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The design of high-lift systems represents a challenging task within the aerospace 

community, being a multidisciplinary, multi-objective and multi-point problem. The 

DeSiReH (Design, Simulation and Flight Reynolds Number Testing for Advanced High-

Lift Solution) project, funded by European Commission under the 7th Framework 

Program, aimed at improving the aerodynamics of high-lift systems by developing, in a 

coordinated approach, both efficient numerical design strategies and measurement 

techniques for cryogenic conditions. Within DeSiReH, different partners used several 

numerical automatic optimization strategies for high-lift system design purposes. A 

realistic multi-objective and multi-point optimization problem was defined and solved by 

adopting different flow models dimensionality, meshing techniques, geometry 

parameterization and optimization strategies. Special attention was devoted to perform a 

fair comparison of the results and useful information were obtained about trends, pros 

and cons of the approaches used. The outcome of these activities is that an efficient design 
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process can be set up through decoupling of the original multi-objective problem into 

several, sequential sub-optimization processes. Nevertheless, several decoupling 

possibilities exist and the most efficient one can be identified only on the bases of pre-

analysis or pre-knowledge of the specific problem. Secondly, the exercise carried out 

demonstrated the maturity and feasibility of a full 3D automatic high-lift design. 

Nomenclature 

DPN : Design Point number “N” 

  : Angle of attack  

CL,max : Maximum lift coefficient 

αmax : Angle of attack at which stall occur 

F  : Cost function to be minimized 

V  : Velocity 

Vs   : Stall speed 

DV : Design Variable  

M  : Mach number 

Re  : Reynolds number 

Cm  : Pitching moment coefficient  

T  : Thrust 

W   : Aircraft weight 

   : Sweep angle 

  : Deflection angle for slat or flap 

  : Wing aspect ratio 

CL, CD : Scale coefficients for CL and CD between 2.5D and 3D performance 

Partners involved: 

AI-D  : Airbus Deutschland (Germany) 

AI-M  : Airbus Military/EADS-CASA (Spain) 

CIRA  : Centro Italiano Ricerche Aerospaziali (Italian Aerospace Research Center) 

DLR  : Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) 

ONERA : Office National d’Études et de Recherches Aérospatiales (French Aerospace Research Center) 
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PAI  : Piaggio Aero Industries (Italy) 

UNIPD : Università di Padova (Italy) 

Acronyms: 

2D   : Related to normal to leading-edge axis 

2.5D   : Related to stream-wise cut axis 

3D   : Related to aircraft  

HL   : High-lift 

TO   : Take-off 

LDG  : Landing 

LE, TE : Leading edge, Trailing edge 

CFD  : Computational Fluid Dynamics 

RANS  : Reynold-Averaged Navier–Stokes 

MOEAs : Multi-Objective Evolutionary Algorithms 

CAD  : Computer Aided Design 

FAA  : Federal Aviation Administration  

A/C  : Aircraft 

MTOW : Maximum take-off aircraft weight 

MLW  : Maximum landing aircraft weight 

OEW  : Operating empty aircraft weight 

SLS  : Sea level static thrust 

 

I. Introduction 

HE design and optimization of high-lift (HL) systems has gained increasing importance over the last decades, 

especially considering their potential impact on aircraft sizing, costs and safety [1][2]. However, this is a quite 

challenging task for aircraft designers, due to its strong multidisciplinary, multi-objective and multi-point nature. 

In the design of HL devices, several performance indexes are to be improved, or at least controlled, at different 

flight conditions (e.g., take-off (TO), landing (LDG), approach, climbing, etc.). In fact, the design objectives are 

not only focused on achieving maximum lift requirements at TO and LDG [2], but also on achieving good 

performance in both the climb and approach phases while reducing both complexity and weight, thus resulting in 

a global cost reduction. Actually, HL systems may account for up to 10% of the production costs of a typical jet 

T 
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transport [3], due to the effort they require for being designed and tested, the inherent complexity of their actuation 

and support systems and the intensive maintenance they usually need. On the other hand, such efforts are justified 

by the fact that they make it possible to achieve reasonable runway lengths in TO and LDG of transport airplanes, 

while preserving their cruise efficiency.  

Actually, even small improvements in HL systems aerodynamic design can produce significant gains in the 

aircraft overall weight and performance [4]. Leading edge (LE) devices such as slats are used for increasing the 

wing stall margin, while trailing edge (TE) devices such as flaps have the effect of shifting upwards the whole 

wing lift curve. In addition to their shape, the aerodynamic behavior of HL systems strongly depends on the 

settings of the different elements. Moreover, aerodynamic efficiency of HL devices must be guaranteed in multiple 

flight conditions, often featuring large aerodynamic loads over the various elements. Concerning the constraints 

of the HL design problem, a series of airworthiness requirements enforce considerable boundaries to the design 

space, often set the design point conditions and complicate the optimization problem formulation. In addition, 

both manufacturing and structural constraints must be included in the design problem definition from the very 

beginning (e.g., via specification of geometrical limitations such as trailing edges thickness, breakaway angles, 

etc.) in order to ensure that the designed shape can be manufactured and guarantees the structural stiffness needed 

to sustain the high aerodynamic loads occurring in the above mentioned conditions. Furthermore, the external 

shape of the high lift devices needs to be compliant with the designated cruise wing shape, when retracted in clean 

configuration. Finally, both mechanical integration and kinematical reliability aspects of the deployment system 

must be taken into account, such that unrealistic designs are avoided. All these features make the task of designing 

a HL system particularly difficult to be comprehensively tackled with a human based approach, due to both the 

large number of design variables involved and the large number (and different nature) of the constraints to be 

included, often giving rise to conflicting features and generating a narrow and sparse design space.  

In the last decade, empirical approaches for analysis of HL multi-element configurations have been completely 

replaced by Computational Fluid Dynamics (CFD) tools (thanks also to the increased availability of computational 

resources), such that examples of CFD computations on multi-element airfoil are nowadays almost uncountable 

[2]. On the other hand, there are still some specific flow features difficult to be properly captured by CFD, such 

as multiple laminar/turbulent transitions [5], wakes interactions with boundary layers, and regions of flow 

detachment [6]. A quite recent review of CFD computations of HL systems is given in [7]. Prior to the widespread 

application of 2D Reynolds-averaged Navier–Stokes (RANS) methods (see [2] for a review), flows over multi-
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element airfoils were traditionally analyzed using inviscid and viscous flow solvers coupled in an interactive 

manner ([8]-[11]). 

Moreover, aerodynamic optimization studies, including multi-objective methodologies, have been 

successfully performed. Actually, the HL system design is an application field where the large potentials and 

capabilities of automatic optimization can be successfully exploited to enhance the design quality and reduce the 

design cycle time (costs). In [12], a single-point method for optimizing the shape and position of high-lift system 

elements using an incompressible flow solver was illustrated: the objective was to maximize lift for a given drag 

at TO and LDG conditions. A gradient-based local optimizer was used in [13] for design optimization of  a two-

dimensional aircraft high-lift system: in this case, flap shape functions and element positioning (deflection angle, 

gap, overlap) were considered as design variables for maximization of lift/drag ratio and single airfoil maximum 

lift coefficient.  

In [14], an optimization procedure using the adjoint method is illustrated, where shape and deflection angles 

of the slat and flap elements are used for drag minimization and lift maximization subject to several constraints. 

Moreover, a Newton–Krylov (gradient-based) algorithm was used in [15] for the aerodynamic optimization of a 

multi-element airfoil: here the objective function sensitivities were calculated using an adjoint formulation with 

the purpose of lift enhancement and multipoint lift-constrained drag minimization. More recently, in [16] an 

aerodynamic design of high-lift multi-element airfoil was carried out based on a gradient-based optimization 

method using a 2D Navier–Stokes solver and sensitivity analysis method. In [17], a single-objective optimization 

based on a genetic algorithm was carried out for design optimization of both fixed-shape flap and slat settings in 

a three-element airfoil: in this case, the objectives of optimization were the minimization of drag at a given angle 

of attack and the separate maximization of aerodynamic efficiency at the same incidence. Flap and slat shape 

optimization including uncertainty of operating conditions was carried out in [18] using single-objective 

evolutionary algorithms coupled with a response surface methodology. Moreover, a recent, systematic CFD 

optimization study carried out with a genetic algorithm based design optimization procedure on a foil in water is 

described in [19]. Other known examples of design optimization studies can be found in the open literature [20]. 

Also, multi-objective approaches, especially those based on multi-objective evolutionary algorithms (MOEAs) 

have been applied to optimization of HL devices, in light of their capability to handle multi-objective design 

problems featuring highly nonlinear and multimodal functions. For instance, a multi-objective constrained 

optimization of multi-element airfoils is presented in [21], where the objective of optimization was the 

maximization of lift having as design variables those defining the flap setting. A further analysis is illustrated in 
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[22], where different optimization strategies (including MOEAs), coupled with different types of flow solvers 

were used with the aim of improving lift and drag performance of a multi-element airfoil at TO through re-design 

of TE flap. 

The issue of optimization of HL devices was one of the tasks in the DeSiReH project [23] (Design, Simulation 

and Flight Reynolds Number testing for advanced High Lift Solutions), funded by the European Commission 

within the 7th Framework Program. Specifically, the project aimed at improving the aerodynamics of HL systems 

by considering, in a coordinated approach, the development of both efficient numerical design strategies and 

measurement techniques for cryogenic wind tunnel conditions. It represents the follow up to the EUROLIFT I 

and II projects [22], wherein both numerical and experimental studies mainly targeted validation of CFD tools for 

increasingly complexity configurations and up to flight Reynolds numbers. 

Within this paper, an overview of the HL numerical optimization activities carried out within DeSiReH is 

presented. Firstly, a definition of an efficient formulations of the HL optimization problem  and the identification 

of appropriate target functions (including airworthiness requirements), of reduced number of design variables for 

shape parameterization and cost function parameter evaluation were investigated and are presented in section II. 

Section III of the paper presents the results obtained by different numerical optimization strategies based on 

high fidelity methods (CFD), for the design of high-lift systems. Within this “analysis” phase, a realistic 

optimization of the full HL flight envelope was addressed in a 2D/2.5D framework, by a group of partners 

adopting different approaches in terms of employed flow model, meshing techniques, geometry parameterization 

and optimization approaches/strategies. Moreover, a demonstration about the feasibility of a full 3D automatic 

optimization approach by employing industrial standards (from CAD to CFD) was addressed. The experience 

gained in the analysis phase was then exploited in another phase of DeSiReH, wherein the design of an optimal 

feasible HL system has been developed for a high aspect ratio natural laminar wing, as detailed in [24].. 

II. Definition of the High Lift optimization problem 

Since both 2D and 3D optimization activities were planned, it was decided to define the optimization problem 

in a fully three-dimensional environment. The geometrical model assumed as starting point (baseline) for the 

optimization work is the 3D full span slat and flap DLR-F11 (KH3Y) wing-body HL configuration shown in 

Figure 1. A large experimental database is available for such 3D model from the former European project 

EUROLIFT. The 2D optimization work focused on the improvement of a wing section located in the middle of 

the outboard wing (Figure 1, right) where a 2D/2.5D flow assumption is more reasonable. 
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Figure 1: 3D KH3Y full span slat/flap model (left) and 2D cut at mid board of the outer wing (right) 

 

A. Design space 

As shown in Figure 1 (right), both slat and flap shape modifications were allowed only in the solid line regions 

and were constrained by both aft and rear 3D polygonal bounding boxes. Such bounding boxes were introduced 

to mimic the manufacturing limitations introduced by both the slat and main wing spar positions and by breakaway 

angles (related to minimum thickness requirements at elements’ trailing edges), respectively. In order to limit the 

design space extent, a number of assumptions were made about the allowed geometrical modifications: 

 Elements’ positioning had to be optimized, e.g. slat and flap deployment angle, gap and overlap. 

 Shape modifications were allowed within the bounding boxes shown in Figure 1 (right). 

 Slat and flap chord, stat trailing edge thickness, shroud trailing edge thickness and wing shroud trailing 

edge position were assumed to be fixed. 

Moreover, in order to leave enough margins for improvements, it was decided to avoid the introduction of any 

kinematical constraining rule, which would introduce limitations on the allowed elements’ displacement. 

B. Optimization targets and design points 

Regarding HL system performance improvement possibilities, a wide list was prospected after a review of all 

the possible performance indexes relevant to the several flight phases in which the HL system is employed (e.g., 

takeoff, landing, approach, climb, etc.) Among those available, it was chosen to focus the optimization work 

towards the following two targets: 

1. Reduction of time-to-climb in the 2nd climb segment at take-off.  

2. Reduction of fuel burn in the final landing approach phase.  

It is worth noting that both objectives are related to drag reduction purposes, which is also beneficial from the 

pollution emissions reduction point of view, both in terms of chemicals and aerodynamic noise. Moreover, the 

consortium partners agreed not to target a maximum lift coefficient (CL,max) improvement for two main reasons. 
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The first being the huge amount of computational resources required in a full 3D simulation environment, 

especially in cases where no automatic CL,max calculation capabilities are available. The second reason being that 

a large part of the optimization work was carried out by using a 2D approach, and the selected wing section is not 

representative of the three dimensional stall phenomenon occurring on the whole wing. 

The FAA airworthiness requirements for commercial transport aircrafts (CFR14 – Part 25) fix the minimum 

speeds relevant to the two flight conditions referred in the objectives above to V2=1.13VS and VREF=1.23VS for TO 

and LDG, respectively (VS being the relevant stall speed). According to this, a first design point (DP1) associated 

to each of the above objectives could be specified in terms of 3D incidences (α3D,TO = 11.91° and  α3D,LDG = 6.54°, 

respectively), as extracted from the experimental curves of the baseline configurations shown in Figure 2. 

 

 

Figure 2: Experimental 3D lift curves of TO (left) and LDG (right) configurations. (M=0.2, Re=15×106). 

The above design points were defined in the linear part of the lift curves, therefore an additional design point 

(DP2) was added in order to control the lift curve behavior of the optimized configuration close to maximum lift 

conditions, i.e. at α3D=17° for both TO and LDG, as detailed in the following. Based on the above considerations, 

the design points considered in the optimization are four, two for the TO optimization problem and two for the 

LDG one: 
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C. Aerodynamic and airworthiness constraints 

In general, several constraints have to be included in an HL optimization problem statement. They are normally 

based on different requirements coming from other disciplines like, e.g. aerodynamics, airworthiness, kinematics 

feasibility, structural reliability, etc. While the structural requirements were somehow defined by means of the 
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bounding boxes described in section A, a first couple of aerodynamic constraints are directly associated to the 

DP1 of both configurations, since the optimized configuration was required to provide at least the same lift level 

of the baseline configuration (CL being the 3D lift coefficient): 

 DP1@LDGDP1@LDGDP1@TODP1@TO 
 initialLLinitialLL CCCC ,,     ;   (2) 

As stated above, in order to ensure a proper behavior of the lift curve at high incidence (DP2 points), it was 

required that the optimized configuration ensures lift levels equal to or higher than the baseline: 

 2,22,2
    ;  

DP@LDGDP@LDGDP@TODP@TO 
 initialLLinitialLL CCCC

 (3) 

Furthermore, due to the usage of a non-strict requirement on CL,max , an a posteriori verification check was 

foreseen for the maximum lift capabilities of the optimum configurations. Accordingly, two verification points 

were defined at α=19° and α =20° for TO and LDG, respectively: 

 


20,2019,19
   ;   

 LDG@LDG@TO@TO@ initialLLinitialLL CCCC
 (4) 

For the 2D activities, the post-check in Eq. (4) was performed by considering the 2D force coefficients. Finally, 

an additional aerodynamic constraint was introduced on the (either 2D or 3D) pitching moment coefficient Cm, 

which was allowed to increase by a 15% margin with respect to the baseline configuration (such a large margin 

was agreed in order to leave enough design space for optimization): 

 
initial

mm CC 2525 15.1 
 (5) 

Such constraint had to be respected at all design points defined above. 

Among others, two constraints for the LDG phase come from airworthiness requirements on the minimum 

thrust level to be held during the final approach phase, and the minimum climb gradient in the go-around phase, 

as follows. Regarding the approach, the only common phase between all possible approaches (depending on 

aircraft type, airport characteristic, approach strategy, etc.) is the last segment within the 5 Nautical Miles range, 

where the A/C has to be trimmed on a 3° glide slope at VREF=1.23VS and at a thrust level higher than approach 

idle. This condition translates into the following constraint: 

 











 SREF VVVL

D
AP

C

C
WTT

23.1

3sin     max,045.0 LD CC 
DP1@LDG

 (6) 
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where T and TAP indicate thrust and thrust at approach idle, respectively, and W is the A/C weight. To derive Eq. 

(6), the idle thrust to weight ratio (TAP/W) is needed at landing conditions. This value was derived from an analysis 

regarding all transport aircraft data available (shown in Figure 3 for the maximum take-off weight), which shows 

a clear trend for the static thrust vs. weight and an unexpected similarity between all aircrafts.  

 

Figure 3: Example of available civil aircraft data. MTOW vs. static thrust at sea level. 

From these data, the following quantities were derived via 0.999-regression analysis: 

 037.0566.0   ;   015.0368.0   ;   01.0271.0 
OEW

T

MLW

T

MTOW

T SLSSLSSLS  (7) 

where TSLS is the sea level static thrust and MTOW, MLW, OEW are the maximum take-off, maximum landing and 

operating empty weight, respectively. Moreover, in deriving Eq. (6) the following relations between TSLS, cruise 

thrust TCR and TAP were considered: 

 
0.25 , 0.175AP CR CRT T T SLST   

  (8) 

Regarding the go-around phase, the FAR regulations pose a restriction on the minimum climb path, which is 

expressed as a constraint: 

 













     %2.3sin

23.1 SREF VVVL

D

C

C

G

T
 max,222.0 LD CC 

DP1@LDG
 (9) 

D. Overview of the optimization problem and analysis of objective functions 

A synthetic view of the bi-objective/multi-point optimization problem formulated from previous sections, 

entirely defined in a 3D framework, is summarized in Figure 4.  
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Figure 4: Overview of the bi-objective/multi-point optimization problem. 

 

In the optimization problem statement reported in Figure 4, FTO and FLDG are the TO and LDG objective 

functions, respectively, whereas 𝑥̅ indicates the vector of design variables (DVs). For the case at hand, the vector 

𝑥̅ = [𝑠̅, 𝑝̅𝑇𝑂 , 𝑝̅𝐿𝐷𝐺] contains the flap and slat shape design variables vector 𝑠̅, the TO slat/flap position design 

variables vector 𝑝̅𝑇𝑂 and the LDG slat/flap position design variables vector 𝑝̅𝐿𝐷𝐺. 

It is worth remarking that in order to reduce the huge computational requirements posed by the optimization 

problem considered, the partners working with 3D CFD optimization only considered the left part of the problem, 

i.e. only the TO optimization problem, and only the 3D flap shape and setting optimization was required. 

One peculiarity of the proposed design problem is that the design variables contained in the vector 𝑠̅ affect in 

principle both TO and LDG objective functions, whereas the DVs in vector 𝑝̅𝑇𝑂 affect only FTO and the DVs in 

vector 𝑝̅𝐿𝐷𝐺 affect only FLDG . Alternatively, one can say that two objectives are linked by means of the sole 

slat/flap shape variables, whereas slat/flap positioning variables affect either the TO or the LDG objective only. 

One purpose of the proposed exercise was to verify if the link between the two objectives is strong or if the shape 

variables 𝑠̅  affect mainly only one of the two objectives (weak coupling of the objectives). In the first case the 

outcome would indicate that for such kind of problems there is a need for a coupled optimization which must 

include both TO and LDG objectives at the same time, whereas in the case of a weak coupling the usage of a 

simpler sequential optimization strategy (e.g., LDG first, TO then) might be considered. 

Prior to the optimization work, a sensitivity study was performed for a range of lift and drag variations in order 

to get useful information about the potential improvements of the objective functions. By using the available 

experimental CL and CD values of the initial configuration, the plot shown in Figure 5 was drawn, showing that 

for a fixed drag level (corresponding to a specific curve in the plot), the TO objective function increases with CL.  
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Figure 5: Parametric analysis of TO objective function. 

 

According to Figure 5, a first observation is that the lift coefficient should be kept as much as possible close 

to the baseline value to maximize the potential objective function reduction. Similarly, for a given drag reduction, 

the maximum potential TO objective function improvement (reduction) is achieved with a lift value equal to the 

baseline (lower values of lift are not allowed by the lift constraint). Concerning the amount of drag reduction, the 

plot shows that at CL= CL,baseline , a 6% reduction in CD implies only approximately 2.5% reduction in the overall 

TO objective function. However, it is worth noting that a 6% reduction in CD means 100 drag counts (i.e., 0.01) 

reduction with respect to the 3D baseline, which would be quite an ambitious target for the already optimized HL 

configuration under consideration. Therefore, if we assume a target CD reduction at TO of about 50 drag counts, 

it would give a TO objective reduction of approximately 1.25%, which is the order of magnitude of the expected 

improvements at TO. Similar considerations can be drawn at LDG, though in this case a 6% reduction in CD (100 

drag counts) would reduce by the same amount the LDG objective function. Accordingly, both TO and LDG 

problems basically reduce to a drag minimization problem at constant lift. On the other hand, it must be also 

observed that a lift constraint violation, if not treated either explicitly or by means of a step penalty, can easily 

lead to misleading results if suitable penalty functions are not supplied to the optimizer. As a matter of fact, a CL 

reduction would introduce a reduction in induced drag, which would produce a fake objective functions 

improvement. To this aim, suitable penalty function expressions have been derived in [25] for both TO and LDG 

problems, in order to properly balance the possible artificial improvements coming from lift constraints violations. 

With similar considerations, the derivation of RANS simulations convergence criteria have been derived in [25]. 

In fact, as well known, in RANS computations it can happen that while the equations’ residuals drop significantly, 

the aerodynamic force coefficients still oscillate within a certain range during the iterative solution process. On 
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the other hand, within an optimization loop requiring huge computational resources, it is fundamental to limit the 

number of iterations per simulation. Therefore, forces convergence criteria are needed, in order to terminate the 

computation as quick as possible though without introducing too much uncertainty (noise) on the overall objective 

function estimation.  

III. 3D AERO-PERFORMANCE PREDICTION BASED ON A 2D SIMULATION 

As stated above, both three-dimensional and two-dimensional optimization activities were considered . While 

for 3D activities the aerodynamic performance prediction is straightforward, a specific strategy was employed to 

predict the 3D performance based on a simple 2D or 2.5D flow simulation. For the two-dimensional activities the 

starting geometry is represented by the (2.5D) stream wise cut of the wing, as shown in Figure 1. In the following 

sections it is described the strategy used to perform the elements deployment, the flow and geometry 

normalization, the flow solvers calibration and the prediction of 3D Wing-Body performance based on 2D-

normalized CFD results. 

E. Deployment of high-lift elements in 2D 

In the deployment of a real 3D HL device, it must be taken into account that each element rotation occurs with 

respect to a swept rotation axis, which can be assumed parallel to: 

 the fixed leading edge for the slat, and;  

 the shroud trailing edge for the flap.  

The pure 2D rotation of a given HL device into the stream wise plane would lead to an imprecise geometry 

description, whose extent will depend on the magnitude of the wing sweep angle. Instead, any device rotation 

should be first performed in a coordinate system normal to the relevant aforementioned swept rotation axis, and 

then the corresponding geometry should be re-projected onto the stream wise plane. To this aim, the following 

transformations have been derived): 
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
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
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cossincos

sin
cos

cos

000

0
00

 (10) 

In equation (10),  is sweep angle of the rotation axis and   is the deflection angle assigned to the slat/flap 

element. Moreover, (X(), Y()) are the coordinates of a point in the stream wise (2.5D) plane consequent to a 

rotation , (X, Y) are the coordinates of a point in the stream wise plane prior to the rotation, (X0, Y0) represent the 
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rotation point in the stream wise plane. Finally, (X, Y) represent an assigned translation in the stream wise 

plane.  

Suitable values of , , (X0, Y0) and (X, Y) have to be pre-selected in order to define the deflected initial TO 

and LDG 2.5D geometries. By starting with the stream wise cut of the retracted (clean) configurations, such values 

were initially calibrated in order to obtain deployed geometries matching the deployed stream wise cuts extracted 

from the relevant 3D TO and LDG CAD models, respectively. An example of calibration for the TO case is 

presented in Figure 6, wherein by starting with the 2.5D cut of the clean configuration, the elements have been 

deployed according to Eq. (10) and the resulting geometry is compared with the stream wise cut of the 3D HL 

wing. In the proposed optimization problem,  and (X, Y) represent the setting variables to be optimized for 

both slat and flap at TO and LDG conditions. 

 

Figure 6: Deployed TO configuration. Stream wise cut from 3D CAD model (line) vs. deployed 2D 

configuration (symbols) according to Eq. (10). 

 

 

F. Geometry and flow variables normalization, calibration of 2D flow simulation 

After the deployment strategy defined by Eq. (10), the aerodynamic performance are evaluated by means of 

either a 2.5D flow computation or a pure 2D flow simulation, though in the last case a 2D-normalized airfoil 

geometry needs to be considered. The 2D-normalized airfoil, whose coordinates are indicated with (x2D-norm, y2D-

norm) is derived by projecting the streamwise (so called 2.5D) wing section onto a plane orthogonal to the reference 

sweep chosen norm  (e.g., clean wing leading edge sweep, fixed leading edge sweep, etc..): 

 norm

normDnormD

Y
yXx

cos
     ; 22  

 (11) 

Moreover, when performing flow calculations in the 2D-normalized reference system, the inflow conditions, 

Mach and Reynolds numbers, respectively, are specified according to the following relations: 

 normDnormDnormDnormD MM  2

3232 cosReRe   ;   cos    (12) 
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Accordingly, the forces in the 2D-normalized plane (pressure, lift and drag coefficients) are related to the 

stream wise plane ones (2.5D) by means of: 

 norm
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 (13) 

During an initial code calibration phase, the 2D-normalized pressure coefficient obtained by CFD were 

compared to the available 3D sectional experimental data, in order to find suitable values for both the sweep angle 

norm and the angle of attack α2D-norm. Specifically, for each 3D design point flow conditions (cf., Eq.(1)), a relevant 

angle of attack α2D-norm was determined. These values are those to be used within a 2D-normalized computation, 

in order to have a reasonable similarity between the simulated 2D flow and the real 3D flow behavior occurring 

when the same wing section is working within a full 3D Wing-Body flow. As an example, Figure 7 shows a 

comparison between the experimental sectional pressure distribution measured on the 3D wing and the pressure 

distribution obtained from a CFD computation after calibration. In this case the sweep angle norm has been 

calibrated in such a way to match the experimental stagnation pressure coefficient value at the flap leading edge, 

whereas the value of α2D-norm in computations was calibrated in such a way to get a best-fit of the experimental 

sectional pressure distribution at slat and main wing leading-edges. 

 

Figure 7: Comparison of sectional pressure distribution between 3D experiment and 2D-normalized CFD 

results from CIRA’s flow solver ZEN. 

 

Thanks to such a procedure, there is a well-defined relation between each 3D incidence α3D of the Wing-Body 

polar and the corresponding angle of attack α2D-norm to be used within a 2D-normalized computation. Similarly is 

for partners working with 2.5D flow simulations. 

As it will be highlighted in the following, no experimental aerodynamic force data was available for the bi-

dimensional wing section considered herein, since only 3D force data have been collected in the experimental 

campaign. Therefore, despite the achieved flow similarity in terms of pressure coefficient distribution, no 
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calibration was possible between the computed 2D force coefficients and the experimental sectional force 

coefficients. 

G. Prediction of 3D wing performance based on 2D-normalized CFD results  

An approximate method was used to predict the overall 3D wing behavior based on 2D results, which was 

already successfully employed in ref. [22]. It is based on the following approximation hypothesis: 

 The overall shape of the span wise lift and drag distribution of the 3D wing is not changed by local 

modifications of the slat/flap in the selected wing section. In other words it is assumed that any 

modification in the selected wing section is proportionally propagated throughout the whole wingspan. 

 The span wise lift and drag distribution of the 3D wing can be scaled based on the lift and drag changes 

of the selected 2.5D wing section. 

Such assumptions are reasonable for the wing type considered herein, since it incorporates full-span slat and 

flap devices. The correlation between the stream wise airfoil (2.5D) and 3D wing performance were found by 

comparisons of calculated 2D section data and experimental measurements available for the 3D HL model 

considered herein. The following relations apply: 

 
  ~

     ;     
5.25.235.23

2  
DDDDLDD

ldCDClL ccccc
 (14) 

where 
LC  and 

DC are two correlating scaling factors,  is the wing aspect ratio and 
2/

~
LD CC   is a 

modified aspect ratio. As an example, Figure 8 shows how the 2D-normalized lift and drag coefficients correlates 

with the 3D experimental data through usage of Eq. (14). The calibrated numerical procedure described is able to 

properly capture not only the salient 3D flow features occurring on the analyzed wing section, but it is also able 

to reasonably predict the overall 3D wing performance by means of a low-cost 2D simulation. However, due to 

the intrinsic three-dimensional nature of the wing stall phenomenon, the above procedure is unsuitable in 

predicting the aerodynamic performance close, at and beyond stall conditions. This happens also because the wing 

section considered herein is not representative of the stall onset on the real 3D wing. 
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Figure 8: Comparison between computed 2D-normalized forces (), forces computed through 3D 

correlation () of Eq.(14) and experimental data (solid line). 

 

IV. SUMMARY OF THE EMPLOYED OPTIMIZATION TOOLS 

Within DeSiReH, a group of partners was appointed to solve the optimization problem illustrated in the above 

sections, using both 2D and 3D approaches, and by employing optimization and CFD capabilities currently 

available and routinely used at the time the project was launched. The consortium of partners was composed of:  

 Industrial partners: Airbus-Germany (AI-D), Airbus-Military (AI-M), Piaggio Aero Industries (PAI); 

 Research centers: Italian Aerospace Research Centre (CIRA), German Aerospace Research Centre 

(DLR), French Aerospace Research Centre (ONERA), and ; 

 Universities: University of Padua (UNIPD).  

Within the following subsections some information will be provided about the tools and strategies employed 

by partners to carry out the optimization, nevertheless without going into details about numerical settings used 

either in the CFD computations or in the setup of the optimization algorithms employed. As a matter of fact, all 

the participating partners have a large experience with both the optimization and CFD tools employed, therefore 

it is assumed that all the numerical setup chosen were calibrated to achieve the best accuracy, reliability and 

efficiency of the optimization chain. Nevertheless, some more details on individual setup can be found in 

[25][26][27][28][29]. 

H. Employed CFD tools and their calibration 

Table 1 summarizes the calibrated partners’ CFD tools and some salient feature of the relevant numerical 

settings used. As shown, different meshing and CFD approaches (i.e., multiblock structured, hybrid and Chimera) 

were used, as well as both commercial and in-house developed software. As suggested in [22], a CFD tools 

calibration phase was firstly performed to avoid a large spreading of partners’ results at the end of their 
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optimization work. Before performing any optimization work, each partner has assessed its CFD setup (e.g., solver 

settings, meshing strategy/density, turbulence model, 2D angle of attack wherever applicable, etc.) by comparison 

with the available experimental data.  

Table 1: Calibrated partners’ CFD tools successively employed for optimization. 

Dimension Partner Solver Grid Generator Grid Type Grid size Turb. model 

2D AI-D TAU In-house CENTAUR 2D Hybrid 135 kNodes k- MSST 

2D UNIPD ANSYS Fluent ANSYS Gambit 2D Structured 220 kCells k-  SST 

2D CIRA ZEN ANSYS ICEMCFD/Hexa 2D Structured 100 kCells k-  TNT 

2D DLR FLOWer In-house MEGACADS 2D Structured 90 kCells SA (Edwards) 

2.5D ONERA elsA In-house MESH 3D 2.5D Chimera 88.5 kCells SA 

2.5D AI-M ANSYS CFX ANSYS ICEMCFD/Hexa 2D Structured 100 kCells k-   MSST 

3D AI-M ANSYS CFX ANSYS ICEMCFD/Hexa 3D Structured 2.5 MCells k-   MSST 

3D PAI Metacomp CFD++ ANSYS ICEMCFD/Hexa 
3D Unstruct. 

(hexa) 
2.8 MCells k-  SST 

Several 2D meshing approaches used by partners are shown in Figure 9, together with a comparison of pressure 

distributions after tools calibration, for the TO-DP1 flow condition of the optimization problem described in §B. 

It is worth noting that in Figure 9 (left) also the partners’ calibrated incidence is indicated. As discussed in §F 

above, due to the missing sectional forces measurements in the 3D experiment, the 2D tools calibration was 

performed by considering only a best fitting of the experimental sectional pressure distribution available. 

However, as shown in the figure, the agreement of all partners’ results versus the experiment is very satisfactory 

and the scatter of partners’ pressure distributions is very small. The same calibration was performed for all other 

design points defined in §B.  

 

Figure 9: Example of 2D CFD tools calibration vs. experimental data (left) and 2-dimensional mesh 

generation approaches by partners (right). 
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The 3D multiblock structured meshing approach by both PAI and AI-M is shown in Figure 10, together with a 

comparison of sectional pressure distributions at several wingspan locations, obtained at TO-DP1 flow conditions. 

For the 3D calibration activities also aerodynamic forces (CL and CD) were used to assess both partners’ numerical 

setup and this, as it will be shown in the following, it will result in a reduced scatter of optimization results. 

   

Figure 10: Example of 3D CFD tools calibration vs. experimental data (left) and some details of the 3D 

structured multiblock mesh generation approach by PAI/AI-M (right). 

I. Shape parameterization, optimization strategies and employed algorithms 

Table 2 presents an overview of the adopted shape parameterizations and software, optimization approaches, 

number of design variables (DVs) used, optimization algorithms and software. It is worth noting that 6 DVs are 

needed in 2D to completely define the slat (3 DV) and flap (3 DV) positioning at each flight conditions (i.e., 6 

DV for TO and 6 DV for LDG). 

Table 2: Summary of employed flow model, shape parameterization approach and SW used, optimization 

approaches, optimization algorithm and SW used. Number of DVs employed are in ( ) parentheses.  

Partner 
Flow 

model 

Shape  

parameterization 
Shape SW Optimization approach Opt. Algorithm 

Optimization 

SW 

AI-D 2D No shape optimization - Sequential: TO(6)  LDG(6) Best engineering practice None 

ONERA 2.5D Bézier curves (14) 
Fortran 
program 

Sequential: LDG(20)  TO(6) CMAES DAKOTA toolkit 

AI-M 2D 
Overposition of modes 

(3) 

Matlab + 

ICEMCFD 
Sequential: LDG(9) TO(6) 

LDG: Simplex+GA  

TO: GA 
In house SW 

DLR 2D 
Free-Form 

Deformation (5) 

In-house 

MEGACAD 
Cumulated Obj: TO+LDG (17) Rowan’s Subplex In house Pyranha 

UNIPD 2D Bézier curves (10) 
Matlab 

script 
Bi-Objective: TO & LDG (22) 

GA + Gradient on 

Surrogate  
In house GDMA 

CIRA 2D 
Overposition of modes 

(16) 

In-house 

wg2Aero 
Bi-Objective: TO & LDG (28) Genetic algorithm In-house GA 
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AI-M 3D No shape optimization 
Matlab + 

ICEMCFD 
Single Obj: TO(6) Genetic algorithm In house SW 

PAI 3D 
Conic curves + c. 

splines (4) 
CATIA v5 Single Obj: TO(11) Genetic algorithm CIRA’s GA 

 

In the 3D case the number of DVs needed to describe a slat or flap positioning depends on the parametrization 

approach chosen. As shown, different shape parameterization approaches were adopted, leading to a different 

overall number of DVs employed in the optimization. It is worth remarking that most of the partners employed a 

considerable amount of parallel resources to carry out the optimization work. 

1. 2D approaches 

Regarding the 2D activities, the most simplified case is represented by the AI-D approach, wherein shape 

optimization was not considered at all and the only DV are those relevant to HL devices positioning. Moreover, 

as reported in [28][29], both ONERA and UNIPD employed a shape parameterization based on Bézier curves, 

though using a different number of DV. Similarly, both AI-M and CIRA employed a strategy based on over-

position of modes for shape modification purposes. In particular, as reported in [25], CIRA used both Hicks-

Henne and Rear Loading shape modification functions, while AI-M considered only Hicks-Henne functions 

leading to a reduced number of shape design variables. Finally, DLR employed 5 shape parameters for flap and 

slat shape description, by adopting the so called Free Form Deformation approach. For a summary of the 

aforementioned parameterization techniques, see [30].  

One of the objectives of this work was to evaluate different optimization strategies for the design of HL 

systems. It is worth noting that the partners used their currently available optimization tools routinely used. A 

group of partners (AI-D, AI-M and ONERA) considered a decoupling of the objectives and split the original 

problem into two sequential, single-objective sub-problems (e.g., LDG first and TO afterwards), characterized by 

a reduced design space, whereas the other partners considered the bi-objective problem as a whole (CIRA and 

UNIPD) or using a cumulative function (DLR) (See Table 2). 

 AI-D considered its routinely used hand-made optimization strategy, based on a successively refined 

parametric study of the elements’ settings, where no shape optimization is included. As mentioned in §D, in 

this case the two objectives are not linked and two independent optimizations could be run for improving the 

TO objective first and LDG afterwards. 

 AI-M modified the LDG objective (drag minimization) into lift maximization at LDG-DP1, since lift 

improvement is a more interesting target in military applications. AI-M reduced the original problem into 
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several small sized sequential sub-problems, wherein each adverse flow mechanism is controlled by a reduced 

number of parameters. The starting assumptions of AI-M optimization process are:  

o In order to achieve maximum lift at DP1, the flap deflection has to be maximized while maintaining 

either attached or only slightly separated flow on flap upper surface. Therefore, the flap deflection is not 

treated as an independent DV but is gradually increased up to a maximum allowed by onset of massive 

separation which prevents further lift increase;  

o At low incidences (DP1), the limiting phenomena for increasing flap deflection is flap trailing edge 

separation. This separation can be controlled mainly by optimization of flap position;  

o At high incidences (DP2), and at relatively low Mach number, the off-surface separation in the slat/wing 

wake is the critical phenomenon that limits the achievable lift. This separation is related to the 

development and interaction of the boundary layer on main element and slat wake. The most efficient 

way to reduce the off-surface separation with fixed flap deflection is a slat position optimization;  

o It is also assumed that slat position has only minor effect on lift generated at low incidences (DP1) and 

flap position has a low importance at high incidences (DP2). Due to this assumption flap and slat were 

optimized separately. 

According to such assumptions AI-M optimization process worked as follows. For a given flap deflection, the 

flap position is firstly optimized (2 DV) to either suppress any flap separation or to maximize the lift at DP1. 

The second step is to check the lift constraint at DP2, and if needed the optimization of slat position (in difficult 

cases also deflection can be included) is considered (2-3 DV) to suppress any off-surface separation. In case 

that either the lift increase (i.e., flap separation suppression) at DP1 or the lift constraint satisfaction (i.e., off-

surface separation suppression) at DP2 is not successful, the process is restarted with a lower flap deflection. 

Otherwise a further flap deflection is considered and the process is repeated. Such an approach involves the 

usage of a very small number of DV in each sub-optimization loop (i.e., 23 DVs), and it is therefore easy to 

get a rapid convergence of the optimization algorithm employed (within 15 iterations in each sub-loop). The 

LDG settings optimization just described was performed by employing the Nelder-Mead (also known as 

Downhill Simplex or Amoeba method [31]) and afterwards only shape optimization (3 DV) was considered 

at LDG by using a Genetic Algorithm (GA). The new shape obtained was then frozen and a pure settings 

optimization was considered for TO, by using a GA. The GA is a real coded one and it implements typical 

operators like selection, elitism, crossover and mutation. Finally, worth to note that specific flow sensors were 
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introduced for a fast and easy detection of the adverse flow phenomena mentioned above (i.e., flap separation, 

off-surface separation). 

 ONERA considered two alternative sequential optimization strategies. The first one is a by element 

optimization, wherein first slat (settings and shape) optimization was performed at TO and LDG conditions 

with a frozen flap position (e.g., baseline). Next, the slat shape and position were frozen and a similar 

optimization at TO and LDG conditions was considered for the flap device. Such an approach demonstrated 

to be unsuccessful for the current (basically drag reduction) optimization problem, though it is known to be 

an effective strategy in lift maximization problems. Subsequently, an alternative by configuration sequential 

approach has been considered by ONERA, whose results are presented herein and detailed in [29]. In this 

case, first the slat and flap (settings and shape) were optimized at LDG, then the shape was frozen and both 

slat and flap settings were optimized at TO. In this last approach it was assumed that the shape DVs affect 

mainly the LDG performance. Such a sensitivity information was attained by post-processing the by element 

optimization results, which demonstrated anyhow to be useful in acquiring a pre-knowledge of the problem. 

The by configuration optimization has been carried out by using a so-called constrained Covariance Matrix 

Adaptation Evolution Strategy (CMAES), as detailed in [29]. 

 Furthermore, DLR considered a single-objective, multi-point optimization problem for a cumulative objective 

function (i.e., weighted sum of TO and LDG objectives), since a real independent multi-objective 

optimization was not possible at that time. In this case the size of the design space is not reduced, but the 

optimization problem is re-formulated as a single-objective problem (which will converge toward a specific 

point of the bi-objective Pareto front). The recently developed optimization suite Pyranha [34] was used by 

DLR, which offers a state-of-the-art python-based optimization environment including commonly used 

optimization strategies. For the specific problem at hand, the SUBPLEX method of Rowan [33] was selected, 

since it gives a good compromise between robustness, efficiency and performance. Four different 

optimization runs were carried out at DLR by considering: original bi-objective function, TO only, LDG only 

and CL,max optimizations, respectively. It is worth noting that a coarser mesh size was used by DLR with 

respect to the one used for calibration (i.e., approximately 22.5 kCells instead of 90 kCells), to carry out the 

optimization work. 

A third group, composed by UNIPD and CIRA, implemented the original bi-objective/multi-point 

optimization problem and solved it the way it was formulated by considering 22 and 28 DVs, respectively.  
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 CIRA used an in-house developed multi-objective genetic algorithm implementing the elitism mechanism to 

carry out the optimization work [25][27][32]. For the specific bi-objective optimization case at hand, an 

additional criterion based on a weighted average of objectives was introduced to define the best element and 

for implementation of the elitism mechanism. A preliminary optimization was carried out using a medium 

grid size (22.5 Kcells) and by identifying proper weights for the quadratic penalty functions adopted to 

account for constraints violations [25]. Next, the Pareto front of the medium grid optimization was used to 

partially fill the initial population of the fine grid optimization, in order to speed up the convergence of the 

GA.  

 UNIPD used a state-of-the-art in-house multi-objective evolutionary algorithm for handling the optimization 

problem. Moreover, a surrogate model of the real fitness function coupled with a gradient-based algorithm 

was used during the evolution process to speed up the convergence rate and get improved solutions while 

reducing computational time. Specifically, the optimization algorithm used belongs to the family of the 

Surrogate-Assisted Memetic Algorithms (SAMA), whose main advantage over concurrent strategies lies in 

creating a synergy between global and local search: in particular, a GA is used for global search, while the 

local search is carried out using a gradient-based algorithm on a surrogate model of the objective function. 

The surrogate model was built using a feed-forward Artificial Neural Network trained by means of a Back-

Propagation algorithm. The transformation from a general multi-objective problem to a constrained single-

objective one was necessary for the implementation of the gradient-based algorithm for local search inside 

the SAMA framework. 

2. 3D approaches 

As already specified in §D, the partners working with 3D approaches were requested to consider only the flap 

optimization for the TO conditions. Concerning the parameterization strategies used, AI-M worked with a pure 

setting optimization and no shape parameterization was considered, although also the 3D slat optimization was 

included in the process. On the other hand, PAI considered a simple flap shape parameterization based on conical 

curves and cubic splines (Figure 11). The advantage of such approach, extensively illustrated in [26], is the 

reduced number of DVs (only 4) employed to get a satisfactory description of the full 3D flap shape such as that 

considered herein.  Moreover, Table 2 shows that both partners employed a Genetic Algorithm though using 

different strategies. In particular, AI-M considered a slat/flap setting only optimization, wherein the positioning 

of each element was specified using three independent variables: horizontal and vertical displacement and element 

deflection. The displacement variables were defined as relative to local chord. Constant relative displacement 
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requires different absolute movement at element root and element tip. Due to this fact, the element displacement 

has to be realized as a sequence of linear motion in stream wise (say x) and vertical (say z) direction, and rotation 

about both axis (element roll and yaw).  

PAI used a CAD-in-the-loop optimization approach [26], by modifying only flap shape and settings and 

involving globally 11 DVs. A fully parametric 3D CAD model for the reference take-off configuration was 

developed using Dassault Systemes© CATIA v5 R19 SP2. During the optimization process, CATIA v5 was run in 

batch mode, provided with a dedicated routine (VB script macro) to read design variables values from an input 

text file, update the CAD model, and export the updated geometry for subsequent use by the grid generator. The 

wing flap was designed in the retracted position, and then extended for take-off. Its shape was developed based 

on five different design sections: wing root, kink, tip, and two intermediate sections for the outboard wing. 

Independent flap segments were designed for the inboard and outboard parts of the wing, sharing the same design 

section at the wing kink. 

  

Figure 11: Flap shape parameterization (left) and 3D design sections (right) used by PAI. 

During the conceptual definition phase of flap shape parameterization, the priority was set on the reduction of 

global design variables number. This is the reason why three different curves, with simple mathematics but no 

curvature continuity at their interfaces, were used for flap section design, instead of a single Bezier or B-Spline 

curve (Figure 11). A circular arc, tangent to the clean wing airfoil lower-side and to the flap chord limit bound, is 

first defined. Then a conical curve segment is used to connect the circular arc to a specified location on the flap 

thickness limit bound, preserving tangency continuity at both extremities. At the end, a cubic spline curve is drawn 

from the rearmost conic extremity, through the lower-side shroud lip corner, down to the upper-side trailing edge 

point of the local clean wing airfoil. Therefore, the flap shape at each design section is fully defined by the values 

of 4 independent parameters: 1- circular arc radius; 2 - conical curve parameter; 3 - conical curve extent; 4 - shroud 

lip extent (directly related to the flap thickness). Parameter values for flap chord, shroud thickness and length, 

were not modified during the optimization.  
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For the inboard flap segment, the extended position is achieved with a 2D movement, which means that the 

trajectories of any flap body point, during its rigid motion, are planar and parallel to the same reference plane 

(Figure 12). The normal direction of this plane is defined by two angular parameters, which are free to be modified 

by the optimizer. Once the reference plane is identified, another three variables are necessary for the inboard flap 

setting to be fully defined: two scalar components of the planar translation and the rotation angle around the 

normal direction. Four different orthogonal left-handed reference frames are introduced to control the inboard flap 

deployment: 

RF1. coordinates system with origin at the leading edge of flap root section, y-axis on the line connecting 

the leading edges of flap root and kink sections (in the retracted position) and x-axis parallel to wing 

planform reference plane; 

RF2. obtained with an Euler Z-X-Z  rotation of the first reference frame around its origin, using only the 

first two Euler angles (the XZ plane of this system defines the reference plane of the 2D flap 

movement); 

RF3. obtained by translating the second frame along its x and z axes (flap in-plane translation);  

RF4. obtained by rotating the third reference frame about its y axis (flap deflection). 

The extended inboard flap position is therefore obtained using a coordinate transformation of the retracted flap 

geometry from axes #2 to axes #4. The outboard flap segment is instead extended with a fully 3D movement. 

Only five of the six independent parameters are nevertheless necessary to define take-off settings, as the other one 

would produce span wise translations of the outboard flap. Four reference frames are defined, in a similar way as 

for the inboard flap, with initial origin at the leading edge of flap tip section. The extended position is in this case 

obtained using a coordinate transformation of the retracted flap geometry from axes #1 to axes #4, thus accounting 

also for the two Euler rotations between reference frames 1 and 2, which produce "yaw" and "roll" rotations of 

the outboard flap, thus modifying the flap gap and overlap along the wingspan. 

The abovementioned setting parameters represent a convenient choice to control flap extended position. 

Traditional setting specification in terms of gap, overlap and deflection can be easily obtained as an output once 

the flap elements are positioned based on these reference input parameters. The industrial tools employed by PAI 

and illustrated in Table 1 have been coupled to CIRA in-house developed optimization toolbox (GA), based on 

Genetic Algorithms. 
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Figure 12: Outboard flap setting parameterization used by PAI. 

V. OPTIMIZATION RESULTS 

J. 2D Results 

Table 3 shows the overall number of CFD evaluations performed by each partner (including both DP1 and 

DP2, wherever applicable) to achieve the complete optimization work, and in the last two columns also the number 

of evaluations spent for the TO and LDG objective improvements. The total number of DVs considered is also 

recalled and, for those partners employing sequential strategies, the typical number of DVs employed in sub-

optimizations is reported in parentheses. As it can be observed, the largest number of evaluations is associated to 

partners working with a larger number of DVs, as expected. Figure 13 presents the same information in terms of 

tendency curves. As shown, if the typical number of DVs is considered, the logarithmic tendency line provides a 

good approximation of the data and indicates that the number of DVs employed is the main responsible parameter 

for the overall number of evaluation needed for optimization. This is mainly demonstrated by comparing DLR, 

ONERA and UNIPD results, wherein, in spite (cf. Table 2) of the different nature of optimization algorithms used 

(i.e. subplex, evolutionary, evolutionary + gradient on surrogate) the number of evaluations is comparable and 

increasing (logarithmically) with the number of DVs employed. Also, comparisons of ONERA, UNIPD and CIRA 

number of evaluations gives a sensitivity of the computational effort increase with the number of DVs adopted in 

the problem parameterization for comparable evolutionary optimization algorithms. 

Table 3: 2D optimizations - Number of CFD evaluations performed by each partner, cumulative number 

of design variables considered, typical number of DVs employed in sub-optimizations (in parentheses), 

number of evaluations spent for TO and LDG objective improvements, respectively. 

Partner 
Nr of  

CFD Evaluations 
Nr of DV TO evaluations LDG evaluations 

AI-M 521 15 (3)  210 101* 

AI-D 978 12 (6) 528 450 

DLR 1784 17  467 467 

ONERA 3058 26 (20) 532 1262 

UNIPD 3432 22 1716 1716 

CIRA 7488 28 3744 3744 
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Figure 13: Tendency curves - Number of total/typical DVs employed vs. number of CFD evaluations. 

 

Comparison of optimized geometries 

The retracted shapes of the optimized configurations obtained by the different partners are presented in Figure 

14, showing that no clear "common design" trend stands out. It can be observed that all the designed shapes respect 

the geometrical constraints, and some partners’ optimal solution show a little increase in the main element chord 

(ONERA and UNIPD). The deployed geometries of the optimized configurations found are presented in Figure 

15 and in Figure 16 for LDG and TO conditions, respectively. Similarly to the retracted shapes, there is no clear 

common design that stands out about the elements’ settings, excepted for the slat deflection and the flap gap at 

LDG. In fact, especially for the optimized LDG flap positions, it is shown that partners’ solutions appear to fall 

into sub-groups of similar gap settings: a first group (AI-M, UNIPD, AI-D, CIRA) having a small flap gap, 

whereas a second group (DLR, ONERA) exhibits a larger and approximately the same gap as the baseline flap 

setting. 

  

Figure 14: Partners’ optimized shapes compared to the baseline configuration – Retracted airfoils with 

manufacturing bounding box constraints (dashed line). 
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Figure 15: Optimized LDG configurations. 

 

Cross-comparison of 2D results 

A cross-comparison of the optimized geometries produced was carried out by a restricted group of "evaluators", 

selected among the contributors: AI-D, ONERA, and UNIPD. Each evaluator used its own previously calibrated 

CFD method to predict the aerodynamic performance of the different optimized geometries (cf. §H). It is worth 

remarking that since the optimization problem statement defines design points in terms of a fixed 3D incidence, 

the CP calibration procedure (cf. §H) led to different values of 2D for each partner. 

   

Figure 16: Optimized TO configurations. 

 

Additionally, as it was previously observed (cf. §D), both objective functions considered are directly (for LDG) 

or indirectly (for TO) dependent on the drag coefficient. Accordingly, depending on the calibrated 2D, each 

evaluator could estimate a lower/higher value of CL for a given configuration, which would have produced an 

artificial improvement/deterioration of the objective functions (and eventually also lift constraint violations). In 

order to overcome this problem and have a more rational comparison, the performance of the optimized 

configurations were performed by each evaluator at a constant lift level (i.e. at its own value of the baseline lift 

coefficient obtained in the calibration phase). Figure 17 presents the cross-checked results obtained by the 

evaluators at 𝐶𝐿)
𝑜𝑝𝑡

= 𝐶𝐿)
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  at both TO-DP1 (left) and LDG-DP1 (center). In this figure, on the x-axis is 

reported the optimized geometry delivered by each partner, whereas on the y-axis is reported the assessment 
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performed by the three evaluators expressed in terms of relative improvement of objective function. Moreover, 

Figure 17 (right) shows, for each geometry assessed, the arithmetic average of the evaluators' judgment at TO and 

LDG. In the following , the AI-D improvements/efforts (obtained via standard industrial procedures based on “by 

hand” parametric studies and high human interaction) will be considered as a reference to assess the capabilities 

of automatic optimization tools. 

 

Figure 17: Crosscheck of results at 𝑪𝑳 = 𝒄𝒐𝒔𝒕. for DP1 at TO (left) and LDG (center). Averaged 

evaluators’ results at TO and LDG (right) for each geometry. 

With reference to Figure 17 (center), we can firstly observe that all the evaluators found a degradation of the 

performance for the DLR configuration at LDG condition. This can be explained by the use of a too coarse grid 

during the optimization process (22.5 kcells), which led to inconsistent results when the CFD evaluation is 

repeated using a finer mesh (90 kcells). However, from DLR-TO results, it appears that such a mesh density, 

thought inadequate for LDG optimization, did not exhibit the same inconvenient at TO. Moreover, CIRA and 

UNIPD obtained similar performance improvements using comparable approaches, but not a remarkable better 

performance over the AI-D approach, especially at LDG. On the other hand ONERA, working with a reduced 

design space (thanks to the problem decoupling), could more widely explore the design space in each of the single-

objective optimizations performed, probably explaining the larger improvements achieved for both objectives 

considered. It is worth noting that direct comparison of AI-D vs. ONERA results at LDG show the potentials of 

automatic optimization capabilities when a suitable strategy is considered. On average, the ONERA optimized 

solution led to an improvement of about 4% for LDG conditions and 2.15% for TO conditions, approximately the 

double of what achieved with the “by hand” parametric approach by AI-D. 

Finally, Figure 18 presents the cross-checked performance of the AI-M (CL-optimized) geometry, confirming 

the achieved lift performance improvement obtained at fixed incidence. It is worth remarking that the poor 

performance of AI-M configuration at TO (Figure 17) could be justified by the few evolutions of the GA algorithm 

considered in the TO optimization phase (210 evaluations, cf. Table 3). 

Figure 19 compares ONERA optimum solution with the initial (baseline) configuration. Geometries are 

compared on the left-hand side of the figure, whereas on the right side are compared the 3D (extrapolated 
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according to §G) aerodynamic performance of the two configurations, estimated through the calibrated ONERA 

CFD chain. 

 

Figure 18: Cross-check of AI-M lift-based optimized geometry at LDG. 

Figure 19 (top-right) shows that at LDG conditions the lift constraints are satisfied at both design points and 

a drag coefficient reduction is achieved at DP1 (and kept over the whole CL range). Similarly, Figure 19 (bottom-

right) also shows that the lift constraints at both design points are satisfied and the TO objective function is reduced 

in a large range of incidences till 𝛼𝐷𝑃2. Additionally, it can be observed that the additional off-design post-checks 

on lift are satisfied together with (although not reported herein) the constraints on pitching moments and minimum 

drag at LDG. Concerning the geometry changes, this drag minimization problem leads to a decrease of the flap 

deflection for both LDG and TO configurations.  

 

 

 Figure 19: Comparison of ONERA optimal vs. baseline geometries (left) and their LDG (right-top) and 

TO (right-bottom) performance (3D-extrapolated values). 

For the LDG problem, the changes in slat and flap elements are nearly equivalent to a single rotation (around 

the slat trailing-edge or the flap leading-edge). For TO problem, the slat deployment leads to a decrease in overlap, 

with gap and deflection around their initial values. For the flap, the optimization leads to significant modification 

of settings compared to the initial values (increase of gap and decrease of overlap and deflection). 
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Due to the heterogeneous set of approaches employed and to the specific problem considered, exhibiting quite 

a flat objective functions, it is not possible to draw definitive conclusions on the best optimization strategy and 

algorithm to employ in HL optimization. Nevertheless, the experience gained was useful to provide the following 

general guidelines for HL design and suggested areas for future investigations: 

 For the same decoupled approach, the automatic ONERA optimization provided double improvements 

compared to the AI-D approach based on current industrial standards. This indicates that the introduction in 

the aerospace industry of automatic optimization for HL design purposes has a big potential, as it would allow 

for interesting margins of performance improvements. Nevertheless, other partners’ results have shown that 

automatic optimization does not always produce clear improvements over the industrial approach. This 

happens especially when the design space is not adequately explored (either because the design space is too 

wide or because the optimization is stopped prematurely). 

 The observation of CIRA/UNIPD/ONERA-LDG optimization data indicates that the usage of a high number 

of DVs requires a large number of evolutions to achieve significant improvements in evolutionary approaches 

(convergence). In this context, a comparison of CIRA vs. UNIPD performance indicates that usage of surrogate 

models can help convergence enhancement, although another viable method might be to use more simplified 

shape parameterizations (e.g., the 3D PAI approach described in §H) to reduce the design space extent. Finally, 

ONERA-LDG optimization results (using a comparable number of DVs as CIRA/UNIPD) indicate a potential 

superiority of the employed Covariance Matrix Adaptation Evolution Strategy algorithm over the more 

classical evolutionary approaches employed by CIRA and UNIPD. Altogether, this indicates the potential 

interest of using adjoint methods, but these methods are not mature yet for high-lift applications [1]. 

 AI-M (LDG) physics-driven optimization, being based on a very small number of DVs proven to be very 

powerful and cost-effective (only 101 evaluations required). As expected, the introduction of engineering 

knowledge allows efficient formulation/solution of the problem and it is always suggested whenever possible. 

 The DLR experience indicates that strategies based on approximate fitness function evaluation (e.g., a coarse 

grid) are to be carefully employed in HL numerical optimization and that preliminary assessments are needed 

to setup a reliable strategy. In other words, the quality of flow solution used by optimizer is of higher 

importance compared to computing costs. 

 The usage of decoupling/sequential strategies (allowing a reduced design spaces) is highly recommended. 

However, not all the sequential strategies are effective. As mentioned above, the “by element” decoupling 
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considered by ONERA resulted to be unreliable for the current drag-based problem, whereas the “by 

configuration” sequence shown herein demonstrated to be very useful. This indicates that applicability of 

sequential strategies must be assessed a-priori by preliminary analyses or pre-knowledge of the problem. 

K. 3D Results 

Both PAI and AI-M used a 3D multiblock structured mesh, initially generated by PAI and employed in the 

calibration phase illustrated in §H, by implementing their own mesh parameterizations. Moreover, it is remarked 

that PAI focused on the flap shape/setting optimization, whereas AI-M focused on the flap and slat setting only 

optimization. 

PAI considered CIRA’s in house developed GA software [32], coupled to the routinely used industrial CAE 

tools, as described in §IV and more detailed in [26]. A population of 12 individuals was evolved for 82 generations 

during the single-objective (TO) optimization, using a random initialization around the baseline, 100% standard 

binary crossover, a-posteriori elitism and 3% mutation probabilities. Lift and pitching moment constraints were 

included into the design by means of quadratic penalties. Appropriate values for the quadratic penalty weights 

have been derived in [25], based on a sensitivity analysis of the objective function with respect to lift and drag 

coefficients at DP1. The evolution over 82 generations (~2000 CFD simulations) is shown Figure 20. The best 

individual over the whole history shows a total improvement of about 0.43% in the objective function, and most 

of the reduction (about 0.35%) is achieved after the first 25 generations. Though not shown here in details, the 

PAI-CIRA optimum configuration slightly failed to satisfy the DP1 lift constraint and therefore the objective 

improvement includes a small amount of penalty. The PAI-CIRA optimization process considered geometry and 

mesh updates on a domestic performance machine using a single CPU and a total of 4GB RAM, whereas the CFD 

simulations were run in parallel on 72 processors of a computing cluster with 3GHz (1333 MHz FSB) peak 

performance cores. The average elapsed time per individual evaluation was about 50 minutes (20 minutes per 

CFD run, 4 minutes each for CAD update and mesh generation, 1 minute for data transferring), the time per 

generation was about 10 hours and the overall elapsed time for optimization was about 35 days. 

AI-M employed a conventional, real coded genetic algorithm developed in house and assumed a population 

size of 50 individuals, the Latin Hypercube technique for initialization, 98% crossover (49% uniform and 49% 

arithmetic), 2% a-priori elitism and 5% mutation. The optimization process was run for only 7 generations (700 

CFD simulations) due to limitations with the available computational resources. The performance improvement 

obtained by AI-M is approximately 0.12% with respect to the initial configuration. The total elapsed time for one 



 33 

CFD run was about 1.5 hour and a total of 1050 hours (44 days) have been spent for the optimization task on a 24 

core cluster of similar performance as the PAI one.  

 

Figure 20: Convergence history of PAI-CIRA 3D optimization. 

According to the different optimizations considered by both partners (i.e. PAI flap only vs. AI-M flap and 

slat), a cross-comparison is performed only in terms of the achieved target performance improvements. With this 

aim, in order to have a fair comparison and to make the assessment clear of small constraints violations (due to 

different CFD setup and treatment of constraints, as highlighted in §J), PAI recomputed both optimal geometries 

at 𝐶𝐿)𝑇𝑂−𝐷𝑃1
𝑜𝑝𝑡

= 𝐶𝐿)𝑇𝑂−𝐷𝑃1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , similar to the approach followed in §J. Moreover, the cross-check was carried out on 

a finer mesh (6.8 Mcells), solving the turbulent boundary layer down to the wall on both wing and fuselage (instead 

of the wall-function approach used with the PAI optimization mesh). Table 4 shows that the objective function 

improvement levels claimed by the partners were confirmed also on the finer mesh level (thought with some small 

variations), with the PAI-CIRA configuration providing the highest objective function reduction. At these testing 

conditions the PAI-CIRA configuration allows a reduction of 21 drag counts, versus the 7 drag counts reduction 

achieved by the AI-M configuration. Furthermore, both partners respected the pitching moment constraint, with 

the AI-M configuration providing higher pitching moment than the PAI-CIRA one, though without achieving any 

remarkable benefit in terms of target improvement. Finally, the post-optimization check on lifting capabilities 

close to maximum lift conditions (i.e., eq. (4)) shows that PAI-CIRA configuration very slightly violated this lift 

constraint by one lift count (0.01). 

Table 4: Comparison of the 3D optimized TO configurations from AI-M and PAI-CIRA, 

computed on a 6.8Mcells CFD mesh (1 drag count = 10-4). 

FINE MESH@DP1 

CL = CL, initial =19 degs 

Total CD 

(drag counts) 
%Obj-TO %CM  CL 

OPTIMIZED AI-M -7 d.c. -0.16% -11.4% +0.01 

OPTIMIZED PAI-CIRA -21 d.c. -0.44% -1.0% -0.01 
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Figure 21 illustrates a comparison between PAI-CIRA optimized configuration and the baseline, in terms of 

both geometries and sectional pressure distributions (the reference section is that considered in the 2D 

optimizations). As shown, the design evolved towards an increase of flap gap, a reduction of the overlap and 

(although not clear visible) limited shape modifications mainly addressing flap thickness reduction and leading 

edge radius increase. Moreover, the pressure distribution indicates the tendency of the optimizer to increase the 

aerodynamic load on the flap element while decreasing it on the main wing, thus providing an overall equal total 

lift. 

 

Figure 21: Comparison of Baseline vs. 3D optimized configuration from PAI-CIRA. Geometries and 

sectional pressure coefficient distributions at 62% half-span section, DP1 conditions (left). 3D flap 

positioning (right). 

The effect of such a load swap can be explained with the help of Figure 22, wherein a Mach number contour 

plot around both configurations is shown. As visible, the main effect of unloading the main wing in the optimized 

configuration is a weaker main wing wake with respect to the baseline, therefore producing a reduced viscous 

drag contribution with respect to the baseline. As a counterpart, the higher flap load on the optimized configuration 

produces a slightly stronger flap wake (and a higher boundary layer thickness at flap trailing edge), therefore an 

increased flap viscous drag contribution is expected with respect to the baseline, though the overall balance is in 

favor of the wing viscous losses reduction.  
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Figure 22: Comparison of Baseline vs. 3D optimized configuration from PAI-CIRA. Mach contours at 

62% half-span section. DP1 conditions. 

 

VI. CONCLUSIONS AND FUTURE PERSPECTIVES 

A concurrent multi-objective/multi-point high-lift design activity was targeted in the DeSiReH project, aimed 

at the comparison of state-of-art optimization tools capabilities. The optimization problem was formulated in such 

a way to include, as much as possible, the most salient features encountered in industrial applications (such as 

structural and manufacturability constraints). Moreover, a proper procedure already used and demonstrated in [22] 

was adopted to correlate the 2D results to the 3D wing performance, together with a suitable strategy for high-lift 

elements’ deployment in 2D and a calibration procedure. Herein, the several partners involved challenged their 

design tools and adopted different decoupling strategies, shape parameterizations, CFD tools, turbulence 

modeling, meshing approaches and optimization algorithms. The experience gained from this exercise highlighted 

that the introduction of automatic optimization tools for HL design purposes has a big potential in comparison 

with a human based approach. In fact, while the automatic approach allowed treating, in a relatively easy way, 

the complex constrained multi-objective problem characterized by a large design space, the human based approach 

required the introduction of several simplifications at the cost of reduced improvements achieved. Nevertheless, 

in section V it was shown that automatic optimization does not always produce clear improvements over the 

industrial approach, especially when the design space is not adequately explored. In principle, the most efficient 

way to solve the proposed problem is, whenever possible, to adopt decoupling strategies and to introduce 

engineering based knowledge and physics-driven optimization criteria to reduce the design space size. According 

to the involved industrial partners’ view, the industry perspective is the need for a robust HL optimization tools, 

rather than on finding the optimum with unnecessary high precision (e.g. squeezing out the very last drag-count). 

A robust framework is needed, which can handle multiple objectives, various constraints, and a large number of 

design parameters in an efficient optimization environment. In this context, the evolutionary algorithms seem to 

be an appealing tool for HL design, although it was highlighted the drawback of massive CFD evaluations required 

to achieve significant improvements. Though this problem is counterbalanced with the huge and increasing HPC 

capabilities nowadays available at aircraft manufacturers, efficiency remains a key issue in the future employment 

of these tools. To this aim, both the usage of surrogate models and simplified/approximate shape parameterizations 

seems to be key areas of research and development, which can help convergence and efficiency. Also, smart 

formulations of both constraints and objective functions might keep some potential for efficiency increase. 

Although a lead-time reduction compared to today’s standard HL design processes is not yet visible, a potential 
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in terms of improved performance is evident. Future improvements in the areas mentioned above can result in less 

design loops, reducing the overall project lead-time and possibly reducing the amount of wind tunnel entries. 

Two industrial partners, PAI and AI-M, have demonstrated the applicability of automatic 3D optimization for 

high lift configurations, by coupling optimization tools to routinely used industrial CAE tools. For the problem 

considered the improvements found were fairly small for both partners in comparison to the computational efforts 

spent, one could judge them as negligible. This was mainly justified by the flatness of the objective function 

considered, as indicated in section D, but also because the starting configuration was already representative of an 

earlier good industrial design. However, the scope of this activity was the demonstration of how to setup such a 

complex 3D optimization framework in an industrial context, and to perform a robust multipoint shape and 

elements’ setting optimization with it.  The big benefit being that a larger amount of design parameters can be 

handled at once, in a completely automatic way and without human work. Additionally, the industrial appraisal 

of the application rises further when multi-disciplinary constraints (e.g. structural constraints, kinematic 

feasibility, etc.) are included in the optimization problem. Finally, thanks to the fully automated process and the 

evolutionary approach, several high lift concepts can be evaluated in parallel, which allows the designer to down 

select from a larger variety of devices in comparison with the manual approach. 
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