Estimating functions for SDE driven by stable Lévy processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Estimating functions for SDE driven by stable Lévy processes

Résumé

This paper is concerned with parametric inference for a stochastic differential equation driven by a pure-jump Lévy process, based on high frequency observations on a fixed time period. Assuming that the Lévy measure of the driving process behaves like that of an α-stable process around zero, we propose an estimating functions based method which leads to asymptotically efficient estimators for any value of α ∈ (0, 2) and does not require any integrability assumptions on the process. The main limit theorems are derived thanks to a control in total variation distance between the law of the normalized process, in small time, and the α-stable distribution. This method is an alternative to the non Gaussian quasi-likelihood estimation method proposed by Masuda [20] where the Blumenthal-Getoor index α is restricted to belong to the interval [1, 2).
Fichier principal
Vignette du fichier
Rev-estim-hal.pdf (497.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01570175 , version 1 (28-07-2017)
hal-01570175 , version 2 (14-06-2018)

Identifiants

  • HAL Id : hal-01570175 , version 2

Citer

Emmanuelle Clément, Arnaud Gloter. Estimating functions for SDE driven by stable Lévy processes. 2018. ⟨hal-01570175v2⟩
746 Consultations
1119 Téléchargements

Partager

More