) 78.44 (± 4.81) 80.65 (± 4.47) 75.84 (± 2.83)
SVM RBF 55.06 (± 2.03) 67.14 (± 4.69) 76.23 (± 3.50) 66.88 (± 2.87)
RLR-`1 80.39(±3.71) 79.22 (± 3.60) 84.55 (± 2.89) 73.90 (± 3.27)
RLR-`2 78.57 (± 3.46) 82.86(±5.61) 87.27(±3.22) 78.57(±4.19)
RF 52.99 (± 2.08) 73.64 (± 2.89) 73.51 (± 3.00) 69.61 (± 3.14)
PLS-DA 70.65 (± 2.80) 70.52 (± 2.92) 72.47 (± 3.66) 66.23 (± 2.82)

30 %

SVM linear 74.18 (± 1.70) 80.48 (± 3.37) 81.58 (± 2.83) 75.39 (± 2.53)
SVM RBF 55.27 (± 2.93) 70.06 (± 3.81) 76.24 (± 4.72) 67.39 (± 7.39)
RLR-`1 80.97(±1.19) 79.88 (± 2.61) 84.73 (± 3.05) 76.12 (± 1.61)
RLR-`2 80.00 (± 3.49) 83.88(±3.38) 87.64(±3.31) 78.79(±2.06)
RF 52.00 (± 1.69) 74.42 (± 2.58) 73.21 (± 2.61) 70.55 (± 2.35)
PLS-DA 72.36 (± 3.69) 70.06 (± 4.35) 73.45 (± 3.31) 64.48 (± 0.82)

25 %

SVM linear 67.80 (± 3.52) 75.48 (± 2.59) 78.19 (± 1.37) 73.11 (± 0.68)
SVM RBF 53.11 (± 2.20) 60.90 (± 3.90) 69.94 (± 3.63) 66.78 (± 2.98)
RLR-`1 75.14 (± 3.31) 77.29 (± 2.93) 80.90 (± 2.46) 72.77 (± 1.65)
RLR-`2 76.84(±2.88) 78.87(±3.46) 83.05(±4.55) 76.95(±2.66)
RF 48.59 (± 4.14) 71.64 (± 3.87) 73.11 (± 2.04) 69.83 (± 2.36)
PLS-DA 70.62 (± 2.70) 69.83 (± 0.68) 72.09 (± 2.28) 63.95 (± 3.12)
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Table 20. Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) in
[350–1350 nm].

Training size Classifier Overall accuracy (± Standard deviation) (%)

Spectral signature Second derivative First derivative

Continuum
Removed
Derivative
Reflectance

50 %

SVM linear 83.47 (± 2.77) 93.22 (± 0.96) 92.40 (± 1.42) 91.57 (± 2.24)
SVM RBF 69.75 (± 2.98) 55.04 (± 4.10) 76.20 (± 4.66) 78.02 (± 1.53)
RLR-`1 89.26 (± 1.65) 92.73 (± 1.69) 94.05 (± 2.63) 90.41 (± 1.34)
RLR-`2 91.07(±3.56) 94.05(±1.32) 96.36(±2.00) 94.05(±1.76)
RF 69.75 (± 2.80) 90.25 (± 1.91) 85.45 (± 1.44) 89.26 (± 2.45)
PLS-DA 78.51 (± 2.45) 80.83 (± 2.05) 81.49 (± 2.80) 79.17 (± 2.24)

45 %

SVM linear 80.15 (± 4.02) 87.38 (± 2.15) 88.62 (± 3.05) 91.54 (± 1.61)
SVM RBF 65.69 (± 3.91) 49.38 (± 3.87) 67.54 (± 4.70) 72.77 (± 2.31)
RLR-`1 86.31 (± 3.49) 90.46 (± 1.43) 90.15 (± 3.01) 88.62 (± 0.58)
RLR-`2 90.15(±3.35) 92.15(±2.09) 92.77(±1.73) 91.85(±2.21)
RF 65.54 (± 3.99) 85.85 (± 3.25) 81.54 (± 3.08) 86.31 (± 4.28)
PLS-DA 78.15 (± 1.79) 79.85 (± 3.17) 79.69 (± 2.04) 76.92 (± 1.54)

40 %

SVM linear 77.55 (± 3.71) 86.76 (± 1.62) 88.49 (± 3.44) 89.93(±4.07)
SVM RBF 63.31 (± 3.37) 50.79 (± 3.60) 66.76 (± 5.62) 69.35 (± 3.24)
RLR-`1 83.17 (± 1.91) 88.06 (± 1.33) 89.64 (± 1.33) 85.04 (± 3.26)
RLR-`2 87.48(±2.79) 91.22(±0.95) 91.80(±1.41) 89.64 (± 1.96)
RF 64.60 (± 2.51) 84.46 (± 3.17) 80.86 (± 2.64) 85.32 (± 4.70)
PLS-DA 77.99 (± 1.68) 80.00 (± 2.00) 79.42 (± 1.33) 76.40 (± 1.24)

35 %

SVM linear 68.05 (± 5.02) 83.90 (± 3.77) 84.16 (± 2.68) 85.58 (± 2.74)
SVM RBF 59.61 (± 3.06) 44.03 (± 3.37) 63.12 (± 4.81) 64.03 (± 3.69)
RLR-`1 80.52 (± 2.25) 85.71 (± 2.79) 85.32 (± 2.04) 80.52 (± 5.08)
RLR-`2 84.68(±2.83) 85.97(±3.71) 89.09(±1.99) 87.27(±3.73)
RF 63.25 (± 2.42) 80.26 (± 3.33) 77.92 (± 1.74) 82.21 (± 3.35)
PLS-DA 75.58 (± 1.86) 76.36 (± 2.65) 79.61 (± 1.95) 75.19 (± 1.04)

30 %

SVM linear 72.61 (± 1.93) 84.61 (± 3.22) 85.58 (± 1.97) 83.76 (± 4.10)
SVM RBF 60.24 (± 2.62) 42.42 (± 3.36) 62.79 (± 7.09) 65.21 (± 3.08)
RLR-`1 80.48 (± 2.11) 82.55 (± 4.01) 85.58 (± 2.95) 83.03 (± 4.29)
RLR-`2 84.12(±4.12) 87.39(±4.76) 89.70(±4.22) 86.30(±4.48)
RF 65.21 (± 3.31) 79.52 (± 4.22) 77.21 (± 1.98) 81.58 (± 3.08)
PLS-DA 76.24 (± 3.37) 76.85 (± 4.99) 77.58 (± 4.20) 74.79 (± 3.27)

25 %

SVM linear 70.28 (± 2.44) 80.90 (± 2.16) 83.73 (± 2.75) 82.94 (± 2.59)
SVM RBF 51.64 (± 1.54) 39.89 (± 1.91) 52.54 (± 2.84) 61.58 (± 2.34)
RLR-`1 77.40 (± 1.96) 82.15(±3.64) 83.95(±1.70) 79.66 (± 2.02)
RLR-`2 81.47(±1.10) 80.79 (± 4.42) 83.16 (± 6.33) 83.84(±3.17)
RF 62.03 (± 3.86) 76.16 (± 3.20) 76.84 (± 1.86) 80.45 (± 3.67)
PLS-DA 75.93 (± 2.74) 74.58 (± 2.88) 78.76 (± 2.28) 72.66 (± 2.49)
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Table 21. Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on
[350–2500 nm].

Training size Classifier Overall accuracy (± Standard deviation) (%)

Spectral signature Second derivative First derivative

Continuum
Removed
Derivative
Reflectance

50 %

SVM linear 83.47 (± 2.34) 85.29 (± 4.10) 87.44(±1.21) 91.90(±1.76)
SVM RBF 61.98 (± 4.31) 19.34 (± 5.95) 22.81 (± 0.40) 25.12 (± 0.84)
RLR-`1 91.07 (± 2.30) 82.31 (± 3.16) 83.80 (± 3.07) 88.26 (± 1.60)
RLR-`2 91.57(±1.42) 81.49 (± 2.37) 82.81 (± 2.05) 84.79 (± 2.37)
RF 71.24 (± 2.63) 89.92(±1.98) 84.96 (± 2.42) 90.58 (± 0.40)
PLS-DA 75.04 (± 2.05) 78.35 (± 4.91) 75.70 (± 2.98) 79.83 (± 0.84)

45 %

SVM linear 79.08 (± 1.32) 79.38 (± 1.57) 82.31(±1.61) 90.62(±1.78)
SVM RBF 55.38 (± 6.10) 22.31 (± 0.00) 22.46 (± 0.31) 24.15 (± 1.58)
RLR-`1 85.23 (± 2.25) 79.69 (± 2.86) 81.08 (± 2.56) 84.77 (± 2.89)
RLR-`2 86.00(±2.73) 79.23 (± 2.33) 79.54 (± 2.36) 77.69 (± 3.61)
RF 69.08 (± 4.42) 85.08(±2.46) 80.92 (± 1.32) 87.69 (± 2.96)
PLS-DA 73.08 (± 3.34) 75.23 (± 4.31) 72.00 (± 3.29) 77.69 (± 1.88)

40 %

SVM linear 76.12 (± 0.84) 79.42 (± 0.86) 82.30(±2.35) 88.06(±1.68)
SVM RBF 53.24 (± 3.61) 23.02 (± 0.00) 23.45 (± 0.58) 25.18 (± 1.02)
RLR-`1 83.88 (± 3.69) 79.28 (± 1.79) 79.86 (± 3.83) 82.59 (± 3.98)
RLR-`2 84.75(±2.86) 81.01 (± 3.11) 79.57 (± 2.35) 79.28 (± 3.57)
RF 65.90 (± 3.48) 84.17(±3.34) 79.28 (± 2.67) 86.04 (± 2.60)
PLS-DA 73.67 (± 1.85) 74.39 (± 2.07) 71.94 (± 3.75) 76.55 (± 4.31)

35 %

SVM linear 69.74 (± 1.13) 77.27 (± 1.09) 79.87(±1.79) 84.42(±4.35)
SVM RBF 49.87 (± 3.64) 20.00 (± 5.45) 20.13 (± 5.53) 22.21 (± 4.69)
RLR-`1 82.47 (± 3.74) 74.42 (± 2.38) 76.23 (± 2.04) 78.05 (± 1.26)
RLR-`2 83.64(±3.19) 77.27 (± 2.87) 77.14 (± 1.99) 74.94 (± 2.80)
RF 64.03 (± 3.01) 79.35(±2.83) 77.27 (± 1.23) 82.47 (± 2.82)
PLS-DA 71.95 (± 2.19) 72.34 (± 2.27) 70.65 (± 3.57) 74.42 (± 3.20)

30 %

SVM linear 69.94 (± 3.90) 77.33 (± 1.82) 79.64(±2.59) 84.36(±5.88)
SVM RBF 48.85 (± 4.05) 22.42 (± 0.00) 22.42 (± 0.00) 24.12 (± 0.89)
RLR-`1 79.39 (± 2.24) 71.27 (± 3.29) 76.36 (± 3.27) 78.06 (± 5.44)
RLR-`2 83.27(±3.48) 75.88 (± 4.64) 75.52 (± 3.03) 75.15 (± 4.11)
RF 65.21 (± 3.83) 78.06(±2.22) 77.21 (± 2.67) 80.00 (± 4.25)
PLS-DA 70.18 (± 2.80) 71.27 (± 3.61) 68.85 (± 4.67) 73.45 (± 2.58)

25 %

SVM linear 65.31 (± 4.24) 74.24 (± 1.54) 77.51(±1.49) 83.05(±3.29)
SVM RBF 43.05 (± 1.31) 22.60 (± 0.00) 22.60 (± 0.00) 24.07 (± 0.58)
RLR-`1 74.92 (± 1.70) 67.46 (± 3.44) 71.64 (± 2.35) 75.03 (± 5.27)
RLR-`2 80.23(±0.80) 73.79 (± 3.57) 74.35 (± 2.19) 70.73 (± 1.84)
RF 62.49 (± 4.15) 74.58(±2.14) 76.61 (± 2.22) 79.10 (± 2.95)
PLS-DA 70.17 (± 1.40) 70.96 (± 4.00) 70.06 (± 3.24) 72.43 (± 2.64)
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for RF applied on the spectral signature. In this case, considering the whole spectral range improves the result436

by 1 % compared with [350–1350 nm].437

Figure 15. Vegetation type identification accuracies with the training size = 25 %.

Considering RLR-`2 in [350–1350 nm], Table 22 shows that the best overall accuracies are given by438

first derivative, second derivative and CRDR. First and second derivatives overall accuracies are very close439

(difference lower than 1 %). However, those transformations are sensitive to noise. But CRDR delivered better440

results than spectral signatures and similar performances than the first and second derivatives (difference is441

lower than 4 %). As mentioned in Section 4.1, those transformations are closely related to absorption features442

rather than reflectance magnitude [38], and are helpful to discriminate peatland vegetation types which are443

clearly characterized by different biophysical components as mentioned in Section 4.2.444

Considering RLR, `1 regularization, which controls the selection or the removal of variables, always445

underperforms `2-regularization, which handles with collinear variables [16]. Because of mixed plant species, it446

is difficult to remove variables that are not involved in the classification of all the vegetation types. Although,447

SVM and RF are popular classifiers in remote sensing community, they are outclassed by RLR in [350 nm to448

1350 nm] which is the spectral range where results are the best (Figure 16). Results given by SVM RBF are lower449

than those obtained with RLR and can be explained by the difficulty to find adapted parameters considering450

this high dimensionality problem. However, it is interesting to note that results from SVM linear are close to451

RLR ones considering first derivative, second derivative and CRDR. Further investigations should be conducted452

to better understand the link between those classifiers and improve the choice of the parameters. Figure 16453
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Table 22. Vegetation types identification accuracies (overall accuracy (± standard deviation) in %) on
[350–1350nm] for RLR-`2.

Training size Overall accuracy (± Standard deviation) (%)

Spectral signature Second derivative First derivative Continuum
Removal

Continuum
Removed
Derivative
Reflectance

log
transformation

50 % 91.07 (± 3.56) 94.05 (± 1.32) 96.36(±2.00) 89.59 (± 1.93) 94.05 (± 1.76) 93.72 (± 2.13)
45 % 90.31 (± 3.39) 92.15 (± 2.09) 92.77(±1.73) 87.85 (± 2.59) 91.85 (± 2.21) 89.69 (± 4.03)
40 % 87.48 (± 2.79) 91.22 (± 0.95) 91.80(±1.41) 83.31 (± 3.79) 89.64 (± 1.96) 88.35 (± 2.15)
35 % 84.68 (± 2.83) 85.97 (± 3.71) 89.09(±1.99) 81.56 (± 3.45) 87.27 (± 3.73) 86.23 (± 3.45)
30 % 84.24 (± 4.07) 87.39 (± 4.76) 89.70(±4.22) 82.79 (± 4.09) 86.30 (± 4.48) 84.36 (± 4.22)
25 % 81.47 (± 1.10) 80.79 (± 4.42) 83.16 (± 6.33) 80.45 (± 2.62) 83.84(±3.17) 82.15 (± 2.13)

shows that PLS-DA is the least sensitive classifier to training size regardless transformed spectral signatures in454

[350–1350 nm].455

Table 23 shows that Pinguicula sp. (PING) has the lowest F1-score (66.67 % and 56.00 % respectively) as456

well as for the spectral vegetation indices (Section 4.2). Besides, this vegetation type is hardly discriminated457

from the other ones (Producer’s accuracy (PA) = 53.33 %) and some Pinguicula sp. combined vegetation (PI_CV)458

spectra are classified as PING). However, it should be kept in mind that PING has a small number of spectra.459

Considering Aquatic type b (AQ_B) which has about the same number of spectra (7 spectra against 8 for460

PING), User’s Accuracy (UA) = 60.98 % and some Aquatic type a (AQ_A) spectra are predicted as AQ_B461

ones. These poor UA results compared to one obtained by spectral vegetation indices can not be explained462

by the spectral domain. Indeed, the best spectra vegetation index (NDWI[860, 1240]) that discriminate AQ_A463

from AQ_B has both wavelengths in [350–1350 nm]. However, this result may be qualified by PA. Indeed, on464

[350–1350 nm] domain, UA = 100.00 % whereas UA = 84.60 % for spectral vegetation indices. Nevertheless,465

using a continuous spectral domain can lead to worse results for other vegetation types such as Sphagnum466

sp. (SPHA), Calluna vulgaris (CAVU), AQ_A: F1-score is always better considering the same classifier (RLR-`2)467

applied on spectral vegetation indices selected by the Hellinger distance (SPHA: 91.12 % vs 82.80 %; CAVU:468

77.62 % vs 71.43 %; AQ_A: 86.80 % vs 82.81 %). Considering SPHA, if PA = 90.59 % for spectral vegetation469

indices or for [350–1350 nm], the latter predicts more SPHA than observed (UA = 76.24 %) and is more confused470

with CAVU. This can be explained by plot 7 which is mainly composed of Calluna vulgaris (20 %), Carex rostrata471

(25 %), Molinia caerulea ssp. caerulae (20 %) and Sphagnum palustre (20 %) (Appendix B).472

In our case, reducing feature space by selecting most discriminant wavelengths (using PCA or MNF) has473

not been implemented, whereas it can be an interesting track to explore to see if it improves results for RLR-`2.474

Juniperus communis (JUCO), Eleocharis quinqueflora (ELQU) and Aquatic type c (AQ_C) have about the same475

F1-score considering spectral vegetation indices or [350–1350 nm]: less than 2 % difference. However, they have476

better PA on the continuous spectral range (PA = 100.00 % for JUCO; 95.56 % for AQ_C) which means that this477

spectral range contains discriminant wavelengths able to catch characteristic of those vegetation types.478

Rhododendron ferrugineum (RHFR), Carex sp. homogeneous vegetation (CA_HV), Salix sp. (SALI) and479

Menyanthes trifoliata (METR) have better results considering [350–1350 nm]. This can be explained by the480

fact that the spectral vegetation indices used have not been built for that kind of vegetation types. Further481

investigations can be lead to find specific indices that can discriminate those vegetation types from other ones.482
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Table 23. Confusion matrix of the RLR-`2 classification using CRDR on [350–1350 nm] (training size = 25 %). The
producer’s and user’s accuracies, the overall accuracy and the F1-score are also shown.

SPHA CAVU RH_FR CA_HV AQ_A SALI PING JUQO ELQU METR PI_CV AQ_B AQ_C Producer’s accuracy (%)

SPHA 15.40 1.40 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.59
CAVU 3.20 7.00 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.00 0.40 0.00 0.00 63.64
RHFR 1.40 0.00 8.20 0.20 0.00 0.40 0.20 0.60 0.00 0.00 0.00 0.00 0.00 74.55
CA_HV 0.00 0.00 0.00 16.00 1.40 0.20 0.00 0.20 0.00 0.20 2.00 0.00 0.00 80.00
AQ_A 0.20 0.00 0.00 1.80 31.80 0.00 0.00 0.20 0.40 1.40 0.20 3.20 0.80 79.50
SALI 0.00 0.00 0.20 0.40 0.20 11.80 0.00 0.40 0.00 0.00 0.00 0.00 0.00 90.77
PING 0.00 0.20 0.00 0.40 0.40 0.00 3.20 0.00 0.40 0.00 1.40 0.00 0.00 53.33
JUCO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.00 0.00 0.00 0.00 0.00 0.00 100.00
ELQU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00 100.00
METR 0.00 0.00 0.00 0.00 2.60 0.00 0.00 0.00 0.60 5.80 0.00 0.00 0.00 64.44
PI_CV 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 10.60 0.00 0.00 96.36
AQ_B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 100.00
AQ_C 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.60 95.56
User’s accuracy (%) 76.24 81.40 97.62 82.47 86.41 95.16 88.89 90.91 87.30 78.38 72.60 60.98 91.49 OAA: 83.84

F1-score (%) 82.80 71.43 84.54 81.22 82.81 92.91 66.67 95.24 93.22 70.73 82.81 75.76 93.48

Figure 16. Vegetation type identification accuracies on [350–1350 nm].
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5. Conclusions and Perspectives483

This study aimed at inventorying and evaluating the performance of discrimination techniques for peatland484

habitats based on in situ hyperspectral measurements with a high spectral resolution and high signal-to-noise485

ratio. To evaluate the potential of hyperspectral data to separate and classify those habitats, three classes of486

methods were investigated and compared:487

• similarity measures calculated on spectral reflectance,488

• supervised classification based on “local” information (spectral vegetation indices),489

• supervised classification based on “global” information (spectral ranges).490

This study demonstrated that peatland vegetation types could be discriminated using the Canberra distance491

on the whole spectral range [350–2500 nm]. This distance is sensitive to a small change when both coordinates492

approach zero which is the case of reflectance especially in the visible ranges and in the SWIR (Figure 2). Further493

investigations should be conducted to see if combinations of spectral range can improve overall accuracy or if494

the lack of spectral signatures in the reference database (which is a weakness of this method) may explain why495

the whole spectral range is needed to compare spectra in that case. Besides, it is of importance to collect more496

spectral signatures from peatland vegetation types to build a spectral reference database of peatland vegetation497

types that can catch more spectral variability.498

Although, there is no spectral vegetation indices built to discriminate peatland vegetation types, this study499

showed that some indices could be selected using the Hellinger distance. Although those indices have not500

been built to discriminate peatland vegetation types, they were able to classify them because they focus on501

biochemical properties such as chlorophyll, nitrogen, water stress, ... Further investigations have to be done502

to see the impact of spectral bandwidth around the wavelength of selected indices instead of working with503

one particular wavelength. For instance there are lots of indices that catch the same biochemical property but504

wavelengths of interest change because they focus on specific plant species (e.g. for the chlorophyll, SR[700, 670]505

is built for field corn, whereas SR[675, 700] is built for soy beans leaves; contrary to SR[675, 700], SR[700,670]506

has been selected with the Hellinger distance).507

Contrary to similarity measures which had best results considering the whole spectral range, supervised508

classification on specific spectral range as defined by [31] achieved best overall accuracy considering509

[350–1350 nm] domain. This is in agreement with the spectral vegetation indices: only 4 indices (NDWI[860,510

1240], NDWI[860, 2130], NDWI[1110, 1450], MSI) over the 26 selected have a discriminant wavelength which is511

not in this spectral range. More precisely, the discriminant wavelength is located in the SWIR and all concerned512

vegetation indices are linked to the water status. Further investigations should be conducted on the extraction513

or the reduction of features of this spectral range to understand why this domain gave sometimes worse results514

than spectral vegetation indices depending on the vegetation type.515

Among the three methods, the best results are obtained considering a specific spectral domain [350–1350 nm516

with RLR regardless the transformed spectral signatures and the size of the training size (overall accuracy517

ranges from 81.47 % to 96.36 %). However, it should be of interest to apply feature reduction methods usually518

applied on remote sensing (such as PCA or MNF) to see it results are improved or specific spectral wavelength519

can be selected.520

To our knowledge, although not popular in remote sensing for classifying (but already used for feature521

selection), RLR classifier achieves best overall classification accuracy whether applied to the spectral vegetation522

indices selected by the Hellinger distance (77.21 %) on the [350–1350 nm] domain (83.84 %) considering training523

size = 25 %.524

Furthermore, this study showed that CRDR gave encouraging results event if it is slightly below those525

obtained by the first derivative and the second derivative considering RLR classifier.526

Considering the habitats, some vegetation types were more easily separated. For instance, JUCO had527

the best F1-score with the spectral vegetation indices selected by the Hellinger distance (94.83 %) or on the528

[350–1350 nm] (95.24 %) with RLR and the training size = 25 %. In some case this specific spectral domain gave529

better results (F1-score = 92.21 % whereas with spectral vegetation indices F1-score = 64.72 % for SALI) while in530
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other case, the spectral vegetation indices gave better results (F1-score = 91.12 % whereas F1-score = 82.80 % for531

SPHA). As mentioned earlier, reducing feature space have to be investigated to see if a particular feature space532

exists that can discriminate and classify all vegetation types or if we need to consider either spectral vegetation533

indices or a specific spectral domain depending on the vegetation type to classify.534

Although all the results strongly depended on the current dataset, this study illustrated promising methods535

for classifying peatland vegetation types using in situ hyperspectral measurements. The next step concerns the536

application or adaptation of those methods to airborne hyperspectral imageries with high spatial resolution537

acquired on September 2014 (simultaneously with in situ measurements). With the objective of evaluating the538

benefits of airborne or spaceborne sensors with a lower spectral resolution a lower signal-to-noise ratio, these539

conclusions may change. For that purpose, some indices (involving wavelengths lower than 480 nm) will not be540

used because of the camera spectral range sensitivity and some transformed spectral signatures such as second541

derivative will neither be used because of signal-to-noise ratio. Similarly, the first derivative transformation is542

very sensitive to the noise coming from the instrument but also from the atmosphere correction and thus can543

lead to degrade its performance...544

Additional imageries acquired in October 2012 and July 2013 would allow us to test these methods with545

spectral signatures extracted from the ancillary dataset. Multi-temporal analysis could also be conducted to546

discriminate vegetation types thanks to the phenological changes. This step would be of interest to evaluate the547

robustness of spectral measurements, spectral vegetation indices and classifiers selected previously from in situ548

hyperspectral measurements to airborne data.549
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Appendix A. Composition of vegetation types553

Table A.1. Presence (+) and actual cover percentage of plant species collected on Bernadouze peatbog (Ariège, France) by
Florence MAZIER & Nicolas DE MUNIK (09/04/2014 & 09/11/2014).

Plant Species / Plots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Code SPHA SPHA SPHA SPHA SPHA CAVU CAVU ELQU ELQU PING METR JUCO JUCO RHFR RHFR SALI SALI SALI AQ_A AQ_A AQ_A AQ_A AQ_A AQ_A
Alchemilla glabra
Anthoxanthum odoratum 2 2 2 1 +
Apiaceae
Bare ground 1 5 4 15
Briza media 2 +
Calluna vulgaris 2 5 15 70 25 +
Caltha palustris 5 10 2
Campylium stellatum 35
Cardamine pratensis + +
Carex demissa
Carex echinata 5 2 2 + 2 + + 5 1
Carex flava + +
Carex nigra 5 2 2 2 10 5
Carex panicea + + + 5 1
Carex paniculata 50
Carex rostrata 5 35 70 40 10
Carex sp 2 25
Circaea lutetiana 4
Cirsium palustre 2
Dactylorhiza masculata 2 + + + 1
Drepanocladus revolvens 30 +
Drosera rotundifolia + + 1 +
Dryopteraceae +
Eleocharis quinqueflora 60 40 40 70
Epikeros pyrenaeus + + +
Equisetum sp 1 + + + 5 5 1 30 + +
Eriophorum angustifolium 5 10
Festuca rubra 3
Galium palustre + 2
Galium saxatile 1 2 5 +
Gentiana ciliata +
Hylocomium brevirostre +
Hypnum cupressiforme 2
Juncus alpinus +
Juncus bulbosus
Juncus sp +
Juniperus communis 5 95 80
Lathyrus montanus 5 +
Leotodon hispidus
Lotus sp + 2
Luzula sp
Lychnis floscuculi 4 + +
Mentha arvensis 3 +
Menyanthes trifoliata 10 25 5 10 10 4
Molinia caerulea ssp. caerulae 15 25 30 15 20 10 20 15 5 10 30 5 25 5
Narthecium ossifragum 2
Parnassia palustris 1 4 + 1 2 3 1 +
Pedicularis sylvatica 1 +
Pilosella lactucella + 1
Pinguicula sp 1
Pinguicula vulgaris + 5
Plagiomnium elatum +
Plantago lanceolata
Polytrichum sp 2
Potentilla erecta 5 5 5 5 10 5 6 5 2 + 5 5
Potentilla sp +
Prunella vulgaris + 2
Ranunculus acris + 1
Rhododendron ferrugineum 80 40
Salix atrocinerea 90 90 100
Scorpidium sp
Selaginella selaginoides + 1 1
Sphagnum capillifolium 10 5 5 70 25
Sphagnum cuspidatum 25
Sphagnum palustre 90 75 65 10 80 20 20 8 50 80
Sphagnum papillosum 15 25
Succisa pratensis +
Tofieldia calyculata +
Tomenthypnum nitens 3 30 10
Trichophorum cespitosum +
Trifolium arvense
Trifolium pratense 1 1
Utricularia sp. 5
Vaccinium myrtillus + 3 30 15
Vicia sepium +
Viola palustris 2 +
Viola sp + 5 +
Water 50 25 70 30 60 90
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Plant Species / Plots 25 26 27 28 29 30 31

Code AQ_B AQ_C CA_HV CA_HV CA_HV CA_HV PI_CV
Alchemilla glabra 2 + 3
Anthoxanthum odoratum
Apiaceae +
Bare ground 40
Briza media 5 5
Calluna vulgaris
Caltha palustris 1
Campylium stellatum
Cardamine pratensis
Carex demissa
Carex echinata 2 2
Carex flava
Carex nigra 5 2
Carex panicea
Carex paniculata 100
Carex rostrata
Carex sp 2 60 50
Circaea lutetiana
Cirsium palustre 5
Dactylorhiza masculata +
Drepanocladus revolvens
Drosera rotundifolia
Dryopteraceae
Eleocharis quinqueflora
Epikeros pyrenaeus
Equisetum sp + + +
Eriophorum angustifolium
Festuca rubra 1 + 10
Galium palustre
Galium saxatile + 1
Gentiana ciliata
Hylocomium brevirostre
Hypnum cupressiforme
Juncus alpinus
Juncus bulbosus 1
Juncus sp
Juniperus communis
Lathyrus montanus +
Leotodon hispidus
Lotus sp
Luzula sp +
Lychnis floscuculi 1
Mentha arvensis 2
Menyanthes trifoliata 50
Molinia caerulea ssp. caerulae 4 60 70 40 50
Narthecium ossifragum +
Parnassia palustris 2 2 2 + 1
Pedicularis sylvatica 1
Pilosella lactucella + 2 + +
Pinguicula sp 3
Pinguicula vulgaris
Plagiomnium elatum
Plantago lanceolata 2
Polytrichum sp
Potentilla erecta 3 2 1 2
Potentilla sp
Prunella vulgaris 4 5 1 1
Ranunculus acris 1 + 2 +
Rhododendron ferrugineum
Salix atrocinerea
Scorpidium sp 25
Selaginella selaginoides
Sphagnum capillifolium
Sphagnum cuspidatum
Sphagnum palustre
Sphagnum papillosum
Succisa pratensis 4
Tofieldia calyculata
Tomenthypnum nitens 1
Trichophorum cespitosum
Trifolium arvense 1
Trifolium pratense 4 5 2 1
Utricularia sp. 80
Vaccinium myrtillus
Vicia sepium
Viola palustris
Viola sp +
Water 20
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Appendix B. Data from vegetation types554

Sphagnum sp. (SPHA)

Figure B.1. Location of the in situ
spectroradiometer measurements for the
plots of Sphagnum sp. (SPHA).
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Figure B.2. Mean reflectance (µ) and
standard deviation (σ) of Sphagnum sp.
(SPHA).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

1 1.423156 42.802105 1343.715 4

2 1.423080 42.802068 1344.046 4

3 1.423143 42.802005 1344.004 4

4 1.423771 42.802907 1344.747 7

5 1.424118 42.803025 1346.327 3

555
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Calluna vulgaris (CAVU)

Figure B.3. Location of the in situ
spectroradiometer measurements for the
plots of Calluna vulgaris (CAVU).
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Figure B.4. Mean reflectance (µ) and
standard deviation (σ) of Calluna vulgaris
(CAVU).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

6 1.423564 42.80234 1343.762 7

7 1.42446 42.802773 1343.636 7

556
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Eleocharis quinqueflora (ELQU)

Figure B.5. Location of the in situ
spectroradiometer measurements for the
plots of Eleocharis quinqueflora (ELQU).
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Figure B.6. Mean reflectance (µ) and
standard deviation (σ) of Eleocharis
quinqueflora (ELQU).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

8 1.423728 42.802918 1344.617 3

9 1.423602 42.802983 1344.650 12

557
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Pinguicula sp. (PING)

Figure B.7. Location of the in situ
spectroradiometer measurements for the
plots of Pinguicula sp. (PING).
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Figure B.8. Mean reflectance (µ) and
standard deviation (σ) of Pinguicula sp.
(PING).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

10 1.423687 42.803021 1345.138 8

558
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Menyanthes trifoliata (METR)

Figure B.9. Location of the in situ
spectroradiometer measurements for the
plots of Menyanthes trifoliata (METR).
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Figure B.10. Mean reflectance (µ) and
standard deviation (σ) of Menyanthes trifoliata
(METR).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

11 1.424057 42.802733 1343.781 12

559
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Juniperus communis (JUCO)

Figure B.11. Location of the in situ
spectroradiometer measurements for the
plots of Juniperus communis (JUCO).
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Figure B.12. Mean reflectance (µ) and
standard deviation (σ) of Juniperus communis
(JUCO).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

12 1.42368 42.803132 1345.667 12

13 1.424437 42.802841 1344.217 7

560
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Rhododendron ferrugineum (RHFR)

Figure B.13. Location of the in situ
spectroradiometer measurements for the
plots of Rhododendron ferrugineum (RHFR).
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Figure B.14. Mean reflectance (µ) and
standard deviation (σ) of Rhododendron
ferrugineum (RHFR).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

14 1.423429 42.802376 1343.301 7

15 1.422769 42.801989 1344.606 7

561
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Salix sp. (SALI)

Figure B.15. Location of the in situ
spectroradiometer measurements for the
plots of Salix sp. (SALI).
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Figure B.16. Mean reflectance (µ) and
standard deviation (σ) of Salix sp. (SALI).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

16 1.423492 42.802575 1343.198 9

17 1.424283 42.802505 1343.082 4

18 1.423997 42.802472 1343.025 4
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Aquatic type a (AQ_A)

Figure B.17. Location of the in situ
spectroradiometer measurements for the
plots of Aquatic type a (AQ_A).
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Figure B.18. Mean reflectance (µ) and
standard deviation (σ) of Aquatic type a
(AQ_A).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

19 1.422872 42.801917 1344.375 7

20 1.423569 42.80256 1343.070 12

21 1.424258 42.802863 1344.285 6

22 1.423466 42.80221 1343.305 4

23 1.423495 42.802963 1344.493 12

24 1.42338 42.802993 1344.632 12
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Aquatic type b (AQ_B)

Figure B.19. Location of the in situ
spectroradiometer measurements for the
plots of Aquatic type b (AQ_B).
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Figure B.20. Mean reflectance (µ) and
standard deviation (σ) of Aquatic type b
(AQ_B).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

25 1.423539 42.802234 1343.04 7

564
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Aquatic type c (AQ_C)

Figure B.21. Location of the in situ
spectroradiometer measurements for the
plots of Aquatic type c (AQ_C).
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Figure B.22. Mean reflectance (µ) and
standard deviation (σ) of Aquatic type c
(AQ_C).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

26 1.423972 42.802653 1343.362 12

565
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Carex sp. homogeneous vegetation (CA_HV)

Figure B.23. Location of the in situ
spectroradiometer measurements for the
plots of Carex sp. homogeneous vegetation
(CA_HV).
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Figure B.24. Mean reflectance (µ) and
standard deviation (σ) of Carex sp.
homogeneous vegetation (CA_HV).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

27 1.423499 42.802124 1343.533 4

28 1.423547 42.802071 1344.568 4

29 1.42441 42.803316 1351.678 9

30 1.424173 42.802804 1344.481 10
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Pinguicula sp. combined vegetation (PI_CV)

Figure B.25. Location of the in situ
spectroradiometer measurements for the
plots of Pinguicula sp. combined vegetation
(PI_CV).

500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ef

le
ct

an
ce

 [-
]

µ

µ±σ

Figure B.26. Mean reflectance (µ) and
standard deviation (σ) of Pinguicula sp.
combined vegetation (PI_CV).

Picture Plot Longitude (DD) Latitude (DD) Altitude (m) No. of spectra

31 1.42316 42.802875 1344.344 12

32 1.423421 42.80287 1344.247 3
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