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Estimating functions for SDE driven by stable Lévy processes

Emmanuelle Clément∗ Arnaud Gloter†

July, 28 2017

Abstract

This paper is concerned with parametric inference for a stochastic differential equation driven by

a pure-jump Lévy process, based on high frequency observations on a fixed time period. Assuming

that the Lévy measure of the driving process behaves like that of an α-stable process around

zero, we propose an estimating functions based method which leads to asymptotically efficient

estimators for any value of α ∈ (0, 2) and does not require any integrability assumptions on the

process. The main limit theorems are derived thanks to a control in total variation distance between

the law of the normalized process, in small time, and the α-stable distribution. This method is

an alternative to the non Gaussian quasi-likelihood estimation method proposed by Masuda [20]

where the Blumenthal-Getoor index α is restricted to belong to the interval [1, 2).

MSC 2010. Primary: 60G51, 60G52, 60J75, 62F12. Secondary: 60H07, 60F05.

Key words: Lévy process, Stable process, Stochastic Differential Equation, Parametric infer-

ence, Estimating functions, Malliavin Calculus.

1 Introduction

Pure-jump processes are widely used and appropriate in several fields such as traffic modeling, energy

market modeling and estimation of such processes is a currently active topic. In this paper we are

interested in parametric estimation of the drift and scale coefficients for a one-dimensional stochastic

differential equation given by

dXt = b(Xt, θ)dt+ a(Xt−, σ)dLt,
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where L is a locally stable pure-jump Lévy process with Bumenthal-Getoor index α ∈ (0, 2). This

choice of L encompasses stable processes and also many other interesting processes.

We study estimation of (θ, σ) from discrete equidistant observations of X on a fixed time interval

with time grid mesh shrinking to zero. In this high-frequency observation context it is known that

the estimation of θ is impossible if the driving process L contains a Brownian part (which corresponds

to the case α = 2). However when α < 2, both parameters θ and σ can be estimated. This problem

has been studied first when X is a Lévy process (which corresponds to constant coefficients a and b)

in several papers, see for example Aı̈t-Sahalia and Jacod [1] [2], Kawai and Masuda [14] [15], Masuda

[19], Ivanenko, Kulik and Masuda [11]. In all these papers, the increments of the observed process

X are independent with an explicit characteristic function. However, contrarily to the jump-diffusion

case, for a general pure-jump driven SDE the literature is much smaller. It has been established

recently in Clément and Gloter [7], Clément, Gloter and Nguyen [9] that the Local Asymptotic Mixed

Normality property holds when the scale coefficient a is assumed to be constant and L is a truncated

α-stable process. This result permits to identify the Fisher information matrix for the parameters

(θ, σ) and that the rate of convergence are respectively n1/α−1/2 for the estimation of θ and n1/2

for the estimation of σ. It is important to remark that the estimation rate for θ is slower than the

usual rate n1/2 when α > 1 and faster when α < 1. Concerning the estimation problem, this has

been addressed by Masuda [20] assuming that α ∈ [1, 2) using a quasi-likelihood estimation method.

Indeed, in that case, the drift contribution is negligible compared to the jump part and the law of

the normalized increment h−1/α(Xt+h −Xt − hb(Xt, θ))/a(Xt, σ) is close to the α-stable distribution

as h goes to zero. However, this method does not seem to be extended to the case α ∈ (0, 1) mainly

because of the great contribution of the drift.

In this paper, we propose an estimating functions based method which applies to any value of α ∈

(0, 2). Estimating equation methods are useful alternative methods in situations where the likelihood

function is not known in a tractable form and have been widely used in estimating diffusion processes

from discrete time observations (see for example Bibby and Sørensen [5], Kessler and Sørensen [16]).

We also refer to the papers by Barndorff-Nielsen and Sørensen [4], Sørensen [22] for general asymptotic

results on estimating equation methods. In this work, we consider estimating equations derived by

approximating the score function and by changing the above normalized increment by h−1/α(Xt+h −

ξXth (θ))/a(Xt, σ), where (ξxt (θ))t is solution to the ordinary differential equation

ξxt (θ) = x+

∫ t

0
b(ξxs (θ), θ)ds.
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The introduction of this ordinary differential equation is convenient for dealing with any value of α

but we can also replace it by a numerical approximation scheme whose order has to be high when α is

small. Conditionally on Xt the density of h−1/α(Xt+h − ξXth (θ))/a(Xt, σ) converges when h tends to

zero to the density of the α-stable distribution. This has been established by Kulik [17] when L is an

α-stable process (and also in [8] when L is a truncated α-stable process assuming that a is constant).

However to prove consistency and asymptotic mixed normality of our estimators, the convergence of

the densities is not sufficient and we also need a rate of convergence. This is the most technical part

of the paper. For L a locally α-stable process, we prove that the total variation distance between the

conditional law of h−1/α(Xt+h− ξXth (θ))/a(Xt, σ) and the α-stable distribution is bounded by εh such

that h−1/2εh tends to zero. This result is the key ingredient to derive some limit theorems (Law of

Large Numbers, Central Limit Theorem) for functionals of normalized discrete time observations of

the process X.

At last, it should be noted that the estimation method proposed in this paper requires that the

Blumenthal-Getoor index α is known. This is also the case in Masuda [20]. A large literature is devoted

to the estimation of the jump activity of jump-diffusion processes from high frequency observations,

based on truncated power variation or on empirical characteristic function. We mention among others

the papers by Aı̈t-Sahalia and Jacod [3], Todorov [23], Todorov and Tauchen [24].

This paper is organized as follows. Section 2 introduces the notations and assumptions. Section 3

is devoted to the estimating function method and states consistency and asymptotic mixed normality

of our estimators. These results are proved in Section 4 after establishing appropriate limit theorems.

Finally, Section 5 is dedicated to some critical total variation distance estimates.

2 Notation and setup

We consider the process (Xt)t∈[0,1] solution to the stochastic differential equation :

Xt = x0 +

∫ t

0
b(Xs, θ)ds+

∫ t

0
a(Xs−, σ)dLs, t ∈ [0, 1], (1)

where a and b are known functions from R× R to R and (θ, σ) are real parameters. We assume that

(Lt)t∈[0,1] is a pure-jump Lévy process defined on a filtered space (Ω,F , (Ft),P).

We introduce also the solution to the ordinary differential equation

ξx0t (θ) = x0 +

∫ t

0
b(ξx0s (θ), θ)ds, t ∈ [0, 1]. (2)
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We observe the process on discrete times ti = i/n for i = 1, . . . n for the value (θ0, σ0) of the

parameter and based on these observations our aim is to estimate (θ0, σ0).

We make the following assumptions.

H1(Regularity) : (a) Let Vθ0 ×Vσ0 be a neighborhood of (θ0, σ0). We assume that a, respectively b,

are C2 on R× Vσ0 , respectively on R× Vθ0 , with bounded derivatives with respect to x :

sup
θ∈Vθ0

sup
x

max
1≤l≤2

(|∂lxb(x, θ)|+ |∂lxa(x, σ0)|) ≤ C,

a is lower bounded : there exists a > 0 such that

∀x ∈ R,∀σ ∈ Vσ0 a(x, σ) ≥ a.

(b) ∀x ∈ R, θ 7→ b(x, θ) and σ 7→ a(x, σ) are C3 and such that

sup
(θ,σ)∈Vθ0×Vσ0

max
1≤l≤3

(|∂lθb(x, θ)|+ |∂lσa(x, σ)|) ≤ C(1 + |x|p), for some p > 0,

sup
θ∈Vθ0

|∂x∂θb(x, θ)| ≤ C.

H2 (Lévy measure) : (a) The Lévy measure of (Lt) satisfies ν(dz) = g(z)

|z|α+1 1R∗(z)dz, where α ∈ (0, 2)

and g : R 7→ R is a continuous symmetric non negative bounded function with g(0) = 1

(b) g is derivable on {0 < |z| ≤ η} for some η > 0 with continuous derivative and such that
∣∣∣g′g ∣∣∣ is

bounded.

This assumption is satisfied by a large class of processes : α-stable process (g = 1), truncated

α-stable process (g = τ a truncation function), tempered stable process (g(z) = e−λ|z|, λ > 0).

H3 (Non degeneracy) : Almost surely, ∃t1, t2 ∈ (0, 1), such that ∂σa(Xt1 , σ0) 6= 0, ∂θb(Xt2 , θ0) 6= 0,

where (Xt)t∈[0,1] is the solution to (1) for the value (θ0, σ0) of the parameter.

We will use the following notation. We note ‖.‖ a vector norm or a matrix norm and AT the

transpose of a matrix A. For a bounded function f : R 7→ R, ‖f‖∞ = supx |f(x)|. In the sequel, we

note a′, b′ the derivative of a, b with respect to x and ȧ, ḃ the derivative with respect to the parameter.

We will also note ξi(θ) = ξ
Xi/n
1
n

(θ), for i = 0 to n.

Throughout the paper, C or Cp denote some constants whose value does not depend on n and may

change from line to line.

4



3 Estimating functions

To estimate (θ, σ), we will use the estimating function method (see [22]). To this end, we consider the

functions

Gn(θ, σ) =

 G1
n(θ, σ)

G2
n(θ, σ)

 ,

with for k = 1, 2

Gkn(θ, σ) =
n∑
i=1

gk
(
X i−1

n
, X i

n
, θ, σ

)
,

where gk will be specified below.

If we note p1/n(x, y) the transition density of the Markov chain (Xi/n)i solution to (1), we can

prove the convergence as n goes to infinity

a(x, σ)

n1/α
p1/n(x,

a(x, σ)

n1/α
y + ξx1/n(θ)) −→ ϕα(y),

where ϕα is the density of Lα1 , a stable random variable with characteristic function e−C(α)|u|α (see

[8] assuming that a is constant and (Lt) is a truncated α-stable process or [17] for more general

assumptions on the coefficients assuming that (Lt) is an α-stable process). From this observation,

we can approximate p1/n(x, y) by n1/α

a(x,σ)ϕα

(
n1/α

(y−ξx
1/n

(θ))

a(x,σ)

)
and approximating the score function, a

natural choice of estimating functions is

g1(x, y, θ, σ) =
n1/α

n

ḃ(x, θ)

a(x, σ)

ϕ′α
ϕα

(zn(x, y, θ, σ)),

g2(x, y, θ, σ) =
ȧ(x, σ)

a(x, σ)
(1 + zn(x, y, θ, σ)

ϕ′α
ϕα

(zn(x, y, θ, σ))),

where

zn(x, y, θ, σ) = n1/α
(y − ξx1/n(θ))

a(x, σ)
. (3)

For this choice of estimating functions, we can prove the following theorem.

Theorem 1 Under the assumptions H1, H2 and H3, there exists an estimator (θ̂n, σ̂n) solution to the

equation Gn(θ̂n, σ̂n) = 0 with probability tending to 1 that converges in probability to (θ0, σ0). Moreover

we have the convergence in law n1/α−1/2(θ̂n − θ0)

n1/2(σ̂n − σ0)

 =⇒ I(θ0, σ0)−1/2N ,
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where N is a standard Gaussian variable independent of I(θ0, σ0) and

I(θ, σ) =

 ∫ 1
0
ḃ(Xs,θ)2

a(Xs,σ)2
ds
∫
R
ϕ′α(u)2

ϕα(u) du 0

0
∫ 1

0
ȧ(Xs,σ)2

a(Xs,σ)2
ds
∫
R

(ϕα(u)+uϕ′α(u))2

ϕα(u) du

 .

Remark 1 The LAMN property with information I(θ, σ) has been established in [9] for this experi-

ment, assuming that a is constant and g is a truncation function. This result permits to deduce that

our estimator is efficient.

Remark 2 If the solution to the ordinary differential equation (2) is not explicit, we can replace it

in the expression of zn by any numerical scheme ξ
x
1/n(θ) with order k such that supθ∈Vθ0

|ξx1/n(θ) −

ξ
x
1/n(θ)| ≤ C(1+ |x|p)/nk and k > 1/α+1/2. This gives estimating functions sufficiently close to those

studied here to preserve the sufficient conditions C1 and C2 stated below to prove the convergence and

asymptotic mixed normality of the estimator. In the case α > 2/3, the choice ξ
x
1/n(θ) = x+ b(x, θ)/n

is convenient since we can check from H1 that supθ∈Vθ0
|ξx1/n(θ)− x− b(x, θ)/n| ≤ C(1 + |x|)/n2.

The proof of Theorem 1 is based on the results established in Sørensen [22] to obtain the consistency

and asymptotic normality of estimators constructed from estimating functions. We first remark that

from H3, we have I(θ0, σ0) > 0 almost surely.

We define the matrices un and Jn((θ1, σ1), (θ2, σ2)) by

un =

 1
n1/α−1/2 0

0 1
n1/2



Jn((θ1, σ1), (θ2, σ2)) =
n∑
i=1

 ∂θg
1(X i−1

n
, X i

n
, θ1, σ1) ∂σg

1(X i−1
n
, X i

n
, θ1, σ1)

∂θg
2(X i−1

n
, X i

n
, θ2, σ2) ∂σg

2(X i−1
n
, X i

n
, θ2, σ2)

 .

We also consider the neighborhood of (θ0, σ0), for η > 0:

V (η)
n (θ0, σ0) = {(θ, σ);

∥∥u−1
n (θ − θ0, σ − σ0)T

∥∥ ≤ η}.
With these notations, the result of Theorem 1 is a consequence of the two following sufficient conditions:

C1 : ∀η > 0, we have the convergence in probability :

sup
(θ1,σ1),(θ2,σ2)∈V (η)

n (θ0,σ0)

‖unJn((θ1, σ1), (θ2, σ2))un − I(θ0, σ0)‖ → 0.

C2 : (unGn(θ0, σ0))n stably converges in law to I(θ0, σ0)1/2N , where N is a standard Gaussian

variable independent of I(θ0, σ0) and the convergence is stable with respect to the σ-field σ(Ls, s ≤ 1).
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These conditions imply the ones given in [22] which are sufficient to prove consistency in the case

of a random information matrix. In [22] the Central Limit Theorem is established for a determin-

istic information only, however the proof can be easily extended to the random case enhancing the

convergence in law by the stable convergence in law.

The proof of C1 and C2 follows from limit theorems for functionals of (Xi/n)0≤i≤n and is postponed

to the next section.

4 Limit theorems

4.1 Law of Large Numbers

In this section, we first establish an uniform Law of Large Numbers (for (θ, σ) in a neighborhood of

(θ0, σ0)) for the normalized sums

1

n

n∑
i=1

f(X i−1
n
, θ, σ)h(zn(X i−1

n
, X i

n
, θ, σ)),

where zn is defined by (3).

Proposition 1 We assume that H1 and H2(a)-(b) hold. Let h : R 7→ R be a continuous bounded

function with bounded derivative and f : R × R2 7→ R a continuous function with continuous partial

derivative with respect to the second variable such that

sup
(θ,σ)∈Vθ0×Vσ0

(|f(x, θ, σ)|+ |∂θf(x, θ, σ)|+ |∂σf(x, θ, σ)|) ≤ C(1 + |x|p), for some p > 0,

then we have the convergence in probability:

i)

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1
n

n∑
i=1

f(X i−1
n
, θ, σ)h(zn(X i−1

n
, X i

n
, θ, σ))−

∫ 1

0
f(Xs, θ0, σ0)dsEh(Lα1 )| → 0,

ii) Moreover if Eh(Lα1 ) = 0

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)h(zn(X i−1

n
, X i

n
, θ, σ))| → 0 in probability .

Obviously ii) is a consequence of i) in the case α ≤ 1 and only the case α > 1 requires a proof.

Before proceeding to the proof of this proposition, we first recall the following useful result to

prove convergence in probability of triangular arrays (see [13]).
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Let (ζni ) be a triangular array such that ζni is F i
n

-measurable then the two following conditions

imply the convergence in probability
∑n

i=1 ζ
n
i → 0 :

n∑
i=1

|E|F i−1
n

ζni | → 0 in probability, (4)

n∑
i=1

E|F i−1
n

|ζni |2 → 0 in probability. (5)

To prove Proposition 1, the idea is to replace zn defined by (3), for (θ, σ) ∈ V (η)
n (θ0, σ0), by the

normalized increment n1/α∆Li = n1/α(L i
n
− L i−1

n
). This approximation is justify by the next lemma

which is an extension of Lemma 3 given in Section 5.1.

Lemma 1 Assuming H1 and H2(a), there exists p, q > 0 such that

∀ε > 0, P|F i−1
n

 sup
(θ,σ)∈V (η)

n (θ0,σ0)

|zn(X i−1
n
, X i

n
, θ, σ)− n1/α∆Li| > ε

 ≤ C(ε)(1 + |X i−1
n
|p)/nq, (6)

where C(ε) is a positive constant and ∆Li = L i
n
− L i−1

n
.

Proof We have the decomposition

zn(X i−1
n
, X i

n
, θ, σ) =

a(X i−1
n
, σ0)(zn(X i−1

n
, X i

n
, θ0, σ0)− n1/α∆Li)

a(X i−1
n
, σ)

+
a(X i−1

n
, σ0)

a(X i−1
n
, σ)

n1/α∆Li

+
n1/α

a(X i−1
n
, σ)

(ξi−1(θ0)− ξi−1(θ)).

From H1 we have for t ∈ [0, 1/n] and θ ∈ V (θ0)

|ξxt (θ)− ξxt (θ0)| ≤
∥∥b′∥∥∞ ∫ t

0
|ξxs (θ)− ξxs (θ0)|ds+ |θ − θ0|(1 + sup

t∈[0,1/n]
|ξxt (θ0)|p)/n,

moreover from Gronwall’s Lemma we check easily that

sup
t∈[0,1/n]

|ξxt (θ0)| ≤ C(1 + |x|).

This leads to the bound (using once again Gronwall’s Lemma)

|ξi−1(θ0)− ξi−1(θ)| ≤ C

n
|θ − θ0|(1 + |X i−1

n
|p).
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Now for (θ, σ) ∈ V (η)
n (θ0, σ0), we have |θ − θ0| ≤ η/n1/α−1/2 and |σ − σ0| ≤ η/n1/2 so from H1 we

deduce |1/a(X i−1
n
, σ)| ≤ C and we get that

| n1/α

a(X i−1
n
, σ)

(ξi−1(θ0)− ξi−1(θ))| ≤ C(1 + |X i−1
n
|p)/n1/2.

Using once again H1 and a Taylor expansion, we have for (θ, σ) ∈ V (η)
n (θ0, σ0),

|
a(X i−1

n
, σ0)

a(X i−1
n
, σ)
− 1| ≤ C(1 + |X i−1

n
|p)/n1/2.

This gives the bound

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|zn(X i−1
n
, X i

n
, θ, σ)− n1/α∆Li| ≤ C|a(X i−1

n
, σ0)(zn(X i−1

n
, X i

n
, θ0, σ0)− n1/α∆Li))|

+C(1 + |X i−1
n
|p)n

1/α|∆Li|
n1/2

+ C(1 + |X i−1
n
|p) 1

n1/2
.

The Markov property and the result of Lemma 3 give for some p, q > 0

P|F i−1
n

(|a(X i−1
n
, σ0)(zn(X i−1

n
, X i

n
, θ0, σ0)− n1/α∆Li))| > ε) ≤ C(ε)(1 + |X i−1

n
|p)/nq.

Moreover from Theorem 2 in Luschgy-Pagès [18], we have E|n1/α∆Li|q ≤ C, for q < α and we deduce

that

P|F i−1
n

((1 + |X i−1
n
|p)n

1/α|∆Li|
n1/2

> ε) ≤ C(ε)(1 + |X i−1
n
|pq)/nq/2.

This finally leads to the bound (6).

�

We can now proceed to the proof of Proposition 1.

Proof of Proposition 1

i) From the triangle inequality, it is sufficient to prove the four following convergences in probability:

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1
n

n∑
i=1

(f(X i−1
n
, θ, σ)− f(X i−1

n
, θ0, σ0))h(zn(X i−1

n
, X i

n
, θ, σ))| → 0, (7)

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)(h(zn(X i−1

n
, X i

n
, θ, σ))− h(n1/α∆Li))| → 0, (8)

| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)(h(n1/α∆Li)− Eh(Lα1 ))| → 0 (9)

| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)−

∫ 1

0
f(Xs, θ0, σ0)ds| → 0 (10)
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The last point (10) is the convergence of a Riemann sum since t 7→ Xt is càdlàg and f is continuous.

Since h is bounded and sup(θ,σ)∈Vθ0×Vσ0
(|∂θf(x, θ, σ)|+|∂σf(x, θ, σ)|) ≤ C(1+|x|p), we get easily (7)

from a Taylor expansion and using |θ−θ0| ≤ η/n1/α−1/2 and |σ−σ0| ≤ η/n1/2, for (θ, σ) ∈ V (η)
n (θ0, σ0).

To prove (8), we introduce the truncation 1{sup
(θ,σ)∈V (η)

n (θ0,σ0)
|zn(X i−1

n
,X i

n
,θ,σ)−n1/α∆Li|≤ε} for ε > 0,

and since h and h′ are bounded we get

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|h(zn(X i−1
n
, X i

n
, θ, σ))− h(n1/α∆Li)| ≤ ε

∥∥h′∥∥∞ +

2‖h‖∞1{sup
(θ,σ)∈V (η)

n (θ0,σ0)
|zn(X i−1

n
,X i

n
,θ,σ)−n1/α∆Li|>ε}.

This yields

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)(h(zn(X i−1

n
, X i

n
, θ, σ))− h(n1/α∆Li))| ≤ εC(1 + sup

s∈[0,1]
|Xs|p)

∥∥h′∥∥∞
+C‖h‖∞

1

n

n∑
i=1

(1 + |X i−1
n
|p)1{sup

(θ,σ)∈V (η)
n (θ0,σ0)

|zn(X i−1
n
,X i

n
,θ,σ)−n1/α∆Li|>ε}.

For any ε > 0, 1
n

∑n
i=1(1 + |X i−1

n
|p)1{sup

(θ,σ)∈V (η)
n (θ0,σ0)

|zn(X i−1
n
,X i

n
,θ,σ)−n1/α∆Li|>ε} goes to zero in prob-

ability (we check easily (4) and (5) from Lemma 1) and we deduce (8) letting ε go to zero.

The proof of (9) is established by checking (4) and (5) with

ζni =
1

n
f(X i−1

n
, θ0, σ0)(h(n1/α∆Li)− Eh(Lα1 )).

From Proposition 4 we get (4) and the boudedness of h implies immediately (5).

ii) As mentioned before, only the case α > 1 requires a proof.

We first remark that we just have to prove the convergence in probability, for any K > 0 fixed

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}h(zn(X i−1

n
, X i

n
, θ, σ))| → 0. (11)

Indeed, 1{|X i−1
n
|>K} ≤ 1{supt∈[0,1] |Xt|>K} and since P(supt∈[0,1] |Xt| > K) goes to zero as K goes to

infinity, we deduce ii) from (11) letting successively n and K go to infinity.

The proof of (11) is obtained by establishing the three following convergences in probability :

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ, σ))−h(zn(X i−1

n
, X i

n
, θ0, σ0)))| → 0,

(12)

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ0, σ0))−E|F i−1

n

h(zn(X i−1
n
, X i

n
, θ0, σ0)))| → 0,

(13)

10



sup
(θ,σ)∈V (η)

n (θ0,σ0)

| 1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}E|F i−1

n

h(zn(X i−1
n
, X i

n
, θ0, σ0))| → 0. (14)

Considering first (12), we have

zn(X i−1
n
, X i

n
, θ, σ) =

a(X i−1
n
, σ0)

a(X i−1
n
, σ)

zn(X i−1
n
, X i

n
, θ0, σ0) +

n1/α

a(X i−1
n
, σ)

(ξi−1(θ0)− ξi−1(θ)).

Now, we have the bounds (this has been established in the proof of Lemma 1)

sup
(θ,σ)∈V (η)

n (θ0,σ0)

| n1/α

a(X i−1
n
, σ)

(ξi−1(θ0)− ξi−1(θ))| ≤ C(1 + |X i−1
n
|p)/n1/2,

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|
a(X i−1

n
, σ0)

a(X i−1
n
, σ)
− 1| ≤ C(1 + |X i−1

n
|p)/n1/2.

This leads to

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|zn(X i−1
n
, X i

n
, θ, σ)−zn(X i−1

n
, X i

n
, θ0, σ0)| ≤ C(1+|X i−1

n
|p)(
|zn(X i−1

n
, X i

n
, θ0, σ0)|

n1/2
+

1

n1/2
),

and finally adding and subtracting n1/α∆Li

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|zn(X i−1
n
, X i

n
, θ, σ)− zn(X i−1

n
, X i

n
, θ0, σ0)|

≤ C(1 + |X i−1
n
|p)
|zn(X i−1

n
, X i

n
, θ0, σ0)− n1/α∆Li|+ n1/α|∆Li|+ 1

n1/2
.

Introducing the truncation 1{|zn(X i−1
n
,X i

n
,θ0,σ0)−n1/α∆Li|≤ε} for ε > 0, we deduce that

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ, σ))− h(zn(X i−1

n
, X i

n
, θ0, σ0)))| ≤

CK

(∥∥h′∥∥∞ (ε+ 1 + n1/α|∆Li|)
n1/2

+ ‖h‖∞1{|zn(X i−1
n
,X i

n
,θ0,σ0)−n1/α∆Li|>ε}

)
.

Observing that 1/α+ 1/2 > 1, to prove (12) it remains to check the two convergences in probability

1

n1/α

n∑
i=1

n1/α|∆Li|
n1/2

→ 0,
1

n1/α

n∑
i=1

1{|zn(X i−1
n
,X i

n
,θ0,σ0)−n1/α∆Li|>ε} → 0.

Since α > 1, Theorem 2 in [18] gives En1/α|∆Li| ≤ C and we deduce E[ 1
n1/α

∑n
i=1

n1/α|∆Li|
n1/2 ] → 0.

Moreover using the result of Lemma 3, we deduce E1{|zn(X i−1
n
,X i

n
,θ0,σ0)−n1/α∆Li|>ε} ≤ CKC(ε)/n1−δ

for all δ ∈ (0, 1) and this permits to obtain the second convergence. This achieves the proof of (12).

Turning to (14), since Eh(Lα1 ) = 0, we deduce from Proposition 4

|E|F i−1
n

h(n1/α∆Li)| ≤ Cεn,

11



moreover from Proposition 3, we get

|E|F i−1
n

(h(zn(X i−1
n
, X i

n
, θ0, σ0))− h(n1/α∆Li))| ≤ C(1 +

∣∣∣X i−1
n

∣∣∣)εn,
with

√
nεn → 0. This permits to conclude that (14) holds.

It remains to prove the uniform convergence of the martingale part (13). For any (θ, σ) ∈ Vθ0×Vσ0
the convergence in probability

1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ0, σ0))− E|F i−1

n

h(zn(X i−1
n
, X i

n
, θ0, σ0)))→ 0,

is immediate (we check easily (5) since 2/α > 1). To prove the uniform convergence we use a tightness

criteria (see for example the Appendix of [10]). Denoting

Mn(θ, σ) =
1

n1/α

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ0, σ0))−E|F i−1

n

h(zn(X i−1
n
, X i

n
, θ0, σ0))),

it is sufficient to check, for (θi, σi) ∈ Vθ0 × Vσ0 , i = 1, 2,

sup
n

E|Mn(θ1, σ1)−Mn(θ2, σ2)|4 ≤ C
∥∥(θ1, σ1)T − (θ2, σ2)T

∥∥4
.

From Burkholder inequality for discrete martingale (see [21]) :

E|Mn(θ1, σ1)−Mn(θ2, σ2)|4 ≤ C

n4/α
E

(
n∑
i=1

|mi(θ1, σ1)−mi(θ2, σ2)|2
)2

,

where mi(θ, σ) = f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}(h(zn(X i−1

n
, X i

n
, θ0, σ0)) − E|F i−1

n

h(zn(X i−1
n
, X i

n
, θ0, σ0))),

and from Cauchy-Schwarz inequality

E|Mn(θ1, σ1)−Mn(θ2, σ2)|4 ≤ C

n4/α
nE

n∑
i=1

|mi(θ1, σ1)−mi(θ2, σ2)|4.

This gives from a first order Taylor expansion of f

E|Mn(θ1, σ1)−Mn(θ2, σ2)|4 ≤ CK
n4/α

n2‖h‖∞
∥∥(θ1, σ1)T − (θ2, σ2)T

∥∥4
.

Since n2/n4/α → 0, the result is established.

�
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4.2 Central Limit Theorem

The asymptotic mixed normality of the estimators proposed in Section 3 is a consequence of the stable

convergence in law of functionals of the form

1

n1/2

n∑
i=1

f(X i−1
n
, θ0, σ0)h(zn(X i−1

n
, X i

n
, θ0, σ0)).

Thanks to the control in total variation distance given in Section 5 between zn(X i−1
n
, X i

n
, θ0, σ0) and

n1/α∆Li, this can be reduced to the stable convergence in law for

1

n1/2

n∑
i=1

f(X i−1
n
, θ0, σ0)h(n1/α∆Li).

This is established in the next proposition.

Proposition 2 We assume that H1 and H2(a)-(b) hold. Let h1, h2 : R→ R be bounded functions and

f1, f2 : R → R be continuous functions. We assume that Eh1(Lα1 ) = Eh2(Lα1 ) = Eh1(Lα1 )h2(Lα1 ) = 0.

Then we have the stable convergence in law with respect to σ(Ls, s ≤ 1):

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(n1/α∆Li)

f2(X i−1
n

)h2(n1/α∆Li)

 =⇒ Σ1/2N ,

where N is a standard Gaussian variable independent of Σ and

Σ =

 ∫ 1
0 f

2
1 (Xs)ds Eh2

1(Lα1 ) 0

0
∫ 1

0 f
2
2 (Xs)ds Eh2

2(Lα1 )

 .

From this proposition we deduce the following corollary.

Corollary 1 We assume that H1 and H2(a)-(b) hold. Let h1, h2 : R → R be bounded functions with

bouded derivative and f1, f2 : R→ R be continuous functions. We assume that Eh1(Lα1 ) = Eh2(Lα1 ) =

Eh1(Lα1 )h2(Lα1 ) = 0. Then we have the stable convergence in law with respect to σ(Ls, s ≤ 1):

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(zn(X i−1
n
, X i

n
, θ0, σ0))

f2(X i−1
n

)h2(zn(X i−1
n
, X i

n
, θ0, σ0))

 =⇒ Σ1/2N ,

where N is a standard Gaussian variable independent of Σ and

Σ =

 ∫ 1
0 f

2
1 (Xs)ds Eh2

1(Lα1 ) 0

0
∫ 1

0 f
2
2 (Xs)ds Eh2

2(Lα1 )

 .

13



Proof From Proposition 2, it is sufficient to prove that for f : R 7→ R a continuous function and

h : R 7→ R a bounded function with bounded derivative

1

n1/2

n∑
i=1

f(X i−1
n
, θ0, σ0)

(
h(zn(X i−1

n
, X i

n
, θ0, σ0))− h(n1/α∆Li)

)
→ 0, in probability.

For this we check the conditions (4) and (5) with

ζni =
1

n1/2
f(X i−1

n
, θ0, σ0)

(
h(zn(X i−1

n
, X i

n
, θ0, σ0))− h(n1/α∆Li)

)
.

From Proposition 3

|E|F i−1
n

h(zn(X i−1
n
, X i

n
, θ0, σ0))− E|F i−1

n

h(n1/α∆Li)| ≤ C(1 +
∣∣∣X i−1

n

∣∣∣)εn‖h‖∞,
where n1/2εn → 0 and (4) is immediate. Turning to (5) and using that h and h′ are bounded, we have

for all ε > 0

E|F i−1
n

|h(zn(X i−1
n
, X i

n
, θ0, σ0))− h(n1/α∆Li)|2 ≤ Cε2 + C E|F i−1

n

1{|zn(X i−1
n
,X i

n
,θ0,σ0))−n1/α∆Li|>ε}.

From Lemma 3, ∀ε > 0, E|F i−1
n

1{|zn(X i−1
n
,X i

n
,θ0,σ0))−n1/α∆Li|>ε} ≤ C(ε)(1 + |X i−1

n
|p) 1

nq for p, q > 0 and

we deduce

lim sup
n

1

n

n∑
i=1

f2(X i−1
n
, θ0, σ0)E|F i−1

n

1{|zn(X i−1
n
,X i

n
,θ0,σ0))−n1/α∆Li|>ε} = 0 a.s.

This yields

lim sup
n

n∑
i=1

E|F i−1
n

|ζni |2 ≤ Cε2, a.s.

and we get (5) letting ε go to zero. �

Proof of Proposition 2

We will prove the stable convergence in law with respect to σ(Ls, s ≤ 1) of the process

Γnt =
1

n1/2

[nt]∑
i=1

 f1(X i−1
n

)h1(n1/α∆Li)

f2(X i−1
n

)h2(n1/α∆Li)

 , t ∈ [0, 1],

in D([0, 1],R) equipped with the Skorokhod topology. To this end we introduce the processes

L
n
t =

[nt]∑
i=1

∆Li, t ∈ [0, 1],

14



Γ′nt =
1

n1/2

[nt]∑
i=1

 h1(n1/α∆Li)

h2(n1/α∆Li)

 , t ∈ [0, 1].

The process (L
n
t )t converges in probability to (Lt)t for the Skorokhod topology and according to

Lemma 2.8 in [12], if (L
n
1 ,Γ

′n
1 ) converges in law to (L1, γ

′) where γ′ is a Gaussian variable independent

of L1 with variance

Σ′ =

 Eh2
1(Lα1 ) 0

0 Eh2
2(Lα1 )

 , (15)

then there exists a two-dimensional standard Brownian motion (Bt) = (B1
t , B

2
t ) independent of (Lt)

such that the processes (L
n
,Γn,Γ′n) converge in law to (L,Γ, (Σ′)1/2B), where

Γt =

∫ t

0

 f1(Xs) 0

0 f2(Xs)

 (Σ′)1/2dBs.

This result implies the stable convergence stated in Proposition 2.

To study the convergence in law of (L
n
1 ,Γ

′n
1 ), we denote by Φn the characteristic function of

(L
n
1 ,Γ

′n
1 ), and by φn the characteristic function of the (L1/n,

1
n1/2h1(n1/αL1/n), 1

n1/2h2(n1/αL1/n)).

Then we have

log Φn = n log φn,

and we just have to study the asymptotic behavior of φn. By definition

φn(u, v, w) = EeiuL1/n+i v

n1/2
h1(n1/αL1/n)+i w

n1/2
h2(n1/αL1/n)

.

A Taylor expansion of the exponential function gives :

e
i v

n1/2
h1(n1/αL1/n)+i w

n1/2
h2(n1/αL1/n)

= 1 + i
v

n1/2
h1(n1/αL1/n) + i

w

n1/2
h2(n1/αL1/n)

− v
2

2n
h2

1(n1/αL1/n)− w2

2n
h2

2(n1/αL1/n)− vw

n
(h1h2)(n1/αL1/n) + o(1/n),

where for any p ≥ 0, o(1/np) is a bounded term such that np o(1/np) → 0 as n goes to infinity.

Consequently we obtain

φn(u, v, w) = EeiuL1/n + i
v

n1/2
EeiuL1/nh1(n1/αL1/n) + i

w

n1/2
EeiuL1/nh2(n1/αL1/n)

− v
2

2n
EeiuL1/nh2

1(n1/αL1/n)− w2

2n
EeiuL1/nh2

2(n1/αL1/n)− vw

n
EeiuL1/n(h1h2)(n1/αL1/n) + o(1/n).

From this expansion, we have to study the convergence of

15



1. EeiuL1/n ,

2. EeiuL1/nh(n1/αL1/n) for h a bounded function such that Eh(Lα1 ) = 0,

3. EeiuL1/nh2(n1/αL1/n) for h a bounded function,

4. EeiuL1/n(h1h2)(n1/αL1/n) for h1, h2 bounded and such that E(h1h2)(Lα1 ) = 0

The terms 1., 3., and 4. are easy to study and only 2. requires some more work.

Term 1. We have EeiuL1/n = 1 +ψ(u)/n+o(1/n), where ψ is the Lévy-Khintchine exponent of L1.

Term 3. We decuce from Proposition 4 that EeiuL1/nh2(n1/αL1/n) = EeiuLα1 /n1/α
h2(Lα1 )+o(1/n1/2).

Moreover from dominated convergence Theorem, we have

EeiuL
α
1 /n

1/α
h2(Lα1 ) = Eh2(Lα1 ) + o(1),

we conclude that

EeiuL1/nh2(n1/αL1/n) = Eh2(Lα1 ) + o(1).

Term 4. In the same way, we have

EeiuL1/n(h1h2)(n1/αL1/n) = o(1).

Term 2. Proposition 4 yields

EeiuL1/nh(n1/αL1/n) = EeiuL
α
1 /n

1/α
h(Lα1 ) + o(1/n1/2).

Now we observe that EeiuLα1 /n1/α
h(Lα1 ) = E(eiuL

α
1 /n

1/α − 1)h(Lα1 ). To control this term, we consider

separately the cases α > 1 and α ≤ 1.

•α > 1. Since E|Lα1 | <∞ and h is bounded, we immediately obtain

|E(eiuL
α
1 /n

1/α − 1)h(Lα1 )| ≤ C|u|/n1/α = o(1/n1/2).

•α ≤ 1. From the Lévy-Itô representation, we have

Lα1 = Lα,11 + Lα,21 ,

where

Lα,11 =

∫ 1

0

∫
R∗
z1{|z|≤1}µ̃

α(dt, dz), Lα,21 =

∫ 1

0

∫
R∗
z1{|z|>1}µ

α(dt, dz),
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µα is a Poisson random measure with compensator dt 1
|z|α+1dz and µ̃α is the compensated measure.

With these notations, we set

An = {µα([0, 1]× {|z| > n1/α}) = 0}.

Since µα([0, 1]×{|z| > n1/α}) has a Poisson distribution with parameter bounded by C/n, we deduce

that

P(Acn) ≤ C/n.

Using the truncation 1An , this permits to get the bound

|E(eiuL
α
1 /n

1/α − 1)h(Lα1 )| ≤ CE|eiuLα1 /n1/α − 1|1An + C/n ≤ CE(|Lα1 |1An)/n1/α + C/n.

Obviously we have E|Lα,11 | ≤ C and for the big jumps component we get

E|Lα,21 |1An ≤
∫
{1<|z|≤n1/α}

|z|
|z|α+1

dz ≤

 C log n, if α = 1

Cn1/α/n if α < 1.

This leads to

|E(eiuL
α
1 /n

1/α − 1)h(Lα1 )| ≤

 C log n/n, if α = 1

C/n if α < 1.

In both cases, we conclude for the term 2. that

|EeiuL1/nh(n1/αL1/n)| ≤ o(1/n1/2).

Putting all these results together, we finally obtain the convergence

log Φn(u, v, w) = n log φn(u, v, w)→ ψ(u)− v2

2
Eh2

1(Lα1 )− w2

2
Eh2

2(Lα1 ),

and we get the convergence in law of the vector (L
n
1 ,Γ

′n
1 ) to (L1, γ

′) where γ′ is a Gaussian variable

independent of L1 with variance Σ′ defined by (15).

This achieves the proof of Proposition 2.

�

4.3 Proof of Theorem 1

We will check the conditions C1 and C2. To this end, we first recall that

unJn((θ1, σ1), (θ2, σ2))un =
n∑
i=1

 n
n2/α∂θg

1(X i−1
n
, X i

n
, θ1, σ1) 1

n1/α∂σg
1(X i−1

n
, X i

n
, θ1, σ1)

1
n1/α∂θg

2(X i−1
n
, X i

n
, θ2, σ2) 1

n∂σg
2(X i−1

n
, X i

n
, θ2, σ2)

 .

17



We compute explicitly the partial derivatives appearing in this matrix. Observing that ∂θzn(x, y, θ, σ) =

− n1/α

a(x,σ) ξ̇
x
1/n(θ) and ∂σzn(x, y, θ, σ) = − ȧ(x,σ)

a(x,σ)zn(x, y, θ, σ) we get

∂θg
1(x, y, θ, σ) =

n1/α

n

b̈(x, θ)

a(x, σ)

ϕ′α
ϕα

(zn(x, y, θ, σ))− n2/α

n

ḃ(x, θ)

a(x, σ)2
ξ̇x1/n(θ)

(
ϕ′α
ϕα

)′
(zn(x, y, θ, σ)),

∂σg
1(x, y, θ, σ) = −n

1/α

n

ȧ(x, σ)

a(x, σ)2
ḃ(x, θ)

[
ϕ′α
ϕα

(zn(x, y, θ, σ)) + zn(x, y, θ, σ)

(
ϕ′α
ϕα

)′
(zn(x, y, θ, σ))

]
,

∂θg
2(x, y, θ, σ) = −n1/α ȧ(x, σ)

a(x, σ)2
ξ̇x1/n(θ)

[
ϕ′α
ϕα

(zn(x, y, θ, σ)) + zn(x, y, θ, σ)

(
ϕ′α
ϕα

)′
(zn(x, y, θ, σ))

]
,

∂σg
2(x, y, θ, σ) =

(
äa− ȧ2

a2

)
(x, σ)

[
1 + zn(x, y, θ, σ)

ϕ′α
ϕα

(zn(x, y, θ, σ)

]
−
(
ȧ2

a2

)
(x, σ)zn(x, y, θ, σ)

[
ϕ′α
ϕα

(zn(x, y, θ, σ)) + zn(x, y, θ, σ)

(
ϕ′α
ϕα

)′
(zn(x, y, θ, σ))

]
.

Proof of C1.

We will use intensively the result of Proposition 1.

We first remark that the condition C1 reduces to the uniform convergence of unJn((θ, σ), (θ, σ))un.

In the sequel we note hα = ϕ′α
ϕα

and gα(z) = hα(z) + zh′α(z). The functions hα and gα are bounded

with bounded derivative (see [2]). We also set :

unJn((θ, σ), (θ, σ))un =

 I1,1
n I1,2

n

I2,1
n I2,2

n

 .

With these notations we have using the above calculus

I1,1
n =

1

n1/α

n∑
i=1

b̈(X i−1
n
, θ)

a(X i−1
n
, σ)

hα(zn(X i−1
n
, X i

n
, θ, σ))−

n∑
i=1

ḃ(X i−1
n
, θ)

a(X i−1
n
, σ)2

ξ̇
X i−1

n

1/n (θ)h′α(zn(X i−1
n
, X i

n
, θ, σ)),

I1,2
n = − 1

n

n∑
i=1

ȧ(X i−1
n
, σ)

a(X i−1
n
, σ)2

ḃ(X i−1
n
, θ)gα(zn(X i−1

n
, X i

n
, θ, σ)),

I2,1
n = −

n∑
i=1

ȧ(X i−1
n
, σ)

a(X i−1
n
, σ)2

ξ̇
X i−1

n

1/n (θ)gα(zn(X i−1
n
, X i

n
, θ, σ)),

I2,2
n =

1

n

n∑
i=1

(
äa− ȧ2

a2

)
(X i−1

n
, σ)

[
1 + zn(X i−1

n
, X i

n
, θ, σ)hα(zn(X i−1

n
, X i

n
, θ, σ)

]
− 1

n

n∑
i=1

(
ȧ2

a2

)
(X i−1

n
, σ)zn(X i−1

n
, X i

n
, θ, σ)gα(zn(X i−1

n
, X i

n
, θ, σ)).

From H1, obviously the functions ḃ/a, ȧ/a, b̈/a, ä/a satisfy the assumptions of Proposition 1.
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Since Ehα(Lα1 ) = 0, the first term in the expression of I1,1
n goes to zero (Proposition 1 ii)).

For the second term we observe that (ξ̇xt (θ))t is solution to

ξ̇xt (θ) =

∫ t

0
b′(ξxs (θ), θ)ξ̇xs (θ)ds+

∫ t

0
ḃ(ξxs (θ), θ)ds,

and from H1 and Gronwall’s Lemma we can deduce (we omit the details of this standard proof)

sup
θ∈Vθ0

|ξ̇x1/n(θ)− 1

n
ḃ(x, θ)| ≤ C(1 + |x|p)/n2, (16)

so from Proposition 1 i) we deduce the convergence of the second term of I1,1
n to−

∫ 1
0
ḃ(Xs,θ0)2

a(Xs,σ0)2
dsE

(
ϕ′α
ϕα

)′
(Lα1 ).

Since
∫
ϕ
′′
α(x)dx = 0, we deduce E

(
ϕ′α
ϕα

)′
(Lα1 ) = −E

(
ϕ′α
ϕα

)2
(Lα1 ) and finally

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|I1,1
n −

∫ 1

0

ḃ(Xs, θ0)2

a(Xs, σ0)2
dsE

(
ϕ′α
ϕα

)2

(Lα1 )| → 0.

Using the symmetry of the function ϕα we have Egα(Lα1 ) = 0 and we deduce easily from Proposition

1 i) and (16) that

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|I1,2
n | → 0 and sup

(θ,σ)∈V (η)
n (θ0,σ0)

|I2,1
n | → 0.

Turning to I2,2
n , we have by integrating by part E(1 + Lα1hα(Lα1 )) = 0 and consequently

sup
(θ,σ)∈V (η)

n (θ0,σ0)

|I2,2
n +

∫ 1

0

(
ȧ2

a2

)
(Xs, σ0)dsELα1 gα(Lα1 )| → 0,

and it remains to check ELα1 gα(Lα1 ) = −E (ϕα(Lα1 )+Lα1ϕ
′
α(Lα1 ))2

ϕα(Lα1 )2
. This is done by integrating by parts.

This achieves the proof of C1.

Proof of C2.

We recall that

unGn(θ0, σ0) =
1

n1/2

n∑
i=1


ḃ(X i−1

n
,θ0)

a(X i−1
n
,σ0)

ϕ′α
ϕα

(zn(X i−1
n
, X i

n
, θ0, σ0))

ȧ(X i−1
n
,σ0)

a(X i−1
n
,σ0) [1 + zn(X i−1

n
, X i

n
, θ0, σ0)ϕ

′
α
ϕα

(zn(X i−1
n
, X i

n
, θ0, σ0))]

 .

Applying Corollary 1 with f1 = ḃ/a, f2 = ȧ/a, h1 = ϕ′α/ϕα, h2(z) = 1 + zh1(z) (h1 and h2 are

bounded functions with bounded derivative, see for example [2]), we deduce immediately C2.
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5 Total variation distance estimates

This section is the most technical part of the paper and contains some crucial estimates to derive

the asymptotic properties of the estimating functions considered in the previous section. We consider

here the process (Xt)t∈[0,1] solution of (1) for the value (θ0, σ0) of the parameter and to simplify the

notation we omit the dependence on (θ0, σ0) in the expressions of the functions a, b and ξx0 .

We will prove that we can approximate n1/α(X 1
n
− ξx01

n

) by n1/αa(x0)L 1
n

and control this ap-

proximation. This is done by estimating the total variation distance between n1/α(X 1
n
− ξx01

n

) and

n1/αa(x0)L 1
n

. We also give a weak rate of convergence of the rescaled Lévy process n1/αL1/n to the

α-stable process Lα1 which is estimated by the total variation distance between n1/αL1/n and Lα1 .

Proposition 3 We assume H1(a) and H2(a)-(b). There exists a constant C such that for all mea-

surable bounded function h, we have :

|Eh(n1/α(X 1
n
− ξx01

n

))− Eh(n1/αa(x0)L 1
n

)| ≤ C(1 + |x0|)εn‖h‖∞,

where

• if α ≤ 1, ∀ε ∈ (0, 1), εn = 1
n1−ε

• if α > 1, ∀ε ∈ (0, 1/α), εn = 1
n1/α−ε .

In particular, in both cases n1/2εn → 0.

Proposition 4 Under H2(a)-(b), we have for all bounded function h :

|Eh(n1/αL1/n)− Eh(Lα1 )| ≤ C‖h‖∞εn,

where εn is as in Proposition 3.

To prove these results, it is convenient to introduce an adequate truncation function and to consider

a rescaled process. This is explained in the next subsections. Moreover, the proof of Propositions 3

and 4 requires some Malliavin calculus and we recall in that follows all the technical tools to make

easier the understanding of the paper.

Remark 3 In the statement of Proposition 3, we give a control for the distance in total variation

between the laws of the processes X and L, under a short time asymptotic 1/n→ 0. If we assume that

h admits a bounded derivative, it is possible to get some related control from the study of the strong
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error |n1/α(X 1
n
− ξx01

n

)−n1/αa(x0)L 1
n
|. In Lemma 3 below we state an upper bound, in probability, for

this error. In the case α > 1, using the controls in Lp-norm given in the proof of Lemma 3, we can

show

|Eh(n1/α(X 1
n
− ξx01

n

))− Eh(n1/αa(x0)L 1
n

)| ≤ C(1 + |x0|)(‖h‖∞ +
∥∥h′∥∥∞)/n1/α−ε.

Unfortunately, this proof does not work in the case α ≤ 1 and we have not been able to give a simple

proof of the above result in that case. The Malliavin calculus, especially the integration by part for-

mula and the Malliavin weights, permit to compensate the lack of integrability of the process (Lt) and

additionally to weaken the assumptions on the function h.

5.1 Localization and rescaling

We first introduce a truncation function in order to suppress the big jumps of (Lt). Let τ : R 7→ [0, 1]

be a symmetric function, continuous with continuous derivative, such that τ = 1 on {|z| ≤ K(a)/2},

τ = 0 on {|z| ≥ K(a)} where

K(a) =
1

2
(η ∧ 1

‖a′‖∞
), (17)

for η defined in H2(b).

On the same probability space (Ω,F , (Ft),P), we consider the Lévy process (Lt)t∈[0,1] with Lévy

measure ν and the truncated Lévy process (Lτt )t∈[0,1] with Lévy measure ντ given by ντ (dz) =

g(z)

|z|α+1 τ(z)1R∗(z)dz. This can be done by setting Lt =
∫ t

0

∫
R zµ̃(ds, dz), respectively Lτt =

∫ t
0

∫
R zµ̃

τ (ds, dz),

where µ̃, respectively µ̃τ , are the compensated Poisson random measures associated respectively to

µ(A) =

∫
[0,1]

∫
R

∫
[0,1]

1A(t, z)µg(dt, dz, du), A ⊂ [0, 1]× R

µτ (A) =

∫
[0,1]

∫
R

∫
[0,1]

1A(t, z)1{u≤τ(z)}µ
g(dt, dz, du), A ⊂ [0, 1]× R,

for µg a Poisson random measure on [0, 1]×R×[0, 1] with compensator µg(dt, dz, du) = dt g(z)

|z|α+1 1R∗(z)dzdu.

By construction, the restrictions of the measures µ and µτ to [0, 1/n]× R coincide on the event

Ωn = {ω ∈ Ω;µg([0, 1/n]× {z ∈ R; |z| ≥ K(a)/2} × [0, 1]) = 0}. (18)

Since µg([0, 1/n]× {z ∈ R; |z| ≥ K(a)/2} × [0, 1]) has a Poisson distribution with parameter

λn =
1

n

∫
|z|≥K(a)/2

g(z)/ |z|α+1 dz ≤ C/n,
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we deduce that

P(Ωc
n) ≤ C/n. (19)

We consider now the truncated process solution to the equation

Xτ
t = x0 +

∫ t

0
b(Xτ

s )ds+

∫ t

0
a(Xτ

s−)dLτs , t ∈ [0, 1]. (20)

Obviously (Xt, Lt)t∈[0,1/n] = (Xτ
t , L

τ
t )t∈[0,1/n] on Ωn and consequently since P(Ωc

n) ≤ C/n, the result

of Proposition 3 consists in proving

|Eh(n1/α(Xτ
1/n − ξ

x0
1/n))− Eh(n1/αa(x0)Lτ1/n)| ≤ C(1 + |x0|)εn‖h‖∞.

To clarify the proofs, it will be useful to rescale the truncated process (Xτ
t )t∈[0,1/n]. To this end we

introduce an auxiliary Lévy process (Lnt )t∈[0,1] defined possibly on an other filtered space (Ω,F , (F t),P)

and admitting the decomposition

Lnt =

∫ t

0

∫
R
zµ̃n(dt, dz), t ∈ [0, 1], (21)

where µ̃n is a compensated Poisson random measure, µ̃n = µn − µn, with compensator µn(dt, dz) =

dtg(z/n
1/α)

|z|α+1 τ(z/n1/α)1R∗(z)dz. By construction, the process (Lnt )t∈[0,1] is equal in law to the rescaled

truncated process (n1/αLτt/n)t∈[0,1]. We now consider the solution (Y n
t )t∈[0,1] to the following equation

Y n
t = x0 +

1

n

∫ t

0
b(Y n

s )ds+
1

n1/α

∫ t

0
a(Y n

s−)dLns , t ∈ [0, 1], (22)

and the solution (ξn,x0t )t to the ordinary differential equation

ξn,x0t = x0 +
1

n

∫ t

0
b(ξn,x0s )ds, t ∈ [0, 1]. (23)

The equality in law

(Y n
t − ξ

n,x0
t , Lnt )t∈[0,1]

law
= (Xτ

t/n − ξ
x0
t/n, n

1/αLτt/n)t∈[0,1] (24)

is straightforward and consequently with these notations the result of Proposition 3 follows from

|Eh(n1/α(Y n
1 − ξ

n,x0
1 ))− Eh(a(x0)Ln1 )| ≤ C(1 + |x0|)εn‖h‖∞.

It is worth to note that the jumps of (Lnt ) are bounded by n1/αK(a), and then the processes (Lnt ) and

(Y n
t ) admit moments of all orders. More precisely, we have the following result.
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Lemma 2 Assuming H1(a) and H2(a), we have

∀p ≥ 1, sup
n

E( sup
t∈[0,1]

|Y n
t |

p) ≤ Cp(1 + |x0|p), (25)

∀p ≥ 1 and p > α, E sup
t∈[0,1]

|Y n
t − x0|p ≤ Cp(1 + |x0|p)

1

n
. (26)

Proof The proof of both inequalities is based on Burkholder type inequalities (see 2.1.36 and 2.1.37

in Lemma 2.1.5 of [13]) for purely discontinuous martingales and standard arguments (convexity

inequality, Lipschitz assumption on the coefficients and Gronwall’s lemma). We only prove (26).

Let p ≥ 1, using a convexity inequality and the Lipschitz assumption on b, we have

E sup
t∈[0,1]

|Y n
t − x0|p ≤ Cp

(
1

np
(1 + E sup

s∈[0,1]
|Y n
s |p) +

1

np/α
E sup
t∈[0,1]

|
∫ t

0
a(Y n

s−)dLns |p
)
.

If p ≥ 2, inequality 2.1.37 in [13] gives

E sup
t∈[0,1]

|
∫ t

0
a(Y n

s−)dLns |p ≤ Cp(1 + E sup
t∈[0,1]

|Y n
t |p)

(∫ K(a)n1/α

0

|z|p

|z|α+1dz + (

∫ K(a)n1/α

0

|z|2

|z|α+1dz)
p/2.

)

where we used the boundedness of g and the definition of τ . From (25), we deduce

E sup
t∈[0,1]

|
∫ t

0
a(Y n

s−)dLns |p ≤ Cp(1 + |x0|p)(
np/α

n
+
np/α

np/2
),

and (26) follows in that case.

Assuming now that p ∈ [1, 2) and p > α, from inequality 2.1.36 in [13], we obtain

E sup
t∈[0,1]

|
∫ t

0
a(Y n

s−)dLns |p ≤ Cp(1 + E sup
t∈[0,1]

|Y n
t |p)

∫ K(a)n1/α

0

|z|p

|z|α+1dz ≤ Cp(1 + |x0|p)
np/α

n
.

This achieves the proof of (26).

�

We end this subsection with a control of supt≤1/n |n1/α(Xt− ξx0t (θ0))−n1/αa(x0)Lt| which can be

established using both the truncation and rescaling procedure.

Lemma 3 Assuming H1(a) and H2(a), there exists p > 0 such that

∀ε > 0, P

(
sup
t≤1/n

|n1/α(Xt − ξx0t (θ0))− n1/αa(x0)Lt| > ε

)
≤

 C(ε)(1 + |x0|p) logn
nα if α < 1,

C(ε)(1 + |x0|p) 1
n1−δ , ∀δ ∈ (0, 1) if α ≥ 1.

where C(ε) is a positive constant.
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Proof

Recalling that (Xt, Lt)t∈[0,1/n] = (Xτ
t , L

τ
t )t∈[0,1/n] on Ωn and that P(Ωc

n) ≤ 1/n, it is sufficient to

study the convergence in probability of supt≤1/n |n1/α(Xτ
t − ξ

x0
t (θ0)) − n1/αa(x0)Lτt |. Now using the

rescaled process (Lnt ) this is equivalent to study the convergence in probability of supt∈[0,1] |n1/α(Y n
t −

ξn,x0t )− a(x0)Lnt |. We have the inequality for t ∈ [0, 1]

sup
s≤t
|n1/α(Y n

s − ξn,x0s )− a(x0)Lns | ≤
‖b′‖∞
n

∫ t

0
sup
u≤s
|n1/α(Y n

u − ξn,x0u )− a(x0)Lnu|ds

+
‖b′‖∞ |a(x0)|

n
sup
t∈[0,1]

|Lnt |+ sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLns |,

and from Gronwall’s inequality we deduce

sup
t∈[0,1]

|n1/α(Y n
t − ξ

n,x0
t )− a(x0)Lnt | ≤ C(

1

n
sup
t∈[0,1]

|Lnt |+ sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLns |). (27)

In that follows, we will distinguish between the small jumps and the big jumps of Lnt . To this end we

have

Lnt =

∫ t

0

∫
{0<|z|≤1}

zµ̃n(dt, dz) +

∫ t

0

∫
{|z|>1}

zµ̃n(dt, dz) := Ln,1t + Ln,2t . (28)

Control of the small jumps part Ln,1

Since E supt∈[0,1] |L
n,1
t |2 ≤ C we deduce P( 1

n supt∈[0,1]

∣∣∣Ln,1t ∣∣∣ > ε) ≤ C/(n2ε2). Turning to the other

term supt∈[0,1] |
∫ t

0 (a(Y n
s−)− a(x0))dLn,1s |, we have using Lemma 2

E( sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,1s |2) ≤ CE( sup
t∈[0,1]

|Y n
t − x0|2) ≤ C(1 + |x0|2)/n,

and we get P(supt∈[0,1] |
∫ t

0 (a(Y n
s−)− a(x0))dLn,1s | > ε) ≤ C(ε)(1 + |x0|2)/n.

Control of the big jumps part Ln,2

We distinguish between the cases α ≥ 1 and α < 1.

• α ≥ 1.

Using inequality 2.1.36 in [13] with α < p < 2, the boundedness of g and the definition of τ , we

obtain :

E( sup
t∈[0,1]

|Ln,2t |p) ≤ C
∫
{1<|z|≤K(a)n1/α}

|z|p

|z|α+1dz ≤ Cn
p/α/n,

and then from Markov inequality

P(
1

n
sup
t∈[0,1]

∣∣∣Ln,2t ∣∣∣ > ε) ≤ C(ε)np/α/np+1 ≤ C(ε)/n.
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Similarly we get using Lemma 2

E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dL2,n
s |p ≤ CE( sup

t∈[0,1]
|Y n
t − x0|p)np/α/n ≤ C(1 + |x0|p)

np/α

n2
,

this gives choosing p = α(1 + δ)

P( sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dL2,n
s | > ε) ≤ C(ε)(1 + |x0|p)/n1−δ.

• α < 1.

Thanks to the symmetry of the compensator µn, we have Ln,2t =
∫ t

0

∫
|z|>1 zµ

n(ds, dz). Then we

can write

|Ln,2t |α = |
∫ t

0

∫
{|z|>1}

zµn(dt, dz)|α ≤
∫ 1

0

∫
{|z|>1}

|z|α µn(dt, dz),

consequently E(supt∈[0,1]

∣∣∣Ln,2t ∣∣∣α) ≤ C log n, and then

P(
1

n
sup
t∈[0,1]

∣∣∣Ln,2t ∣∣∣ > ε) ≤ C(ε)
log n

nα
.

Similarly, we have

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,2s |α ≤
∫ 1

0

∫
{|z|>1}

|a(Y n
s−)− a(x0)|α |z|α µn(ds, dz).

Taking the expectation and using the lipschitz assumption on a, this yields

E( sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,2s |α) ≤ CE( sup
t∈[0,1]

|Y n
t − x0|α) log n ≤ C(E sup

t∈[0,1]
|Y n
t − x0|)α log n,

where for the second inequality we used Hölder’s inequality with p′ = 1/α > 1. From Lemma 2, we

deduce

E( sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,2s |p) ≤ C(1 + |x0|p) log n/nα.

and we obtain P(supt∈[0,1] |
∫ t

0 (a(Y n
s−)− a(x0))dLns | > ε) ≤ C(ε)(1 + |x0|p) log n/nα.

Putting all these results together, Lemma 3 is proved.

�

5.2 Malliavin Calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer to [6] for a

complete presentation and to [7] for the adaptation to our framework. We will work on the Poisson
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space associated to the measure µn defining the process (Lnt ) of Section 5.1, assuming that n is fixed.

By construction, the support of µn is contained in [0, 1]× En, where

En = {z ∈ R; |z| < K(a)n1/α}, (29)

and K(a) is defined by (17). We recall that the measure µn has compensator

µn(dt, dz) = dt
g(z/n1/α)

|z|α+1 τ(z/n1/α)1R∗dz := dtFn(z)dz. (30)

In this section we assume that the truncation function τ satisfies the additional assumption∫
R
|τ
′(z)

τ(z)
|pτ(z)dz <∞, ∀p ≥ 1. (31)

We define the Malliavin operators L and Γ (we omit the dependence in n) and their basic properties

(see Bichteler, Gravereaux, Jacod, [6] Chapter IV, sections 8-9-10). For a test function f : [0, 1] ×

R 7→ R (f is measurable, C2 with respect to the second variable, with bounded derivatives, and

f ∈ ∩p≥1L
p(Fn(z)dz)), we set µn(f) =

∫ 1
0

∫
R f(t, z)µn(dt, dz). As auxiliary function, we consider

ρ : R 7→ [0,∞) such that ρ is symmetric, two times differentiable and such that ρ(z) = z4 if z ∈ [0, 1/2]

and ρ(z) = z2 if z ≥ 1. Note that thanks to the truncation τ , we do not need that ρ vanishes at infinity.

Assuming H2(b), we check that ρ, ρ′ and ρF
′
n
Fn

belong to ∩p≥1L
p(Fn(z)dz). With these notations, we

define the Malliavin operator L, on a simple functional µn(f) as follows

L(µn(f)) =
1

2
µn
(
ρ′f ′ + ρ

F ′n
Fn
f ′ + ρf ′′

)
, (32)

where f ′ and f ′′ are the derivatives with respect to the second variable. This definition permits to

construct a linear operator on a space D ⊂ ∩p≥1L
p which is self-adjoint :

∀Φ,Ψ ∈ D, EΦLΨ = ELΦΨ.

We associate to L, the symmetric bilinear operator Γ :

Γ(Φ,Ψ) = L(ΦΨ)− ΦLΨ−ΨLΦ. (33)

If f and h are two test functions, we have :

Γ(µn(f), µn(h)) = µn
(
ρf ′h′

)
, (34)

The operators L and Γ satisfy the chain rule property :

LF (Φ) = F ′(Φ)LΦ +
1

2
F ′′(Φ)Γ(Φ,Φ), (35)
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Γ(F (Φ),Ψ) = F ′(Φ)Γ(Φ,Ψ). (36)

These operators permit to establish the following integration by parts formula (see [6] Proposition

8-10 p.103).

Proposition 5 Let Φ and Ψ be random variables in D, and f be a bounded function with bounded

derivatives up to order two. If Γ(Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L
p, we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (37)

with

HΦ(Ψ) = −2ΨΓ−1(Φ,Φ)LΦ− Γ(Φ,ΨΓ−1(Φ,Φ)). (38)

In the next section, we will apply this Malliavin calculus to the random variables Ln1 and Y n
1 , which

belong to the domain of the operators L and Γ. From the preceding definitions, we compute easily

L(Ln1 ), Γ(Ln1 , L
n
1 ) and HLn1 (1). We have

L(Ln1 ) =
1

2
µn
(
ρ′ + ρ

F ′n
Fn

)
,

Γ(Ln1 , L
n
1 ) = µn(ρ), (39)

HLn1 (1) =
Γ(Ln1 ,Γ(Ln1 , L

n
1 ))

Γ(Ln1 , L
n
1 )2

− 2
L(Ln1 )

Γ(Ln1 , L
n
1 )

=
µn(ρρ′)

µn(ρ)2
−
µn(ρ′ + ρF

′
n
Fn

)

µn(ρ)
.

This leads to the expression

HLn1 (1) =
µn(ρρ′)

µn(ρ)2
−
µn(ρ′ − (α+ 1)1

zρ)

µn(ρ)
+

1

n1/α
Rn, (40)

where Rn is given by

Rn =
µn(ρg

1
n
gn

)

µn(ρ)
+
µn(ρ τ

1
n
τn

)

µn(ρ)
:= R1

n +R2
n,

with the additional notations gn(z) = g(z/n1/α), g1
n(z) = g′(z/n1/α), τn(z) = τ(z/n1/α), τ1

n(z) =

τ ′(z/n1/α).

From the choice of ρ we can prove that

E
1

µn(ρ)p
≤ Cp, ∀p ≥ 1. (41)

This is obtain remarking that (see [7] p.2324 )

E
1

µn(ρ)p
≤ E

1

µn(ρ1{|z|≤1/2})p
= Cp

∫ ∞
0

up−1E(e−uµ
n(ρ1{|z|≤1/2}))du.
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From the classical exponential formula for Poisson measures, we have

Ee−uµ
n(ρ1{|z|≤1/2}) = e

−
∫
{|z|≤1/2}(1−e

−uρ(z)) gn(z)

|z|α+1 τn(z)dz ≤ e−
∫
{|z|≤1/2}(1−e

−uz4 ) C

|z|α+1 )dz
,

where we used that g is lower bounded by C > 0 in a neighborhood of zero (recall that g is

continuous and g(0) = 1), τ = 1 and ρ(z) = z4 on {|z| ≤ 1/2}. We conclude observing that

lim infu→∞
1

lnu

∫
{|z|≤1/2} 1{z4≥1/u}

C
|z|α+1dz = +∞.

Moreover on En we observe that |z| /n1/α ≤ η and then assuming H2(b) we have the bound

|R1
n| ≤ C. (42)

Turning to R2
n, and using the definition of τ we have

|R2
n| ≤

µn(ρ| τ
1
n
τn
|1{K(a)n1/α/2<|z|<K(a)n1/α})

µn(ρ1{K(a)n1/α/2<|z|<K(a)n1/α})
≤ µn(| τ

1
n
τn
|1{K(a)n1/α/2<|z|<K(a)n1/α}).

Since µn = µ̃n + µn, we deduce from inequalities 2.1.36 and 2.1.37 in [13], the change of variable

u = z/n1/α and assumption (31) that

E|R2
n|p ≤ Cp/n, ∀p ≥ 1. (43)

This permits to deduce the following useful inequalities.

Lemma 4 We have

sup
n

E|HLn1 (1)|p ≤ Cp, ∀p ≥ 1, (44)

sup
n

E|
∫ 1

0

∫
{|z|>1}

|z|µn(ds, dz)HLn1 (1)|p ≤ Cp, ∀p ≥ 1, (45)

sup
n

E sup
t∈[0,1]

|Lnt ||HLn1 (1) ≤ C. (46)

Proof Obviously (46) is a consequence of (44) and (45). From (42) and (43), to prove (44) we just

have to consider the first two terms in the right-hand side of (40). Distinguishing between the small

jumps and the big jumps of the Poisson measure we have for the first term

µn(ρρ′)

µn(ρ)2
≤
µn(ρρ′1{|z|<1})

µn(ρ)2
+
µn(ρρ′1{|z|≥1})

µn(ρ1{|z|≥1})2
.

We conclude immediately using (41) that ∀p ≥ 1, supn E|
µn(ρρ′1{|z|<1})

µn(ρ)2
|p ≤ Cp. Moreover, recalling that

ρ(z) = z2 for |z| ≥ 1 we deduce that
µn(ρρ′1{|z|≥1})

µn(ρ1{|z|≥1})2
≤ 2 and this yields ∀p ≥ 1, supn E|

µn(ρρ′)
µn(ρ)2

|p ≤ Cp.

We proceed similarly for
µn(ρ′−(α+1) 1

z
ρ)

µn(ρ) and this achieves the proof of (44).
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It remains to prove (45). We check immediately from (42) and (43) that

E|
∫ 1

0

∫
{|z|>1}

|z|µn(ds, dz)
1

n1/α
Rn|p ≤ Cp.

Turning to
∫ 1

0

∫
{|z|>1} |z|µ

n(ds, dz)µ
n(ρρ′)
µn(ρ)2

, from the Cauchy-Schwarz inequality (and using ρ(z) = z2

if |z| ≥ 1) we get
∫ 1

0

∫
{|z|>1} |z|µ

n(ds, dz) ≤ µn(1{|z|≥1})
1/2µn(ρ1{|z|≥1})

1/2 and we deduce the bound∫ 1

0

∫
{|z|>1}

|z|µn(ds, dz)
µn(|ρρ′|)
µn(ρ)2

≤ µn(1{|z|≥1})
1/2µ

n(|ρρ′|)
µn(ρ)3/2

.

Remarking that µn(1{|z|≥1}) has a Poisson distribution with some parameter λnα bounded by λα inde-

pendent of n we get that

sup
n

E|µn(1{|z|≥1})
1/2µ

n(|ρρ′|1{|z|<1})

µn(ρ)3/2
|p ≤ Cp, ∀p ≥ 1.

Considering the large jumps part, we have

µn(1{|z|≥1})
1/2µ

n(|ρρ′|1{|z|≥1})

µn(ρ)3/2
≤ µn(1{|z|≥1})

1/2µ
n(|ρρ′|1{|z|≥1})

µn(ρ1{|z|≥1})3/2
≤ 2µn(1{|z|≥1})

1/2,

and this permits to conclude that

sup
n

E|
∫ 1

0

∫
{|z|>1}

|z|µn(ds, dz)
µn(ρρ′)

µn(ρ)2
|p ≤ Cp, ∀p ≥ 1.

In the same way, we have for the last term∫ 1

0

∫
{|z|>1}

|z|µn(ds, dz)|
µn(ρ′ − (α+ 1)1

zρ)

µn(ρ)
| ≤ Cµn(1{|z|≥1})

1/2µ
n(|ρ′ + ρ/z|)
µn(ρ)1/2

.

We conclude as previously remarking that for the large jumps part we have, using once again the

Cauchy-Schwarz inequality,

µn(1{|z|≥1})
1/2µ

n(|ρ′ + ρ/z|1{|z|≥1})

µn(ρ)1/2
≤ 3µn(1{|z|≥1}).

This ends the proof of (45).

�

With this background, we can proceed to the proof of Propositions 3 and 4.

5.3 Proof of Proposition 3

From the the localization and rescaling procedure, we just have to prove

|Eh(n1/α(Y n
1 − ξ

n,x0
1 ))− Eh(a(x0)Ln1 )| ≤ C(1 + |x0|)εn‖h‖∞.
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Now, considering a regularizing sequence (hp) converging to h in L1-norm, such that ∀p, hp admits a

bounded derivative and ‖hp‖∞ ≤ ‖h‖∞, we may assume that h admits a bounded derivative.

Using the integration by part formula (37) and denoting by H any primitive function of h

Eh(a(x0)Ln1 ) = EH(a(x0)Ln1 )Ha(x0)Ln1
(1),

and then from the triangle inequality, we have to bound the two following terms :

T1 := |Eh(n1/α(Y n
1 − ξ

n,x0
1 )− EH(n1/α(Y n

1 − ξ
n,x0
1 ))Ha(x0)Ln1

(1)| (47)

T2 := |EH(n1/α(Y n
1 − ξ

n,x0
1 ))Ha(x0)Ln1

(1)− EH(a(x0)Ln1 )Ha(x0)Ln1
(1)|. (48)

Bound for T2

We have

T2 ≤ ‖h‖∞E|n1/α(Y n
1 − ξ

n,x0
1 )− a(x0)Ln1 ||Ha(x0)Ln1

(1)|,

and from (27) we get

T2 ≤ ‖h‖∞
1

|a(x0)|

(
1

n
E sup
t∈[0,1]

|Lnt ||HLn1 (1)|+ E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLns ||HLn1 (1)|

)
,

where as a consequence of the linearity property of the operators Γ and L, we have used Ha(x0)Ln1
(1) =

1
a(x0)HLn1 (1).

From (46), the first term in the right-hand side of the above inequality is bound by C/n.

Turning to the second term E supt∈[0,1] |
∫ t

0 (a(Y n
s−) − a(x0))dLns ||HLn1 (1)|, we use once again the

decomposition (28). For the small jumps part, Hölder’s inequality and inequality 2.1.36 in [13] with

1 < p < 2, p > α and q such that 1/p+ 1/q = 1, lead to

E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,1s ||HLn1 (1)| ≤ Cp(E sup
t∈[0,1]

|a(Y n
t−)− a(x0)|p)1/p(E|HLn1 (1)|q)1/q.

From the Lipschitz assumption on a, the result of Lemma 2 and (44), we conclude

E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,1s ||HLn1 (1)| ≤ Cp(1 + |x0|)
1

n1/p
.

This gives the bound

E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)− a(x0))dLn,1s ||HLn1 (1)| ≤ Cp(1 + |x0|)εn,

with εn given as in Proposition 3.
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For the big jumps part, we remark first that∫ t

0
(a(Y n

s−)− a(x0))dLn,2s =

∫ t

0

∫
{|z|>1}

(a(Y n
s−)− a(x0))zµn(dt, dz),

and then

E sup
t∈[0,1]

|
∫ t

0
(a(Y n

s−)−a(x0))dLn,1s ||HLn1 (1)| ≤ E[ sup
t∈[0,1]

|a(Y n
t−)−a(x0)|

∫ t

0

∫
{|z|>1}

|z|µn(dt, dz)|HLn1 (1)].

As for the small jumps part, we conclude applying successively Hölder’s inequality, Lemma 2 and (45)

and this shows finally

T2 ≤ C(1 + |x0|)εn.

Bound for T1

It remains to consider (47).

From (38) and (33), we remark that

Ha(x0)Ln1
(1) = L

(
1

Γ(a(x0)Ln1 , a(x0)Ln1 )

)
a(x0)Ln1−

L(a(x0)Ln1 )

Γ(a(x0)Ln1 , a(x0)Ln1 )
−L

(
a(x0)Ln1

Γ(a(x0)Ln1 , a(x0)Ln1 )
,

)
,

and using the self-adjoint property of the operator L for the first and third terms we obtain

EH(n1/α(Y n
1 − ξ

n,x0
1 ))Ha(x0)Ln1

(1) =

E

(
L(H(n1/α(Y n

1 − ξ
n,x0
1 ))a(x0)Ln1 )−H(n1/α(Y n

1 − ξ
n,x0
1 ))L(a(x0)Ln1 )− L(H(n1/α(Y n

1 − ξ
n,x0
1 )))a(x0)Ln1

Γ(a(x0)Ln1 , a(x0)Ln1 )

)
.

Using again (33) and the chain rule we get

EH(n1/α(Y n
1 − ξ

n,x0
1 ))Ha(x0)Ln1

(1) = Eh(n1/α(Y n
1 − ξ

n,x0
1 ))

Γ(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)Ln1 )

Γ(a(x0)Ln1 , a(x0)Ln1 )

and so

T1 ≤ ‖h‖∞E|Γ(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)Ln1 )

Γ(a(x0)Ln1 , a(x0)Ln1 )
− 1|.

From the linearity property of Γ and since ξn,x0 is deterministic, we have Γ(n1/α(Y n
1 −ξ

n,x0
1 ), a(x0)Ln1 ) =

n1/αa(x0)Γ(Y n
1 , L

n
1 ) and Γ(a(x0)Ln1 , a(x0)Ln1 ) = a(x0)2Γ(Ln1 , L

n
1 ).

Setting Unt = n1/αΓ(Y n
t , L

n
t ), t ∈ [0, 1], this leads to the simplification

|Γ(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)Ln1 )

Γ(a(x0)Ln1 , a(x0)Ln1 )
− 1| = 1

|a(x0)|
|Un1 − a(x0)

∫ 1
0

∫
En
ρ(z)µn(ds, dz)|∫ 1

0

∫
En
ρ(z)µn(ds, dz)

,

and

T1 ≤ ‖h‖∞
1

|a(x0)|
E

(
|Un1 − a(x0)

∫ 1
0

∫
En
ρ(z)µn(ds, dz)|∫ 1

0

∫
En
ρ(z)µn(ds, dz)

)
. (49)
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From Theorem 10-3 p.130 in [6], we can prove that the process (Unt ) satisfies the equation

Unt =
1

n

∫ t

0
b′(Y n

s )Uns ds+
1

n1/α

∫ t

0

∫
En

a′(Y n
s−)Uns−zµ̃

n(ds, dz)+

∫ t

0

∫
En

a(Y n
s−)ρ(z)µn(ds, dz), t ∈ [0, 1].

(50)

Introducing the solution to the linear equation

Znt = 1 +
1

n

∫ t

0
b′(Y n

s )Zns ds+
1

n1/α

∫ t

0

∫
En

a′(Y n
s−)Zns−zµ̃

n(ds, dz), t ∈ [0, 1], (51)

and using Itô’s formula, we show that Znt admits an inverse, denoted by (Znt )−1, and solution to the

equation

(Znt )−1 = 1− 1

n

∫ t

0
b′(Y n

s )(Zns )−1ds− 1

n1/α

∫ t

0

∫
En

a′(Y n
s−)z

1 + a′(Y n
s−)z/n1/α

(Zns−)−1µ̃n(ds, dz)

+
1

n2/α

∫ t

0

∫
En

(a′(Y n
s−)z)2

1 + a′(Y n
s−)z/n1/α

(Zns−)−1µn(ds, dz), t ∈ [0, 1].

(52)

Note that on En, 0 < 1
1+a′(Y ns−)z/n1/α ≤ 2 and the above integrals are well defined.

With these processes we can solve (50) and we obtain the explicit expression

Unt = Znt

∫ t

0

∫
En

a(Y n
s−)ρ(z)

1 + a′(Y n
s−)z/n1/α

(Zns−)−1µn(ds, dz), t ∈ [0, 1]. (53)

Moreover we can prove the following bounds for the processes (Zn) and (Zn)−1.

Lemma 5 Let p ≥ 1 and p > α, then

E sup
t∈[0,1]

|Znt − 1|p ≤ Cp/n, (54)

E sup
t∈[0,1]

|(Znt )−1 − 1|p ≤ Cp/n, (55)

The result of Lemma 5 follows from convexity inequality, inequality 2.1.36 (or 2.1.37 if p ≥ 2) in [13]

and Gronwall’s Lemma. We omit its standard proof.

Plugging (53) into (49), we split the right-hand side of (49) into four parts :

T1,1 = E

 |Zn1
∫ 1

0

∫
En

(a(Y ns−)−a(x0))ρ(z)

1+a′(Y ns−)z/n1/α (Zns−)−1µn(ds, dz)|∫ 1
0

∫
En
ρ(z)µn(ds, dz)

 ,

T1,2 = E

 |Zn1 − 1||
∫ 1

0

∫
En

a(x0)ρ(z)

1+a′(Y ns−)z/n1/α (Zns−)−1µn(ds, dz)|∫ 1
0

∫
En
ρ(z)µn(ds, dz)

 ,
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T1,3 = E

 |
∫ 1

0

∫
En

((Zns−)−1−1)

1+a′(Y ns−)z/n1/αa(x0)ρ(z)µn(ds, dz)|∫ 1
0

∫
En
ρ(z)µn(ds, dz)

 ,

T1,4 = E

 |
∫ 1

0

∫
En

a′(Y ns−)z/n1/α

1+a′(Y ns−)z/n1/αa(x0)ρ(z)µn(ds, dz)|∫ 1
0

∫
En
ρ(z)µn(ds, dz)

 .

Considering first T1,1, we have

T1,1 ≤ 2E(|Zn1 | sup
t∈[0,1]

|(Znt )−1| sup
t∈[0,1]

|a(Y n
t−)− a(x0)|),

and from Hölder’s inequality with conjugated p and q such that 1 < p < 2 and p > α we obtain from

Lemma 2 (with p) and Lemma 5 (with q)

T1,1 ≤ Cp(1 + |x0|)εn,

where εn is defined in Proposition 3. Turning to T1,2, we have

T1,2 ≤ 2|a(x0)|E(|Zn1 − 1| sup
t∈[0,1]

|(Znt )−1|),

and as previously using Lemma 5, we deduce

T1,2 ≤ Cp(1 + |x0|)εn.

The third term satisfies T1,3 ≤ 2|a(x0)|E(supt∈[0,1] |(Znt )−1 − 1|) and so

T1,3 ≤ Cp(1 + |x0|)εn.

Finally for the last term, we observe that

T1,4 ≤ 2|a(x0)|
∥∥a′∥∥∞E

(∫ 1
0

∫
En

(|z| /n1/α)ρ(z)µn(ds, dz)∫ 1
0

∫
En
ρ(z)µn(ds, dz)

)
,

≤ C(1 + |x0|)

(
1

n1/α
+ E

(∫ 1
0

∫
En∩{|z|>1}(|z| /n

1/α)ρ(z)µn(ds, dz)∫ 1
0

∫
En∩{|z|>1} ρ(z)µn(ds, dz)

))
.

But remarking that∫ 1
0

∫
En∩{|z|>1}(|z| /n

1/α)ρ(z)µn(ds, dz)∫ 1
0

∫
En∩{|z|>1} ρ(z)µn(ds, dz)

≤
∫ 1

0

∫
En∩{|z|>1}

(|z| /n1/α)µn(ds, dz)

and taking the expectation we deduce that if α 6= 1

E

∫ 1
0

∫
En∩{|z|>1}(|z| /n

1/α)ρ(z)µn(ds, dz)∫ 1
0

∫
En∩{|z|>1} ρ(z)µn(ds, dz)

≤ C/n,
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and if α = 1

E

∫ 1
0

∫
En∩{|z|>1}(|z| /n

1/α)ρ(z)µn(ds, dz)∫ 1
0

∫
En∩{|z|>1} ρ(z)µn(ds, dz)

≤ C log n/n.

This yields to

T1,4 ≤ Cεn.

Combining all these results we obtain

T1 ≤ C(1 + |x0|)εn,

and the proof of Proposition 3 is finished.

5.4 Proof of Proposition 4

As in the proof of Proposition 3 we will use Malliavin calculus integration by part formula. The first

step is to construct on the same probability space two random variables whose laws are close to the

laws of n1/αL/n and Lα1 . We recall briefly the notations of Section 5.1 : µn is a Poisson random measure

with compensator µn(dt, dz) = dtg(z/n
1/α)

|z|α+1 τ(z/n1/α)1R∗(z)dz, where τ is a truncation function, and

the process (Lnt )t defined by Lnt =
∫ t

0

∫
R zµ̃

n(ds, dz), with µ̃n = µn − µn is such that (see (19), (24))∣∣∣E[h(n1/αL1/n)]− E[h(Ln1 )]
∣∣∣ ≤ C ‖h‖∞

n
. (56)

We now construct a variable approximating the law of Lα1 , and based on the Poisson measure µn.

For x > 0 we define

G(x) =

∫ ∞
x

g(z)τ(z)

z1+α
dz, and, H(x) =

∫ ∞
x

τ(z)

z1+α
dz. (57)

Recall that τ is a truncation function equal to 1 on [−K(a)/2,K(a)/2] and equal to 0 on [−K(a),−K(a)]c.

We assume for the sequel of the proof that τ(z) > 0, g(z) > 0, for |z| < K(a). Indeed, τ is a trun-

cation function that can be chosen non vanishing on (K(a),K(a)), and up to reducing the value of

η in the Assumption H2(b) we can assume that g does not vanish on [−K(a),−K(a)]. Then, it is

immediate to check that G and H are non increasing, one to one, functions from (0,K(a)] to (∞, 0].

We define sn(z) = n1/αG−1(H(n−1/αz)) for z ∈ (0, n1/αK(a)], sn(0) = 0, and sn(z) = −sn(−z)

for z ∈ [−n1/αK(a), 0). The function sn is increasing, odd and one to one, from the interval

[−n1/αK(a), n1/αK(a)] on itself and we let hn = s−1
n : [−n1/αK(a), n1/αK(a)]→ [−n1/αK(a), n1/αK(a)]

be its inverse function. Let us admit temporarily the next lemma about the behaviour of the functions

hn as n→∞.
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Lemma 6 1) There exists ε > 0 such that, for all |z| ≤ εn1/α,

|hn(z)− z| ≤ C z2

n1/α
+ C
|z|α+1

n
, ifα 6= 1,

|hn(z)− z| ≤ C z
2

n

∣∣∣∣log(
|z|
n

)

∣∣∣∣ , ifα = 1.

2) The function hn is C1 on (−εn1/α, εn1/α) and for all |z| < εn1/α,

∣∣h′n(z)− 1
∣∣ ≤ C |z|

n1/α
+ C
|z|α

n
, ifα 6= 1,∣∣h′n(z)− 1

∣∣ ≤ C |z|
n

∣∣∣∣log(
|z|
n

)

∣∣∣∣ , ifα = 1.

Using the previous lemma, we can define a process (Lα,nt )t∈[0,1] by setting

Lα,nt =

∫ t

0

∫
{|z|≤n1/αK(a)}

hn(z)µ̃n(ds, dz). (58)

We can compute the characteristic function of the random variable Lα,n1 . Indeed, using the exponential

formula for Poisson measure,

E[eiuL
α,n
1 ] = exp

(∫
{|z|≤K(a)n1/α}

(
eiuhn(z) − 1− iuhn(z)

) g(zn−1/α)τ(zn−1/α)

|z|1+α dz

)
,

= exp

(∫
{|w|≤K(a)n1/α}

(
eiuw − 1− iuw

) τ(wn−1/α)

|w|1+α dw

)
, (59)

where in the second line we have used the change of variable w = hn(z) and the relation

g(sn(w)n−1/α)τ(sn(w)n−1/α)s′n(w)

|sn(w)|1+α =
τ(wn−1/α)

|w|1+α , (60)

that can be derived for w > 0 from the differentiation of the relation G(n−1/αsn(w)) = H(n−1/αw),

and is extended to w < 0 by symmetry of g and τ . From (59) we see that Lα,n1 has the law of an

α-stable process whose jumps are truncated with the function τ . Similarly to (56) (in the situation

g = 1), we deduce

|E[h(Lα1 )]− E[h(Lα,n1 )]| ≤ C
‖h‖∞
n

. (61)

Proposition 4 is a consequence of (56), (61) and of the following lemma.

Lemma 7 Let h be as in Proposition 4, then we have,

|E[h(Lα,n1 )]− E[h(Ln1 )]| ≤ Cεn‖h‖∞,

where εn is defined in the statement of Proposition 3.
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Proof The scheme of the proof follows the same lines as the proof of Proposition 3, and is based

on the comparison of the representation of the random variables (21) and (58). Since, in Lemma 6,

the difference hn(z) − z is only controlled for |z| ≤ εn1/α with some ε > 0, we need to introduce

an additional localization procedure consisting in regularizing 1{µn([0,1]×{z∈R;|z|>εn1/α})=0}. Let I be a

smooth function defined on R, and with values in [0, 1], such that I(x) = 1 for x ≤ 1/2, and I(x) = 0

for x ≥ 1. We note ξ a smooth function on R, with values in [0, 1] and such that ξ(z) = 0 for |z| ≤ 1/2

and ξ(z) = 1 for |z| ≥ 1, and we set

V n =

∫ 1

0

∫
R
ξ(

z

εn1/α
)µn(ds, dz) =

∫ 1

0

∫
{ 1
2
εn1/α≤|z|≤εn1/α}

ξ(
z

εn1/α
)µn(ds, dz)+

∫ 1

0

∫
{|z|>εn1/α}

µn(ds, dz),

(62)

Wn = I(V n). (63)

From the construction, Wn is a Malliavin differentiable random variable such that Wn 6= 0 implies

µn([0, 1]× {z ∈ R; |z| > εn1/α}) = 0, and one can show that P (Wn 6= 1) = O(n−1). From the latter,

it is clear that the proof of the lemma reduces in proving the upper bound

|E[h(Lα,n1 )Wn]− E[h(Ln1 )Wn]| ≤ Cεn‖h‖∞.

Using a regularizing sequence as in the proof of Proposition 3, we can assume that h is C1 with

bounded derivative. Then by the integration by part formula (37), we can write E[h(Ln1 )Wn] =

E[H(Ln1 )HLn1 (Wn)] where H is some primitive function of h and the Malliavin weight can be written,

using (38) and the chain rule property of the operator Γ,

HLn1 (Wn) = WnHLn1 (1)− Γ(Wn, Ln1 )

Γ(Ln1 , L
n
1 )
. (64)

Using the triangle inequality, we are now left to find upper bounds for the two following terms

T̃1 :=
∣∣E[h(Lα,n1 )Wn]− E[H(Lα,n1 )HLn1 (Wn)]

∣∣ , (65)

T̃2 :=
∣∣E[H(Lα,n1 )HLn1 (Wn)]− E[H(Ln1 )HLn1 (Wn)]

∣∣ . (66)

Bound for T̃2

Using (64) and the Lipschitz property of the function H, we have

T̃2 ≤ ‖h‖∞E
[
|Lα,n1 − Ln1 |

∣∣HLn1 (1)
∣∣Wn

]
+ ‖h‖∞E

[
|Lα,n1 − Ln1 |

∣∣∣∣Γ(Wn, Ln1 )

Γ(Ln1 , L
n
1 )

∣∣∣∣] . (67)
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We focus on the first expectation appearing in the right-hand side of (67). Using (21) and (58), we

have

E
[
|Lα,n1 − Ln1 |

∣∣HLn1 (1)
∣∣Wn

]
= E

[∣∣∣∣∫ 1

0

∫
R

(hn(z)− z)µ̃n(ds, dz)

∣∣∣∣ ∣∣HLn1 (1)
∣∣Wn

]
≤ E

[∣∣∣∣∣
∫ 1

0

∫
{|z|≤1}

(hn(z)− z)µ̃n(ds, dz)

∣∣∣∣∣ ∣∣HLn1 (1)
∣∣Wn

]

+ E

[∣∣∣∣∣
∫ 1

0

∫
{1<|z|≤εn1/α}

(hn(z)− z)µn(ds, dz)

∣∣∣∣∣ ∣∣HLn1 (1)
∣∣Wn

]
, (68)

where we have used that hn is an odd function with the symmetry of the compensator µn, and the

fact that on Wn 6= 0 we have µn([0, 1] × {z ∈ R; |z| > εn1/α}) = 0. The two terms in the right-hand

side of (68) are controlled using Lemma 6 1). For the sake of shortness, we only give the details of

the proof in the case α 6= 1. In the case α = 1, one needs to modify this control with an additional

logarithmic term. For the small jumps term, from inequality 2.1.37 in [13] and Lemma 6 1), we deduce

E|
∫ 1

0

∫
{|z|≤1}(hn(z)− z)µ̃n(dz, ds)|p < Cp(n

−1/α +n−1)p, for all p ≥ 2 and using 0 ≤Wn ≤ 1 and (44)

we get from Hölder’s inequality

E

[∣∣∣∣∣
∫ 1

0

∫
{|z|≤1}

(hn(z)− z)µ̃n(s, dz)

∣∣∣∣∣ ∣∣HLn1 (1)
∣∣Wn

]
≤ Cn−1/α + Cn−1.

The large jumps term of (68) is upper bounded by

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

(
|z|α

n
+
|z|
n1/α

)
µn(ds, dz)

∫ 1

0

∫
{1<|z|≤εn1/α}

|z|µn(ds, dz)
∣∣HLn1 (1)

∣∣Wn

]
,

where we have used Lemma 6 1), and the basic inequality,∫ 1

0

∫
{1<|z|≤εn1/α}

|z|β µn(ds, dz) ≤
∫ 1

0

∫
{1<|z|≤εn1/α}

|z|β−1 µn(ds, dz)

∫ 1

0

∫
{1<|z|≤εn1/α}

|z|µn(ds, dz)

for β ≥ 1. From µn = µ̃n + µn and inequality 2.1.36 in [13], one can easily show that for q ∈ (1, 2),

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

|z|µn(ds, dz)

]q
≤ C(1 + nq/α−1),

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

|z|α µn(ds, dz)

]q
≤ Cnq−1.

By Hölder’s inequality and (45), we deduce that the large jumps term of (68) is eventually smaller

than C(n−1/α + n−1/q) for any q ∈ (1, 2), and in turn

E
[
|Lα,n1 − Ln1 |

∣∣HLn1 (1)
∣∣Wn

]
≤ Cεn.
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Let us now study the second expectation in the right-hand side of (67), which can be rewritten,

using (63) and the chain rule property of the operator Γ

E
[
|Lα,n1 − Ln1 |

∣∣I ′(V n)
∣∣ ∣∣∣∣Γ(V n, Ln1 )

Γ(Ln1 , L
n
1 )

∣∣∣∣] . (69)

Using (62), we get the explicit expression for Γ(V n, Ln1 ) =
∫ 1

0

∫
R ρ(z)ξ′( z

εn1/α )µn(ds, dz)n−1/αε−1, from

which we deduce
∣∣∣Γ(V n,Ln1 )

Γ(Ln1 ,L
n
1 )

∣∣∣ ≤ C‖ξ′‖∞n−1/α. Hence, the term (69) is smaller than

Cn−1/αE

[∣∣∣∣∣
∫ 1

0

∫
{|z|≤K(a)n1/α}

(hn(z)− z)µ̃n(ds, dz)

∣∣∣∣∣ ∣∣I ′(Vn)
∣∣] .

Remarking that I ′(x) = 0 for x ≥ 1, we deduce that |I ′(V n)| 6= 0 implies µn([0, 1] × {z ∈ R; |z| >

εn−1/α}) = 0. Consequently, (69) is upper bounded by

C
∥∥I ′∥∥∞n−1/αE

[∣∣∣∣∣
∫ 1

0

∫
{|z|≤εn1/α}

(hn(z)− z)µ̃n(ds, dz)

∣∣∣∣∣
]
,

where we used the symmetry of the compensator µn. Using Lemma 5 1), one can show that

E

[∣∣∣∣∣
∫ 1

0

∫
{|z|≤εn1/α}

(hn(z)− z)µ̃n(ds, dz)

∣∣∣∣∣
]
≤ Cn1/α−1,

and deduce that (69) is smaller than Cn−1. This finishes the proof that T̃2 ≤ C‖h‖∞εn.

Bound for T̃1

Using (33) and (38) we can write

HLn1 (Wn) =
−WnL(Ln1 )

Γ(Ln1 , L
n
1 )

+ L

(
Wn

Γ(Ln1 , L
n
1 )

)
Ln1 − L

(
Ln1W

n

Γ(Ln1 , L
n
1 )

)
,

and with computations using that L is a self-adjoint operator, as in the proof of Proposition 3, we get

that

T̃1 =

∣∣∣∣E [h(Lα,n1 )Wn]− E
[
h(Lα,n1 )

Γ(Lα,n1 , Ln1 )

Γ(Ln1 , L
n
1 )

Wn

]∣∣∣∣
≤ ‖h‖∞E

[∣∣∣∣Γ(Ln1 − L
α,n
1 , Ln1 )

Γ(Ln1 , L
n
1 )

∣∣∣∣Wn

]
But Γ(Ln1 − L

α,n
1 , Ln1 ) =

∫ 1
0

∫
{|z|≤K(a)n1/α} ρ(z)(1 − h′n(z))µn(ds, dz). Using Lemma 6 2), we deduce

that on the event Wn 6= 0,

|Γ(Ln1 − L
α,n
1 , Ln1 )| ≤ C

∫ 1

0

∫
{|z|≤εn1/α}

ρ(z)(
|z|
n1/α

+
|z|α

n
)µn(ds, dz),

≤ C
∫ 1

0

∫
{|z|≤1}

ρ(z)(
|z|
n1/α

+
|z|α

n
)µn(ds, dz)+

C

∫ 1

0

∫
{1≤|z|≤εn1/α}

ρ(z)µn(ds, dz)

∫ 1

0

∫
{1≤|z|≤εn1/α}

(
|z|
n1/α

+
|z|α

n
)µn(ds, dz).
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From this equation, we deduce that

T̃1 ≤ C‖h‖∞(n−1/α + n−1) + C‖h‖∞E
∫ 1

0

∫
{1≤|z|≤εn1/α}

(
|z|
n1/α

+
|z|α

n
)µn(ds, dz),

≤ C‖h‖∞(n−1/α + log(n)n−1).

This is the required upper bound for T̃1. �

Proof of Lemma 6 As x 7→ hn(x) is an odd function, it is sufficient to study this function on [0,∞).

Recall that for 0 < x < K(a)n1/α, hn(x) = s−1
n (x) and sn(x) = n1/αG−1(H(n−1/αx)), where G and H

are defined in (57). As τ(x) = 1 for |x| ≤ K(a)/2, we have H(x) = α−1x−α + κ1 for 0 < x < K(a)/2,

and where κ1 is some constant. Using that g(x) = 1 +O(x) as x→ 0, we get

G(x) =

∫ K(a)

x

g(z)τ(z)

z1+α
dz =


α−1x−α + κ2 +O(x1−α), if α 6= 1

α−1x−α +O(|log(x)|), if α = 1

.

where κ2 is some constant. Then, by elementary computations we deduce that if u ∈ (0,∞) is large

enough, ∣∣∣G−1(u)− (αu)−1/α
∣∣∣ ≤


Cu−2/α + Cu−1−1/α, if α 6= 1

Cu−2 |log(u)| , if α = 1

. (70)

From the expression H(x) = α−1x−α + κ1 and (70), it comes, for x/n1/α small enough,

|sn(x)− x| =
∣∣∣n1/αG−1(H(n−1/αx))− x

∣∣∣ ≤

C x2

n1/α + C x1+α

n , if α 6= 1

C x2

n

∣∣log(xn)
∣∣ if α = 1

. (71)

Now, the first part of the lemma follows from hn = s−1
n .

For the second part we use (60) to get, if x/n1/α is small enough,

s′n(x) = (
sn(x)

x
)1+α 1

g(n−1/αsn(x))
.

From (71) and 1
g(n−1/αsn(x))

= 1 +O(sn(x)/n1/α) = 1 +O(x/n1/α), we deduce the second part of the

lemma. �
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