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Elastocapillarity describes the deformations of soft materials by surface tensions. Al-
though the vast majority of elastocapillarity experiments are performed on soft gels, because
of their tunable mechanical properties, the theoretical interpretation of these data has been
so far undertaken solely within the framework of linear elasticity, neglecting the porous na-
ture of gels. We investigate in this work the deformation of a thick poroelastic layer with
surface tension subjected to an arbitrary distribution of time-dependent axisymmetric sur-
face forces. Following the derivation of a general analytical solution, we then focus on the
specific problem of a liquid drop sitting on a soft poroelastic substrate. We investigate how
the deformation and the solvent concentration field evolve in time for various droplet sizes.
In particular, we show that the ridge height beneath the triple line grows logarithmically
in time as the liquid migrates toward the ridge. We then study the relaxation of the ridge
following the removal of the drop and show that the drop leaves long-lived footprints after
removal that may affect surface and wetting properties of gel layers but also the motion of

living cells on soft materials.

I. INTRODUCTION

Thanks to their tunable mechanical and physico-chemical properties, synthetic hydrogels and
elastomers are involved in a broad range of applications, from uses in cell culture to control the
differentiation and the migration of cells, to dew collection' and the handling of fluids.”* Gels-
like structures are also a hallmark of many living tissues. In many cases of practical interest as well
as in a broad range of natural systems, gels are so compliant that minute forces, such as surface
tension forces at interfaces, are strong enough to significantly deform those gels. Elastocapil-
lary phenomena, involving a competition between bulk elasticity and surface energies, have been
studied since the 60’s and the pioneering work of Lester and Shanahan.’~'® However, thanks to
advanced methods in elastomer synthesis and imaging techniques that have brought new detailed
observations of gel deformations at interfaces, elastocapillarity has recently attracted a lot of at-
tention in the scientific community.!'~® In particular, studies on the wetting of soft materials by
sessile or moving droplets have uncovered new unexpected physical phenomena.!®~23 Following
these new observations, several studies have been devoted to the theoretical interpretation of these

24,25

new experimental data and elastowetting phenomena are becoming increasingly well under-

stood although several issues of fundamental importance remain open such as the selection of the
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contact angle or the effect of different surface tensions for the dry and wet part of the gel surface.

Despite these important advances, and while many experimental studies are performed on gels,
most theoretical studies on elastowetting have assumed that the soft deformable substrates are
purely (linear) elastic materials. It was only recently recognized that even some simple features
of static elastowetting, such as the formation of the ridge beneath the triple line below a sessile
drop,?! are in fact time dependent processes. This non-instantaneous response differs from that
of a purely elastic solid, but the rate-limiting mechanism could be either network rearrangement
(viscoelasticity), solvent diffusion (poroelasticity) or a combination of both. However, intrigu-
ing results, such as the coexistence of multiple phases at the contact line in recent indentations
experiments,”> unambiguously highlights the need to use a multiphase model (such as the poroe-
lastic theory) to rationalize these observations.

In the simplest case, a gel can undergo two modes of deformations.?® On a very short timescale
following the sudden application of a force on a gel sample, the solvent molecules do not have
time to diffuse and the gel behaves as an incompressible elastic solid while a hydrostatic pressure
builds up within the liquid phase.?®>” On this short timescale, the gel can change its shape but not
its volume. In reaction to this pressure however, the solvent molecules migrate. This long-range
migration process occurs on timescales that depend on the size of the sample and allows the gel to
change both its shape and its volume.?®3! Therefore, while incompressible on a short timescale,
a gel is highly compressible on a long timescale. In the limit of small deformations, this behavior
is well described by the theory of linear poroelasticity, initially developed by Biot in 194132 to
describe soil consolidation.

In general, however, not all crosslinks in polymer networks are permanent and part of them
may be capable of dynamic dissociation and re-association, such as physical gels** or interpen-
etrating gel networks.’*3 These reversible crosslinks, together with the rearrangement of the
polymer chains and the viscosity of the solvent itself, endow the gels with additional viscoelas-
tic properties.’*38 Because poro- and visco-elastic processes occur simultaneously in gels, their

time-dependent mechanical response is in general rather complex*—3

and must be described by
a poro-visco-elastic theory. Because of this interplay, and although several models of poro-visco-
elasticity have been developed®”*4*7 | experimental protocols allowing the extraction of the poro-
and visco-elastic material parameters have been devised only recently.**! While some work has
been done to incorporate the viscoelastic response of the gel within the theoretical framework>>+8

of elastowetting, neither the poro-elastic response nor the poro-visco-elastic response has been
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incorporated so far within the theoretical framework that describes the time-dependent behavior
of soft solids near the triple line.

In order to grasp the new physical effects induced by the poroelasticy of the substrate on elas-
towetting phenomena, we will neglect visco-elastic behaviors in the present work and we will
study the time dependent behavior of a thick poroelastic substrate subjected to an arbitrary, but ax-
isymmetric, time-dependent distribution of normal surface forces. In the next section, we briefly
recall the field and constitutive equations of linear poroelasticity. Next, we present a general an-
alytical solution to the poroelastowetting problem. We then investigate the specific case of the
poroelastic deformation due to the deposition (and subsequent removal) of a hemispherical drop
at the surface of the gel. We then discuss our findings and highlight future development as well as

outstanding questions of broad scientific interest.

II. MATHEMATICAL FORMULATION
A. Field and constitutive equations

In the reference state, the poroelastic substrate is not subjected to any mechanical load, the
initial concentration of solvent in the gel is homogeneous and given by ¢y while the chemical
potential is yy. In the deformed state, the system is described by the solvent concentration c,
chemical potential u and displacement field i. In response to the application of an external force,
the solvent is not in diffusive equilibrium anymore and evolves according to the constraint of the
conservation of the number of solvent molecules:

dc -

E+VJ:0 (1)

where J is the flux of the solvent in the gel and is driven by spatial differences of the chemical
potential. For simplicity, we will assume that the flux J of small molecules is given by Darcy’s

law:

- k _
J— (W) Vi )

where k is the permeability, 1 is the viscosity of the solvent and Q is the molar volume of the
solvent. If the poroelastic substrate is a gel, note that the mobility k/(1nQ?) can also be expressed

in term of the swelling ratio A in the freely swollen state as D/(.A,QkgT)(A3 — 1)/A; where
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g is the Avogadro number and D is the intrinsic diffusivity of the solvent molecules. The strain

tensor € is defined as:

£= % (W+ (%ﬁ)f) 3)

In the framework of linear poroelasticity, the stress tensor o is given by:

_ v M= Ho
6 =26 <e T 2vTr(£)I> o 4)

where G is the shear modulus, Vv is the the Poisson ratio that characterizes the ability of a gel to
absorb its solvent and 7 is the identity tensor. We assume that solvent and polymer molecules are
incompressible and consequently the local volume variation is given by the local variation of the

solvent concentration. This molecular incompressibility condition reads:

Tr(e) = (c —co)Q %)

The mechanical equilibrium in the bulk of the poroelastic layer is described by the Navier

equations:

V. =0 (6)
Combining the equations above we get:
dc
— =D"A 7
Y c (7)
where
2(1 —v)Gk
(I-2v)n

is an effective diffusion coefficient (also called the cooperative diffusion coefficient) and A is the
Laplace operator. Note that the material parameters G, k and thus D* are effective parameters that
depend on the initial state of the gel. In a nonlinear theory, they are also functions on the local
deformation of the gel. Within the framework of linear poroelasticity however, we will assume
that the deformed state is close enough to the initial state such that G, k and D* can be treated as

constant material parameters. Finally, combining (3)-(4)-(5)-(6), we get:
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B. Boundary conditions

At the free boundary, the gel is subjected to a force distribution 7 and surface tension ¥;

c-it=f+y%i(V-7) (10)

where 7 and f are the unit normal vector to the surface and traction forces exerted at the substrate
boundary, respectively. 7, 1s the surface tension of the solid. We are mostly interested by the case

of an impermeable gel and thus

u

- =0 (11)
In addition, we assume that the substrate is infinitely thick and thus the displacement and stress

fields vanish for z — —oo

III. DEFORMATION OF A POROELASTIC HALF-SPACE WITH SURFACE TENSION

As mentioned in the introduction, we are interested in the response of a thick poroelastic sub-
strate following the sudden application of a distribution of surface forces. For the sake of simplic-
ity, and motivated by the specific question of elastowetting, we will focus here on axisymmetric
force distribution only. With this choice of geometry, it is convenient to use cylindrico-polar
coordinates (r,z) and restrict ourselves to time-dependent axisymmetric fields for the solvent con-

centration c(r,z,t), chemical potential (r,z,¢) and displacement field i(r,z,1):

ﬁ(l’,Z,t) :u(r,z,t)§r+v(r,z,t)§z (12)

Furthermore, we only consider in this paper the case where the traction force at the free bound-
ary is purely normal, i.e fo é.. Although we will consider later time-dependent forcing, we first
focus on the step response of the system i.e when the surface force distribution is suddenly applied
at £ = 0 and subsequently maintained for # > 0. We may therefore write f = f.(r)H(t)é, ,where

H (t) is the Heaviside step function. Thus, we have at the free surface:
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o 0 d
(2 = 0.1) = £(H() + L2 (7) 13
Gra(rz=0,6) = 0 (14)

A. Hankel transform

In order to solve the equilibrium equations presented above, it is convenient to introduce the

following Hankel transforms:

oo

u(r,z,1) = /O sii(s,2,0)J (sr)ds (15)
V(rz,1) = /0 " $0(s,2,0)Jo(sr)ds (16)
c(rz,f) = /0 " (s, 2,1)Jo(sr)ds (17)
przn) = [ shls.z.0d(srds (18)

where Jy(z) and J; (z) are the zero and first order Bessel function of the first kind, respectively.

B. Instantaneous deformation

When a traction force f = f,(r)H (t)e. is suddenly applied at the free surface at = 0, the liquid
has no time to migrate and system first deforms instantaneously as an incompressible solid. This
elastic deformation causes the chemical potential to drop below its equilibrium value uy and sets
the fluid into motion. Using a superscript ‘ to denote the instantaneous response, the instantaneous
concentration field ¢’ is thus ¢/ = ¢y. As a consequence of the molecular incompressibility con-
straint (5) the instantaneous deformation field i’ satisfies V. =0 and thus A ,ui = 0. From these
two relations, it follows that each component of the displacement field x’ and V' satisfies the bihar-
monic equation, i.e: A%y = A%V = 0. The two fields are not independent and u’ can be expressed
in term of V' using V.ui =0. Inserting the Hankel transforms into the biharmonic equation, we
get a linear fourth-order ordinary differential equations for, say, ¥

ot 9%

57 2 8—Z2+s4ﬁi =0 (19)
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The above ordinary differential equation is readily solved and involves four unknown coeffi-

cients (that depend on s). Two of them are cancelled to satisfy lim ¢ = 0. The two remaining

7=

functions are found by making use of the two boundary conditions (13)-(14) and we find:

aN fz(s) e (1 —s2)
YT 26 s(1+sty) 20)

where /s = 7,/(2G) is the elastocapillary length and f,(s) is the Hankel transform of the surface

traction f;(r). The radial component i’ of the instantaneous displacement field is given by:

Ai_fz(s) ez
“T0G (1+s6y) @D

C. Final state

On a long-enough time scale, the system eventually reaches a thermodynamic equilibrium in
which the solvent flux vanishes (J'= 0) and the chemical potential relaxes to its equilibrium value
Uo (provided that the surface force vanishes for r — o). In this final stationnary state (where quan-
tities are denoted by a superscript /), ¢/ does not depend on time anymore and the concentration
field therefore satisfies Ac/ = 0. Because the concentration field is Laplacian and u/ = i, the
final displacement field #/ again satisfies a biharmonic equation A%/ = A%y/ = 0 which again

leads to an equation of the form (19) and which solution is now:

ﬁf:fz(s) e(2—-2v —s7)

2G s(1+s6(2—2v)) 22)

D. Time-dependent deformation

We now turn to the resolution of the time dependent problem. Although the time dependence
only appears explicitly in the diffusion equation (7), it cannot be solve independently because the
boundary conditions involve ¢, it and the displacement field #. Using equations (3)-(4)-(5)-(6), as
well as the boundary conditions (13) and lim ¥ =0, the fields ¢, ¥ and fiI can be expressed in term

T—r—o0

of i:



c= Ao+l<sﬁ+@) (23)

Q dz

GQ a0 9%
0= g+ ———— (252(1 = V)i +s= + (1 —2V) = 24
=t s (220G 1-2m TS 24

1di
b= g(s,t) — —= 25
D= gl — 5 ©5)

where the function g(s,7) is defined as:

1) = ———— | fuls) +2Gsti| +s¥—= 26
£00) = Gy (R 2000 o) 26)

Plugging the above results in (7), we obtain the following non homogeneous fourth-order linear

partial differential equation for #:

d (9% d*i 9% J

This equation is supplemented by the two boundary conditions (14) and (11) at the free surface
while lim # = 0. Furthermore, the initial condition is given by i(s,z,0) = i’ where @' is defined
Z—r—00

by (21). Because we are interested in a first time by the step response of the system , this problem

is best solved by introducing the Laplace transform U (s,z, ®) of ii(s,z,¢) defined as:

O(s,2,0) = /O =45, 2,1)dt (28)

Plugging the above expression into the evolution equation (27) for #(s, z,¢) and making use of
the initial condition i(s,z,0) = i/, we now obtain a non homogeneous fourth order linear ordi-
nary differential equation that is easily solved by using the four boundary conditions mentioned

previously.

E. Solution for a step forcing

The full solution for U(s,z, ®) is given in the appendix and we only write here the more com-

pact result for the (Hankel-Laplace transform of the) deflection Z(s,®) = U(s,z = 0, ®) of the free

surface:
, _ fils) 1
Z(S,w)  2Gs (1)(1 —|—s€s)—|—szD* 11—2v < szx/ﬁ B 1> (29)
-V \Vs?D*+w



where we have used the result that the Laplace transform of the Heaviside step function H(t)
is 1/®.The inverse Hankel-Laplace transform can be obtained by the use of the inverse Hankel

transform together with the help of the Bromwich integral that gives the inverse Laplace transform:

Sn) = 5

where y is a real number such that the axis of integration ]y — ico, x + ico[, which is parallel to

X—‘,—loo o R
/ do / dse® Z(s, )sJo(sr) (30)
X —ioo 0

the imaginary axis, lies at the right of the pole of the integrand in (30), ensuring that the contour
of integration is in the region of convergence. This solution is the step response of a poroelastic
half-space subject to an arbitrary radially-symetric distribution of normal surface forces applied at
t =0ie f = f,(r)H(t)Z.. Let us first note that the two limiting cases described previously can be

recovered using the initial and final value theorems:

{'(s) =lim{(s,1) = lim 0Z(s, 0) = f;g) s(lis@ (31)
s R(s) (2-2v)
C (S) _tan;CCg?t) - (})111}()0\)2(5" (l)) - 2G S(l +S€s(2—2\/>) (32)

The response of the gel is thus that of an incompressible solid at short time while it behaves as a
compressible solid at long time. This apparent compressibility is due to the ability of the solvent to
migrate and is quantified by the poroelastic Poisson ratio v. When v = 1/2, the gel cannot absorb
or release any solvent and the final and initial state are identical. In that case, the inverse Laplace
transform can be performed analytically and the deflection is ¢ (s,7) = &i(s)H(¢). This solution
is the purely elastic response originally derived by Jerison and later by Style and Dufresnes. The
displacement of the interface at large distances (small wavenumber s) behaves as ~ f.(s)/(2Gs)
and the deflection is thus damped by the bulk elasticity. At small distances (large s), the deflection
behaves as ~ f.(s)/(s*y;) and is thus dominated by surface tension. The crossover between the

elastic and the capillary regime occurs at the scale of the elastocapillary length /.

F. General solution for arbitrary force distribution

The fundamental solution (30) derived above can be exploited to generate the impulsional re-
sponse of the system to a forcing of the form f = f.(r)8(¢)é. (by taking the derivative) or con-

volved to generate the response to more general time-dependent forcing f = £.(r)F (¢)e.. Indeed,
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using Duhamel principle of superposition, the solution & (r,¢) to this arbitrary time dependent forc-

ing can be written as in term of the step response {(r,¢) given in equation (30):

E(nt) :F(O+)C(r,t)+/0tC(r, r)%dr (33)

This general solution will be investigated at the end of the next section but we first turn to the

analysis of the solution (30) in the case of a hemispherical droplet on a poroelastic substrate.

IV. RESULTS FOR HEMISPHERICAL DROPLETS

Figure 1. Schematic representation of the problem and notations. A liquid hemispherical droplet with
radius R and contact angle 0 is deposited at time = O at the surface of a poroelastic substrate. The
black dashed line indicates the position of the free surface before the deposition of the liquid drop.
Using cylindrico-polar coordinates (r,z) in the frame (&,,¢;), the deflection of the free surface is given

by the function {(r,1).

We now consider the specific case where the surface force distribution is due to a hemispherical
droplet with radius R and contact angle 6. In this situation, the surface force distribution is f;(r) =
ysin@6(r —R) — Z%H (R —r). The first term is due to the liquid/air surface tension that pull
on the substrate at the contact line while the second term is due to the Laplace pressure inside the

spherical droplet that push the substrate. The zeroth-order Hankel transform of f;(r) is:

fi(s) = ysin® (RJO(SR) — M) (34)

S

With this choice of surface force distribution, the interface profile {(r,¢) is given by:
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27, (sR)
e Jo(sr) <R]0(sR) - %)
2 *1 2V sv D* _
o(1-+sts) + 2D 2 (D )

We now turn to the detailed analysis of equation (35) for specific cases of broad physical inter-

i
L) = 1500, do / ds (35)

s 5 foo
est.

A. Large drops

The first limiting case of interest is the case of large drops, i.e R > ¢;. We plot in Fig.2 the
time evolution of the surface deformation for a large drop (R/¢; = 100), as well as the associated
concentration and chemical potential fields. As seen in Fig.2-B the lower part of the drop sinks
over time inside the soft substrate. The ridge height i(¢) = {(R,¢) on the other hand, increases in
a non-trivial fashion after the initial deposition and its evolution is plotted in Fig.2-C. Before the
deposition, the interface is flat 2(0~) = 0. Right after the deposition, the height suddenly jumps to
a height 2(0"). Asymptotically, for large drops, the height 2(0") of the ridge is given by:

ysin@ Te—4+1log3k

+ S
o7~ R (36)

where I, is the Euler-Mascheroni constant. Following this initial jump, the height of the ridge

increases as the solvent migrates toward the ridge where the gel is under tension. In the same time,
the ridge moves radially toward the interior of the drop up to a distance of £s(ysin (1 —2v))/(4v;)
in the final state. Because this time evolution is due to the diffusive migration of the solvent on a
distance of order R, the stationary state is reached on a timescale of ~ R? /D*, as can be seen in
the inset of Fig.2-C. Quite surprisingly for such a damped system, the ridge height first increases
above its final stationary value h(eo) before relaxing toward h(eo) which is given asymptotically

by:

4R
ysin@E 2(1 —V) (Fe—4—|—10gm>
ko n

This non-trivial overshooting behavior can be understood by analyzing the two forces that are

(o) ~ (37)

applied to the surface of the poro-elastic substrate. While both forces imply a migration of solvent
over a lengthscale R, the Laplace pressure in the drop acts as a distributed pressure on the surface

that pushes fluid only in the outward radial direction. On the other hand, the traction due to the
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Figure 2. Time dependent deformation of the poroelastic substrate following the deposition of a large drop
(R/f; = 100) and a poroelastic Poisson ratio of 3/10. A: 3D view of a half space deformed by the drop showing
the ridge at the triple line. The drop is not drawn for clarity. B: Dimensionless profile of the interface {(r,7)/¢s
at t = 0" (orange curve) and = « (green curve). The initial position of the interface before deposition at
t =07 is indicated by a black dotted curve. C: Time evolution the height of the ridge (solid blue curve), scaled
by its instantaneous value /#(0"). The instantaneous response is indicated by an orange dashed line while the
final equilibrium value is indicated by a green dashed line. The asymptotic law /(¢) — 1(0+) < £;log (tD*/(?)
is shown by a red dotted curve. Shown in inset is the scaled poroelastic response ((t) — h(0+))/h(0+) after
deposition with a log scale for the time coordinate, clearly showing the overshoot behavior discussed in the text.
D-G: Evolution of the dimensionless solvent concentration field (¢ — ¢y)Q before the deposition of the drop at
t =0~ (D), right after deposition at r = 0" (E), at r = K? /D* (F) and finally at 1 =  (G). H-K: Evolution of
the dimensionless chemical potential field (1t — o) GQ before the deposition of the drop at r = 0~ (D), right
after deposition at 7 = 0" (E), atr = 63 /D* (F) and finally at 1 = « (G). In D-K, the concentration and chemical

potential fields are plotted in regions centered at R//; = 100 and have width and height of 2/, and/;, respectively.
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air/liquid interface is a force localized at the triple line and draws fluid from both the inside and
the outside of the drop. As a consequence the increase in height due to this traction relaxes twice
as fast as the decrease in height due to the Laplace pressure. The combination of these two forces
with slightly different timescales therefore produces the overshoot behavior seen in the inset of
Fig.2-C.

Because the inverse Hankel-Laplace cannot be evaluated analytically, it is not possible to pro-
vide a simple expression (in the time domain) for the time evolution of the ridge height h(r).
However, some crude approximations can be performed in order to gain further insight on the
behavior of A(z). In the limit of large drop, we focus on the evolution of A(r) between the two
intermediate timescales /2 /D* < t < R?/D* and we will make the crude approximation that the
evolution of A(t) in this regime is mostly due the evolution of the corresponding lenghtscales
1/R < s < 1/ls and we will check later that this approximation is self-consistent. In this limit,
the Laplace transform of the increase of the ridge height A(¢) — h(0+) is then approximately
> fll//lfs s/{w(s*> — (o/D*)(1 —v)/(1 —2v))}ds. This simpler expression can then be integrated
along s and the resulting expression can finally be inverted in the time domain analytically to yield

the scaling

h(t) — h(0+) o< £glog (tD* /£2) (38)

As seen in Fig.2-C, this expression fits rather well the numerical result between the two in-
termediate timescales £2/D* < t < R?/D*, as expected from our assumptions. Beside providing
a reasonable approximation to the evolution of the ridge height, it also shows that the relevant
timescale for the evolution of the ridge created by large drops is £2/D*. Beneath the drop, the
depth of the valley is, at leading order, independent of the drop size and increases over time, from
((r=0,t=0")~ —%YS;/—?G until it reaches {(r =0,t = o) &~ —(1 — V)&%- As seen in Fig.2-
B, the formula above are a good approximation for the case R/¢; = 100. Beneath the drop, the

chemical potential increases right after the deposition. We find that, for large drops, the chemical

potential beneath the drop at r = 0" is given by:

Ysin 6
R

u(r=0,2=0,t=0") ~ py+2 (39)

At the contact line however, the chemical potential diverges as log|r — R|. In the final state,

the chemical potential relaxes everywhere to ug. Similarly, the concentration of solvent, initially
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equal to ¢ reaches the following value beneath the drop in the steady state.

Ysin 0
GQR

e(r=0,z=0,1 =o0) ~ co—2(1 —2v) (40)

As can be seen from equations (39) and (40), although the depth of the valley increases over
time, the change in concentration beneath the drop is very small. On the other hand, and while
the change in amplitude of the ridge is of the same order than that of the depth of the valley,
the solvent concentration increases sharply (it also diverges as log |r — R|) beneath the ridge. We
therefore only plot here the concentration (Fig.2 D-G) and chemical potential (Fig.2 H-K) fields
in the vicinity of the contact line. As seen in those panels, the solvent concentration field (¢ — ¢)
is zero at t = 0 but then increases sharply near the contact line where we also notice the radial

(inward) displacement of the triple line over time.

B. Small drops

We now turn to the analysis of equation (35) for a second case where analytical approximations
are possible, namely, small drops (R < /). We plot in Fig.3-B the evolution of the surface defor-
mation at various time for a small drops (R/¢; = 1/100). At the time of deposition, small drops
adopt a lenticular shape and the substrate is flat outside of the drop. This is due to the fact that
below the elasto-capillary length, all perturbations are damped by capillarity. Consequently, both
the Laplace pressure and the surface tension at the contact line are balanced solely by the surface
tension of the gel and not by its elasticity. As only surface tensions play a role in the force balance
in this case, the situation is analogous to that of a liquid lens on a liquid bath, hence the lenticular
shape. Indeed, beneath the drop, the depth of the valley is, at leading order, independent of time

and given by:

R 0o N_é}/sin(@) R
C(r—O,t_O )NC(”—OJ— )N 4 % Zs (41)

As the consequence of the lenticular shape, we therefore expect the ridge height to be asymp-
totically zero at leading order. Right after the deposition, the height suddenly jumps to a small

height 2(0™) which, for small drops is given by the first non-zero term of an expansion in R//; :

L, _ysin(8) 4 (R\’
o)~ T2 ﬁs%(&) @)
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Figure 3. Time dependent deformation of the poroelastic substrate following the deposition of a small
drop (R/¢; = 1/100) and a poroelastic Poisson ratio of 3/10. A: 3D view of a half space deformed
by the drop showing the ridge at the triple line. The drop is not drawn for clarity. B: Dimensionless
profile of the interface {(r,7)/{; att = 0" (orange curve) and ¢ =  (green curve). The initial position
of the interface before deposition at 7 = 0~ is indicated by a black dotted curve. To first order in R//;
the shape of the deformed gel is unchanged. C: Scaled value of the final ridge height /() /h(0") as a
function of the scale radius of the drop R//; for three different values of the poroelastic Poisson ratio
(v =1/2: red curve, v =3/10: green curve, v = 0: blue curve). D-G: Evolution of the dimensionless
solvent concentration field (¢ — ¢)¢;QG/(ysin 0) before the deposition of the drop att = 0~ (D), right
after deposition at 1 = 0" (E), at t = R? /10D* (F) and finally at t = o (G). H-K: Evolution of the
dimensionless chemical potential field (1 — 1), /(y€2sin 6) before the deposition of the drop at =0~
(D), right after deposition at 1 = 0" (E), at t = R>/10D* (F) and finally at t = « (G). In D-K, the
concentration and chemical potential fields are plotted in regions centered at R//; = 1/100 and have

width and height of 2R and R, respectively.
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After relaxation, the ridge height reaches A (o) which is given asymptotically by:

_ysin(0) 2 R\’

We note that the ridge height is now quadratic in R/¢. The consequence of this is that, at first
order in R//;, and in stark contrast with large drop, the profile is flat outside the drop. To the
same order the profile is thus independent of time for small drop, as can be seen in Fig.3-B. This
effect could in fact be expected since the shape of the substrate deformation is controlled solely
by capillarity for small drops. As it is therefore independent of the mechanical property of the
substrate (again, to first order in R//;), the profile is both independent of the shear modulus and
the poroelastic Poisson ratio, i.e of the ability of the substrate to reorganize the solvent. We note
that, in opposition with large drops, the ratio h(eo)/h(0") is smaller than 1 and thus small drops
gradually sink inside the gel although this is a second order effect in R/¢;. This can also be seen on
Fig.3-C that shows the ratio (o) /h(0") as a function of the drop size R < £, for different value
of the poroelastic ratio v. Note that since R < /s, the relevant timescale for the evolution of the
ridge profile is not £2/D* anymore, as was the case for large drops, but R?/D*. Now if the shape
of the substrate is, at leading order, independent of time, how does the solvent evolve? Beneath
the drop, the chemical potential increases right after the deposition while it drops under the ridge.

Asymptotically, we find that the chemical potential beneath the drop is given by:

Ysin(0)Q

u(r=0,z=0,t=0")~ o+ 7

(44)
As the chemical potential converge to uy away from the drop, there is indeed a gradient of
chemical potential that drive fluid motion. In the final state, the concentration of solvent beneath

the drop is given by:

1—2v vsin(6)
2(1—v) G40

c(r=0,z2=0,t =o00) R ¢co— (45)

The corresponding concentration and chemical potential are plotted in Fig.3 D-G and Fig.3

H-K, respectively.
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C. Drop removal

We now investigate the effect of removing the drop at the free surface after a residence time
Tres. We therefore now have a forcing of the form f = {f.(r)H(r) — f.(r)H(t — Tres) }&.. Using
the convolution integral given in equation (35), the solution {res(r,¢) describing the profile of the

interface for the deposition/removal problem is simply given by:

Cres(l’ﬂf) = C(r,t) —H(t — Tres)g(l’,l‘ — Tres) (46)

where {(r,t) is given by (35). As the ridge is pronounced only for R >> /;, we focus here on
large drops only. We plot in Fig.4-A the profile of the poroelastic substrate for a residence time
Tres = 102 /D* at various time following the removal of the drop. These curves indicate that the
drop leaves a footprint on the gel that slowly relaxes to a flat interface. More quantitatively, and
as seen on Fig. 4, the height of the ridge drops by an amount A(0") immediately following the
removal of the drop, at time Tphg, i.€ h(Thg) = h(Treg) — h(0T). Following this instantaneous
elastic response, the height then relaxes toward zero as the solvent diffuses back to its original
concentration ¢ = cg: this is the poroelastic response. We plot in the inset of Fig.4-B the relaxation
of the ridge for several values of the residence time Treg. As seen in Fig.4-C, the relaxation depends
on the history of the gel and is faster for smaller residence time Tres. For residence time Tregs
smaller than the timescale £2/D* the ridge height decreases as ~ 1/¢ at intermediate timescales
(2 /D* < t < R*/D*. However, for residence time Treg larger than the timescale ¢ /D*, the ridge
height decrease more slowly, as ~ —log(¢). In order to estimate the lifetime of the drop footprint,
we define a time 7jj5, Which correspond to the time it takes for the deformation to reach a critical

thickness 4., i.e we defined Tife a8 the solution of the equation:

Cres (7, Tife) = he 47)

In the present study, the value of this critical thickness is of course arbitrary but it can be
quantified for specific applications. In the context of wetting for example, surface defects as
small as 10nm can pin the contact line and affect the static equilibrium angle. As a consequence,
if the footprint of a drop is thicker than this critical thickness, it will have consequences at the
macroscopic scale on the wetting properties of the gel for instance. As seen in Fig.4-D, the lifetime
of the drop footprint strongly depends on this critical thickness and shows a non-trivial dependence

on the residence time Treg of the drop. We first note that the residence time must be larger than a
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Figure 4. Time dependent deformation of the poroelastic substrate following the removal of a large
drop (R/{; = 100) and a poroelastic Poisson ratio of 3/10. A: Profile of the interface at 1 = Ty
(magenta curve) and ¢ = Tres + 63 /D* (brown curve). The initial position of the interface before depo-
sition at r = 0~ is indicated by a black dotted curve. B: Time evolution the height of the ridge (solid
blue curve), scaled by its instantaneous response at the time of deposition #(0"). The instantaneous
response is indicated by an orange dashed line while the final equilibrium value is indicated by a
green dashed line. The drop is removed at ¢ = Tres = 10¢2/D*. The height of the ridge first elasti-
cally decrease instantaneously by an amount of 4(0") before relaxing poroelastically. Several scaled
h(t — tres)/h(0") profiles of the poroelastic relaxation are shown in inset for different values of the
residence time t = Tres. The residence times are given in units of D* /2. C: Log-log plots of the scaled
poroelastic profiles /(¢ — Tres)/h(Tjeg) as a function of the scaled time after removal (1 — Tres)D* /{2
for different values of the residence time. A close view in linear scale is given in inset. D: Scaled
lifetime of the footprint of the drop 7j;g.D*/ Ef as a function of the scaled residence time of the drop

TresD* /(2 for two different values of the critical thickness /2. below which the footprint disappears.

critical value for the height of the footprint to be larger than .. This effect can be seen in the inset
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of Fig.4-D. Above this critical residence time, the footprint lifetime 7);5, first increases with the
residence time Treg until the residence time becomes comparable with the equilibrium time R? /D*.
After this value, the lifetime decreases. This decrease is simply the consequence of the overshoot
effect described previously for the growth of the ridge. When the residence time is much larger
than R?/D*, then the gel has reached its equilibrium before the drop is removed. In that case,
the lifetime of the footprint does not depend on the residence time of the drop and therefore 7);¢,

saturates to a finite value.

V. DISCUSSION

In typical experiments of elastowetting, /; is typically of order of a few microns but can be as
large as a millimeter thanks to recent advances on polymer technologies. The effective diffusion
coefficient D* is typically in the range 10! — 1071922 /s depending on the swelling ratio and

the length of the free chains**-°

while values in the range 0.2 — 0.4 are reported for the poroe-
lastic Poisson ratio. For such orders of magnitude of the physical parameters, the deformation
created by a 1mm droplet will take as long as ~ 10°s to reach its equlibrium state. More quan-
titatively, for an elastocapillary length of 10um, a 1mm drop with a residence time of 20s will
leave a footprint thicker than 100nm for also roughly 20s and it will leave a footprint thicker than
10nm for more than 7 minutes. Similarly, a drop resting on a poroelastic substrate for 10 minutes
will leave a circular footprint thicker than 10nm for more than 2 hours. Preliminary experiments
performed with water droplets on thick PDMS layers are in qualitative agreement, as seen in Fig.5,
with our predictions. Because nanometer-scales defects can pin a contact line, we expect that the
residence time of the drop on the deformable substrate will have a dramatic impact on the mea-
surement of fundamental material properties of considerable practical interest, such as its surface
tension or contact angle hysteresis. Those footprints will also affect drop spreading. In addition,
because nanoscale surface features are strong enough to affect the polarity and the migration of

living cells,>!>*

we expect that the new theoretical developments presented in this paper will be
important to finely model the locomotion of cells in living tissues and on soft materials.

In our study, we have also seen that another consequence of merging the linear poroelastic
theory with the elastowetting problem has introduced a new divergence: the solvent concentration
diverges as ~ log |r — R| near the contact line. While several approaches might be able to regularize

this divergence, for example by taking into account the finite thickness of the gel, the material and
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Figure 5. Relaxation of the ridge under the contact line following the removal of the drop for a resting time of 30
minutes (A-C) and 2 minutes (D-F). In both cases SuL water droplets were placed on a freshly prepared thick
PDMS substrate (thickness 1358;tm, shear modulus 1.2kPa) and a region of ~ 750 x 750um? was scanned at
regular intervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France) with a lateral resolution of 1.89um
and a vertical resolution of 50nm. The first scan was acquired roughly 20s following the removal of the drops.
The color-coded heights are in microns. As seen in D-F, no trace could be detected for a residence time of
2 minutes. For a residence time of 30 minutes on the other hand (A-C), the footprint of the drop is initially
around 0.5um and and is still around 100nm after 4800s. G: Time evolution of the height of the trace following
drop removal (same parameters as in A-C). The blue circles are the experimental data and the solid orange
curve is the theoretical prediction given by equation (46). For the theoretical curve, the droplet radius and
substrate stiffness were taken from the experiment while the surface tension was taken as y; = 40mN/m and the
poroelastic Poisson Ratio was taken as v = 0.3. The effective diffusion coefficient D* was found by fitting the
data with the model. The best fit for D* was found to be ~ 2- 10~ !'m?/s, in good agreement with other values

found in the literature.



geometrical nonlinearities or through the introduction of a finite width for the contact line, the
existence of this divergence suggests that extreme phenomena such as phase separation or fracture
could occur at the contact line. Indeed, the coexistence of multiple phases at the contact line has
been recently reported in indentation experiments. Further work, for example based on a nonlinear

poroelastic theory, will be needed in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by drops of their own solvent opens
interesting questions. Because the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass exchange throughout the gel. For
thick gels (when the thickness of the gel is much larger than /; and R), the chemical potential
increases above its reference value away from the drop and will tend to suck fluid inside the gel.
Because large drops will create a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For thinner gels however, the effect
of finite depth is likely to form a dimple within which the chemical potential drops below its
reference value, and thus promote the growth of smaller droplets nearby. Although speculative,
this possibility might open the road to new original methods to control droplet nucleation and dew

collection on soft materials.
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