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Abstract 1 

Based on a previous study for temperature, a new method for the calculation of non-stationary 2 

return levels for extreme rainfall is described and applied to a southwestern Spanish Region – 3 

Extremadura, using the peaks-over-threshold approach. Both all-days and rainy-days-only 4 

datasets were considered and the 20-year return levels expected in 2020 were estimated taking 5 

different trends into account: first, for all days, considering a time-dependent threshold and 6 

the trend in the scale parameter of the Generalized Pareto Distribution; and second, for rainy 7 

days only, considering the role of how the mean, variance, and number of rainy days evolve. 8 

Generally, the changes in mean, variance and number of rainy days can explain the observed 9 

trends in extremes, and their extrapolation gives more robust estimations.  The results point to 10 

a decrease of future return levels in 2020 for spring and winter, but an increase for autumn. 11 

Keywords: Extreme Value Theory, Return levels, Extreme Rainfall, Peaks Over Threshold 12 



1. Introduction 13 

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 14 

provides likelihood forecasts about climate change, one of which is an increase in the 15 

frequency, intensity, and/or amount of heavy rainfall over most land areas (IPCC 2013).  16 

Extreme rainfall events cause severe damage to human populations through ecological 17 

disasters, destruction of infrastructure, and loss of life.  In 2013, a large area in central Europe 18 

received high amounts of precipitation. Several places received as much as their normal 19 

monthly precipitation within just one or two days. The excess of precipitation resulted in high 20 

water levels in such European rivers as the Danube, Elbe, and Rhine. This event has been 21 

extensively analysed 22 

(http://cib.knmi.nl/mediawiki/index.php/Central_European_flooding_2013). 23 

Extremes are commonly defined as rare return levels estimated using the statistical 24 

Extreme Value Theory (EVT). For example, according to the study of Van den Besselaar et 25 

al. (2013) for the period 1951-2010, a reduction in the return period of heavy 1-day and 5-day 26 

rainfall has been demonstrated from 1951-1970 to 1991-2010 in northern Europe.  This 27 

decreasing trend in the return period is indicative of increasing precipitation extremes and is 28 

coherent with previous extreme precipitation studies covering the whole of Europe (Klein 29 

Tank et al. 2003; Alexander et al. 2006).   30 

For the Iberian Peninsula (IP), recent work points to a decreasing trend in the values of 31 

extreme rainfall for winter and spring (García et al. 2007; Acero et al. 2011).  For autumn, 32 

there is an increase in rare extreme precipitation events corresponding to long return periods 33 

over the southern and east-central IP (Acero et al. 2011).  Other work for the IP has focused 34 

on particular regions in Spain.  For instance, Beguería et al. (2011) showed for the northeast a 35 

significant decrease in extreme rainfall intensity in winter, but an increase in spring. 36 



The present study intends to refine these results to a smaller regional scale using and 37 

comparing two approaches to compute near future 20-year return levels (RLs) for daily 38 

rainfall. The extrapolation to the near future, namely around year 2020, is based here on the 39 

identification and extrapolation of recent observed trends rather than the use of climate model 40 

results essentially because practitioners who have to estimate RLs for operational purposes 41 

often only have at their disposal observational time-series of the studied variable at the 42 

desired location.  The limitations of such an approach have, however, to be borne in mind.  43 

The generally linear trends identified from observed time-series and extrapolated to the future 44 

involve both climate change and inter-annual variability signals present in the observation 45 

period considered.  These are linked, and thus very difficult to separate, so that extrapolation 46 

must be limited to the very near future for which the assumption of the continuation of an 47 

unchanged trend may be reasonable.  Therefore, if the values obtained are used operationally, 48 

then such estimates have to be updated regularly in order to revise any decisions that have 49 

been taken. 50 

Following the first papers dealing with non-stationarity in natural extreme events (Parey et 51 

al. 2007, 2010) there have been recently a large amount of literature on these subjects, 52 

especially concerning hydrology (see Bayazit 2015 for a review). There are still discussions 53 

around the pertinence of explicitly taking non-stationarity into account in the estimations 54 

(Serinaldi 2015, Serinaldi and Kilsby 2015, Montanari and Koutsoyiannis 2014, 55 

Koutsoyiannis and Montanari 2015). Nevertheless, different definitions and estimations of 56 

non-stationary return levels or return periods have been proposed and compared (Rootzen and 57 

Katz 2013, Cheng et al. 2014, Obeysekera and Salas 2014, Prosdocimi et al. 2014, Read and 58 

Vogel 2015, 2016a, 2016b, Silva et al. 2015), the trends being estimated either with time or 59 

other physically based covariates. The aim here is not to discuss the precise estimation of a 60 

future return level or return period but rather to test another way of modelling non-61 



stationarity. The 20-year return levels are used as an illustration of the differences, and are 62 

just computed as in the stationary context with the values of the extreme value distribution 63 

parameters obtained in 2020 with the different extrapolation methods. However, the different 64 

trend modeling can be used to compute return levels or return periods according to either of 65 

the definitions proposed in the literature. Furthermore, one advantage of the proposed 66 

approach based on trends in mean and variance of the whole sample over the more classical 67 

use of trends in the extreme value distribution parameters is that these last trends are 68 

identified in smaller samples consisting of the extreme events only, and may not reflect some 69 

significant trends even though significant evolution may have been detected for the mean 70 

and/or variance. Until now, no similar work had been done for precipitation time series 71 

through a systematic study of the stationarity test consisting in testing the stationarity of the 72 

extremes once trends in mean and variance have been removed.  Such a study could be of 73 

great interest for the calculation of future extreme events, especially because it allows the use 74 

of climate-model projected changes in mean and variance, which are generally more reliable 75 

than those of the extremes, as well as the use of other covariates than time. 76 

Following Parey et al. (2010), two approaches will be compared. The first one is the 77 

commonly used application of the statistical EVT considering trends in the parameters of the 78 

distributions (Friederichs and Hense 2007, 2008; Friederichs 2010; Roth et al. 2012). 79 

Secondly, Parey et al. (2010) or Acero et al. (2014) provide another approach to estimating 80 

future temperature extremes from the generally stationary extremes of a centred and 81 

normalized variable and the changes in mean and variance of the whole dataset.  This 82 

procedure was shown to take better account of changes in the mean and variance, especially 83 

the latter, than the commoner use of the trends in the parameters of the extreme value model. 84 

In this paper, the application of this second approach to rainfall time series will be studied and 85 



the results compared to the extrapolation of trends in the extreme value distribution 86 

parameters. 87 

The organization of the paper is as follows. The general methodological framework is 88 

described in Sec. 2 and its application to the special case of rainfall time series in section 3. 89 

The data that were selected and analysed are described in Sec. 4. The main results are 90 

presented and discussed in Sec. 5.  The expected future changes in the return levels are then 91 

presented in Sec. 6, and the conclusions are drawn in Sec. 7. 92 

2. Methods 93 

In this section, after reminding the conditions of application of EVT and, in particular, the 94 

peaks-over-threshold (POT) method chosen here, the two approaches to investigating extreme 95 

levels in a non-stationary context will be presented. 96 

2.1 General framework 97 

We shall apply EVT to weakly dependent (quickly decreasing correlations), time series 98 

with seasonality (in any characteristics as mean, variance and extreme parameters) and which 99 

can be non-stationary. To handle this, we first tackle seasonalities by working separately for 100 

each season.  POT is usually applied to independent observations which is not the case here. 101 

The exceedences generally occur in clusters, making it necessary to apply a declustering 102 

procedure to identify approximately independent cluster maxima.  The scheme that we used is 103 

known as 'runs declustering' (Leadbetter et al. 1989).  In our work, clusters are separated by at 104 

least one day with value below the threshold.  Then, for each cluster, the day with the 105 

maximum value is chosen, and a series of these C days (where C is the number of clusters) is 106 

considered, together with their dates and the intensity of the exceedence. Then to apply POT 107 

theory it is necessary to find a good balance between the two approximations made when 108 



using EVT – the probabilistic approximation which needs to define a threshold high enough 109 

to approximate the far tail distribution as a Generalized Pareto Distribution (GPD) and the 110 

corresponding dates of these excesses as a Poisson process whose intensity is another 111 

parameter of the POT method, and the statistical estimation procedure which demands a 112 

sufficient number of values to ensure a sufficiently robust GPD and Poisson fit.  The GPD has 113 

two parameters:  the scale parameter, and  the shape parameter (Coles 2001). Two methods 114 

were used to check that the thresholds were reasonable (Coles 2001).  First, we studied the 115 

stability of the shape parameter when fitting the GPD over a range of thresholds.  And second, 116 

the mean residual life plots were considered.   117 

It is usual to refer to extreme values in terms of quantiles or return levels.  The N-year 118 

return level ZN is the level expected to be exceeded once every N years in a stationary context.  119 

For the POT method, it is expressed, depending on the value of the shape parameter, as 120 

                                                                       (1) 121 

or  122 

       
 


        

                                                            (2) 123 

where ny is the number of observations per season, and Iu is the Poisson intensity which is the 124 

probability of an individual observation exceeding the threshold u.  A likelihood ratio test is 125 

systematically applied to check whether an exponential distribution (=0) can be used. 126 

2.2 Extrapolation of trends in the GPD parameters 127 

The first approach to computing future RLs consists in defining a time-dependent threshold 128 

to infer non-stationarity.  It is based on a linear quantile regression (Koenker 2005) of the 129 

threshold chosen as a high percentile of the distribution and was also used in other works (e.g. 130 



Roth et al. 2012). We test that the dates of exceedences over the threshold after declustering is 131 

a stationary Poisson process with a likelihood ratio test at 5% significance level (we tested 132 

I(t)= versus I(t)= +t using the likelihood ratio test). The GPD is fitted using the 133 

maximum likelihood criterion, and the trend of the GPD scale parameter is tested using the 134 

likelihood ratio test with a 5% significance level (Coles 2001).  The confidence interval is 135 

computed here by bootstrapping in order to take the uncertainty in the trends into account.  136 

The bootstrapping procedure is detailed in the Appendix. 137 

In this approach based only on extremes, once linear trends have been identified in the 138 

threshold and in the logarithm of the GPD scale parameter, they can be extrapolated to infer 139 

those parameters in 2020 and compute the corresponding 20-year RL.     140 

2.3 Extrapolation of trends in mean and variance 141 

Another idea proposed by Parey et al. (2010) is to use trends in the main characteristics of the 142 

whole distribution rather than trends in extreme values only. The idea is that in this kind of 143 

situation the non-stationarity of extremes is in a statistical framework mainly explained by 144 

that of the mean and the variance.  To do so, it is necessary to find a simple enough 145 

transformation of the whole dataset in order to get a process with stationary extremes.  In the 146 

following this process is named the residual process and is defined later. 147 

Parey et al. (2010, 2013) and Acero et al. (2014) have shown that, for temperature, 148 

stationarity of the extremes can be obtained by removing non-parametric temporal evolutions 149 

of the mean and the standard deviation from the original time series.  Non-parametric 150 

temporal evolutions are chosen in order to capture in the same nonlinear (in general) trend, all 151 

the non-stationarity. For instance, in climate, the effect of climate change is often considered 152 

as linear at least on short periods and inter-annual variability signals such as the North 153 

Atlantic Oscillation (NAO) cannot, in general, be associated with a linear trend.  The global 154 



signal is highly non linear. The trend estimation is done by local regression (LOESS) with an 155 

optimal smoothing parameter given by a modified partitioned cross-validation procedure 156 

(Parey et al. 2013).  The stationarity of the extremes of the obtained residuals is then 157 

subjected to a test which checks whether the parameters of the extreme value distribution 158 

fitted to the extremes of the residuals can be considered constant. The principle of the test can 159 

be summarized as follows: 160 

1. Compute a nonparametric trend for the mean of the observed time series X(t) using 161 

LOESS:       162 

2. Compute the variance as                      and its nonparametric trend 163 

       using the same LOESS. 164 

3. Compute Y    
          

     
 , where       is the residual process. 165 

4. Estimate       and      , the frequency of the Poisson and the scale parameter of 166 

the GPD respectively in the two following ways: 167 

a. As constant in time:    ,     168 

b. As nonparametric functions of time       using Kernel density for the intensity 169 

of the Poisson and       using cubic splines for the scale parameter of the GPD 170 

c. And their distances:                    
   

 
                 

   
171 

       
 

  , D being the number of days 172 

5. Compute 500 samples of the same number of exceedences with the constant 173 

parameters     and     and the 500 distances between the parameters estimated as 174 



constant or time varying from these 500 samples. We get an estimate of the 175 

distribution of    and    in the stationary case. 176 

6. Situate the distances    and    in the distribution of distances previously obtained 177 

from a stationary distribution to accept or reject the hypothesis 178 

7. Remark: In the same way, we can do the same simulation choosing       and       179 

instead of     and     and thus we can compute the power of the test of stationarity 180 

of extremes. 181 

8. Remark: We cannot get a residual process with stationarity properties if we take 182 

linear trends instead of the non-parametric ones. 183 

2.4 Summary 184 

In sum, two different approaches were taken to calculating near future RLs: 185 

- M1:  A linear threshold is taken, and, as the objective is to study the temporal change 186 

in extremes, the GPD parameters are allowed to vary with time according to the 187 

following widely accepted trend model: (t)=  and log (t)= 0+1*t.  Once the 188 

trend in (t) is known (and significant according to a likelihood ratio test at 5%), its 189 

linear extrapolation to 2020 is used to calculate the 20-year RLs in that year (Z20-f1). 190 

- M2:  A residual process is constructed whose extremes can be considered as stationary 191 

(a test is applied to check for this).  Then, to calculate the 20-year RLs in 2020 (Z20-192 

f2), the daily mean and standard deviation in that year are estimated by linear 193 

extrapolation of the linear trends estimated from observations. 194 

Finally, to draw maps of the spatial distribution of trends and return levels, some 195 

parameters are spatially interpolated by a kriging procedure. 196 



3. Application to rainfall time series 197 

Precipitation is a complex variable in that it conflates two distinct processes – occurrence 198 

(rain or no rain) and rainfall (quantity of rain when it rains).  Therefore, when precipitation is 199 

averaged for all the days in a season, the result is a mix of the two processes, and a change in 200 

mean may be due either to changes in the quantity of rain, a change in the distribution of rainy 201 

days, or both.  This is why we preferred to consider rainy days only to compute the mean and 202 

the variance.  For the application of classical POT, this separation does not really matter, 203 

because values over the chosen threshold correspond only to rainy days.  The only difference 204 

is in the computation of the frequency of threshold crossing, estimated as the number of 205 

threshold exceedences divided by the total number of days: the total number of days is either 206 

the length of the season or the number of rainy days in the season.  The two are linked, 207 

however.  If u is the selected high threshold, nu the mean seasonal number of events 208 

exceeding u, ny the number of days per season, and nR the mean number of rainy days per 209 

season, then: 210 

nu

ny

=
nu

nR

nR

ny       (3) 211 

Now, to study extreme values with the POT approach using a GPD, it is first necessary to 212 

select a threshold u. The threshold chosen was different for the all-days case (98th percentile 213 

of the daily rainfall time series) and the rainy-days-only case (95th percentile of the non-zero 214 

values of the time series) and for each gauge.  The two methods described in the previous 215 

section each confirmed that the threshold values for both the all-days and the rainy-days-only 216 

precipitation time series could indeed be considered suitable.  Finally, it is necessary to ensure 217 

independence of the values above the selected threshold.  Since many rainfall events over the 218 

IP are due to frontal systems, one can expect consecutive days with high rainfall amounts 219 



exceeding the threshold. We apply the declusterization procedure defined in the previous 220 

section. For each season, the length of the new series ranged from 40 to 70.   221 

For the second approach, we work with the rainy-days-only time series denoted      , and 222 

we want to define a stationary time series      .  Then the stationarity of the extremes of 223 

      has to be tested using the previously described procedure. 224 

If the stationarity of the extremes of       cannot be rejected, how can the return level be 225 

estimated? Indeed, if v is the threshold for YR, then YR >v is equivalent to XR >w, with 226 

w=sR*v+mR, and mR and sR being the mean and standard deviation in the desired time period, 227 

respectively.  Then 228 

w= v=  229 

 w=v*sR                                                                                               (4) 230 

IRw=Iv  231 

where w and IRw are the corresponding values of the parameters over the threshold w, and v 232 

and Iv are those obtained for YR over the threshold v.  Then, if Iw is the mean frequency of 233 

exceedence of threshold w for all days, not only rainy days, one has ny*Iw=IRw*nR. Thus the 234 

N-year return level ZN becomes: 235 

      
  


        


   , with Iw being computed as IRw*nR/ny,  nR/ny being the mean 236 

proportion of rainy days and nR the mean number of rainy days in the desired time period, or 237 

     
  


                 (5) 238 

 239 



Now, to compute the 20-year RL in 2020, one has to estimate values of the mean and standard 240 

deviation in that year.  This was done by extrapolation from the observations, using linear 241 

regression in order to allow comparison with the first approach.  Also, linear regression for 242 

the daily values (mean) and the daily standard deviation computed as (XR(t)-       )
2 

was 243 

used to calculate the observed trends in mean and standard deviation for rainy days.  In 244 

practice, the future mean and standard deviation are estimated for the year 2020 from the 245 

linear extrapolations.  Thus, if mRf  and sRf  are these estimated mean and standard deviation 246 

values in the future period, then w=sRf*v+mRf as was stated above.  Lastly, a linear trend is 247 

fitted to the number of rainy days and extrapolated to 2020 to obtain the future expected 248 

number of rainy days.  The RLs are then calculated using these estimated future quantities, 249 

and the corresponding confidence intervals are constructed by the bootstrap procedure 250 

described in Parey et al. (2010) (see the Appendix). 251 

4. Data 252 

The study area was the Extremadura Region, in the southwest of the IP (Fig. 1), with a total 253 

area of 41 635 km². There is a contrasting orography: the extensive areas of the Rivers Tagus 254 

and Guadiana depressions have altitudes under 400 m a.s.l, while the Region's highest peak is 255 

over 2400 m a.s.l.  Three main mountain ranges in Extremadura lead to a complex distribution 256 

of rainfall over the study area. 257 

To detect trends in time series of extreme values requires highly reliable data.  Reliability 258 

is usually achieved by carefully selecting time series which involve no changes in location, 259 

instrument type, or measuring procedure.  In the present study, an additional criterion was that 260 

only records with no missing data were selected. 261 

The time series were taken from an extensive database of daily rainfall time series 262 

provided by the Spanish National Meteorology Agency (AEMET).  The set of series had to 263 



cover the orographic diversity of the Extremadura Region, leaving no large areas without 264 

coverage because the distribution of rainfall over the Region is very complex due mainly to 265 

the effects of altitude. 266 

The final choice was a set of 72 homogeneous daily rainfall time series corresponding to 267 

gauges as regularly spaced as possible over Extremadura.  Their locations are shown in Fig. 1. 268 

The study period was 1961 to 2010.  There are no gauges in the mountainous areas of 269 

Extremadura due to the absence of population and difficult accessibility. The altitudes of the 270 

chosen gauges range from 185 to 796 m a.s.l. 271 

Data homogeneity was checked using the R-based program RHTestV3, developed at the 272 

Climate Research Branch of the Meteorological Service of Canada, and available from the 273 

ETCCDMI Website (http://etccdi.pacificclimate.org/soft).  This program is capable of 274 

identifying multiple step changes at documented or undocumented change-points.  It is based 275 

on a two-phase regression model with a common linear trend (Wang 2003).  Homogeneity 276 

was tested on the monthly time series.  This analysis, together with the metadata of the 277 

stations, showed that none of the 72 time series had change-points significant at 5%, with all 278 

of them being homogeneous in the cited period of study. 279 

For this study of precipitation extremes over Extremadura, in view of the highly seasonal 280 

nature of the IP rainfall, each season was studied separately.  The working definition of the 281 

seasons was: winter – December, January, and February; spring – March, April, and May; and 282 

autumn – September, October, and November.  The summer months were not considered due 283 

to the lack of sufficient rainy days in most parts of Extremadura. As an illustration, Figure 2 284 

shows the spatial distribution of the threshold u (the 95th percentile of rainy day rainfall 285 

amounts) for the precipitation over Extremadura.  The patterns of the thresholds for the three 286 

seasons considered are quite similar, with higher values in the north and northeast 287 



corresponding to the more mountainous areas, and lower in the mid-south, corresponding to 288 

the least rainy area.  Autumn is the season with the highest values of the threshold, closely 289 

followed by winter.  The lowest values are for spring.  There is thus a clear difference in the 290 

rainfall distributions for each season, justifying the separation. 291 

5. Results 292 

This section presents the main results of calculating the 20-year RLs in 2020.  First, we shall 293 

deal with the preliminary results for the shape parameter in a stationary context.  Its value is 294 

zero for most of the observatories for all the seasons considered according to the likelihood 295 

ratio test at a 95% confidence level. 296 

5.1. Stationarity test 297 

In order to check the hypothesis that the non-parametric temporal evolutions are essentially 298 

linked to the evolutions of the mean and variance, the previously described methodological 299 

approach was used to test for the stationarity of the extremes of the standardized residuals 300 

computed from the rainy-day time series.  Figure 3 shows the distribution of the gauges that 301 

verified this stationarity at a 90% confidence level either totally or partially. 302 

The stationarity test was quite well satisfied for all three seasons considered.  In autumn, 303 

68 (94%) gauges satisfied the test for the scale parameter and the Poisson intensity, while 4 304 

satisfied it only for the Poisson intensity.  In winter, 62 (86%) gauges satisfied the test for the 305 

scale parameter and the Poisson intensity, and 10 satisfied it only for the Poisson intensity.  306 

Finally, in spring, 70 (97%) gauges satisfied the test for the scale parameter and the Poisson 307 

intensity, 1 gauge satisfied it for the Poisson intensity only, and 1 for the scale parameter only.  308 

When stationarity was rejected for the scale parameter, we systematically tested for a linear 309 

trend in the scale parameter of the standardized variable using the likelihood ratio test as done 310 



in method M1.  In each case, we found that the remaining non-parametric temporal evolution 311 

did not represent a significant increasing or decreasing linear trend.  This means that 312 

interannual variability was the main factor leading to rejection of stationarity. 313 

5.2. 20-year return levels in 2020 314 

5.2.1. Trends in mean, variance, number of rainy days, and POT parameters 315 

To present the values and the significance of the trends, Figure 4 shows for each season 316 

considered the spatial distribution of the linear trends in the number of rainy days and in the 317 

mean and standard deviation of the rainfall on those days.  Blue means negative and red 318 

positive.  Black triangles mean a trend that is significant at the 10% level, and open triangles 319 

mean the trend is not significant (at the 10% significance level according to a Mann-Kendall 320 

test).  Upward pointing triangles mean positive, and downward negative.  The size of the 321 

triangles represents the value of the trend for each gauge.  Table 1 summarizes the results. 322 

In autumn, the mean rainfall shows a decreasing trend for Extremadura as a whole, with 49 323 

negative trends, 22 of them being significant.  Although there are 23 positive trends, they are 324 

not appreciable in the figure because their values are too low.  The trend in standard deviation 325 

is clearly positive over most of Extremadura.  The number of significant trends of either sign 326 

in this statistical moment is low however – only 7 of the 50 positive trends and 2 of the 22 327 

negative trends.  Finally, the number of rainy days shows a positive behaviour, with 93% of 328 

the observatories having a positive trend, 29 of them being significant.  The impact of these 329 

opposite behaviours on the estimated future return level is of interest. 330 

In winter, mean and variance both show negative trends for the whole area studied.  For the 331 

mean, there are 48 significant negative trends of the 68 total, and, for the variance, there are 332 

37 significant negative trends of the 60 total.  None of the low number of positive trends is 333 



significant for either mean or variance.  The number of rainy days shows a different pattern in 334 

winter, with mainly positive trends for a great part of Extremadura, and 89% of these trends 335 

being significant. 336 

Spring shows a behaviour similar to that of winter for the three variables.  The mean and 337 

variance trends are mainly negative for Extremadura as a whole, except in the northwest 338 

where there are positive trends in the variance.  The number of rainy days shows a mainly 339 

positive behaviour with 16 of the 50 observatories showing a significant positive trend. 340 

Figure 5 shows the spatial distribution of the trends in the time-varying threshold used in 341 

method M1 and in the GPD scale parameter σ for each season considered.  One sees that the 342 

threshold trends, and to a lesser extent σ, appear closer to the trends in standard deviation than 343 

to those in the mean.  In particular, it seems that where the standard deviation trends are 344 

largest there is an additional trend in σ. 345 

5.2.2. Comparison of the 20-year RLs obtained for 2020 346 

The following step is to compare the future RLs in the year 2020 obtained for all days by 347 

extrapolating the trends in the threshold and the GPD scale parameter using method M1 (Z20-348 

f1) with the 2020 RLs obtained by extrapolating the linear trends in the daily mean and 349 

standard deviation of the amount of rain of rainy days and the number of rainy days using 350 

method M2 (Z20-f2).  Figure 6 shows the spatial distribution of these two sets of future 20-351 

year RLs in 2020 for each season considered.  One observes in the figure that there are 352 

especially differences in winter and spring.  Figure 7 shows the spatial distribution of the 353 

observatories with Z20-f2 inside the Z20-f1 CI (which was here estimated by bootstrapping to 354 

take the uncertainty of the trend into account).  First, it has to be mentioned that the Z20-f1 355 

CIs are larger than those of Z20-f2, as shown in Figure 8 for the three seasons considered.  356 

This clearly illustrates the greater uncertainty in the estimation of trends from a smaller 357 



sample in method M1.  Then, overall, for by far the greater part of the observatories, Z20-f2 358 

lies inside the Z20-f1 CI for all three seasons considered – all of the observatories in autumn, 359 

69 in winter, and 71 in spring.  Thus, although Z20-f2 is generally lower than Z20-f1, when 360 

the uncertainties are taken into account and the CIs overlap, the two values are equally 361 

possible. 362 

Looking in greater depth at the exceptions, one finds two different cases concerning the 363 

trends: 364 

- Trends in mean and variance are identified, but not in the scale parameter.  In these 365 

cases, although there might be a trend in the threshold, it is very low.  This is the case 366 

for one gauge in spring for which σ is constant but there is a significant decreasing 367 

trend in the mean, leading to Z20-f2 being significantly lower than Z20-f1. 368 

- A trend is identified in the scale parameter but not in the mean and variance.  For all 369 

such cases, the trend in the scale parameter is found to be very sensitive to slight 370 

changes in the threshold, leading to different results for the RL.  For the San Vicente 371 

de Alcántara gauge in particular (westernmost red point in Fig. 7-winter), with the 372 

98th percentile as threshold, one finds a significant trend in the scale parameter, and 373 

Z20-f1=111.11[75.88;151.35].  But, with the 98.5th percentile as threshold, one finds 374 

no significant trend in the scale parameter, and Z20-f1=78.35[48.73;107.97]. 375 

Finally, there are very special cases for which neither method seems to be well adapted.  376 

This may be so when there is an isolated maximum much greater than the rest of the 377 

exceedences, or there is a high frequency of exceedences located in just a short section of the 378 

whole time series.  Figure 9 illustrates this behaviour for Torrejoncillo in winter (northern red 379 

point in Fig. 7-winter).  From top to bottom, it shows the exceedences distribution, the 380 

temporal evolutions of the scale parameter, and a set of figures with the temporal evolutions 381 

and linear trends of mean, standard deviation, and number of rainy days.  The non-parametric 382 



evolution of the scale parameter is estimated using cubic splines with a smoothing parameter 383 

obtained by cross-validation since the extremes are independent, as stated before.  As can be 384 

seen, the exceedences are mainly located in the centre of the time series where they are the 385 

highest in value.  At the beginning of the period, the values are lower, and there are only a 386 

few exceedences at the end of the period.  In view of this distribution, one can understand the 387 

second plot which shows the temporal evolution of the scale parameter.  Nevertheless, the red 388 

line shows the great rise in the trend of the scale parameter – recall that the trend is linear for 389 

log(σ) – implied by the need for a parametric form seems to make no sense, or at least seems 390 

exaggerated such an important increasing trend.  Moreover, considering the bottom three 391 

plots, one observes that, although the mean and standard deviation increase at the same time 392 

as does the scale parameter, their trends are smoother, so that this approach is unable to take 393 

the isolated maximum of this case into account properly.  This leads to different results for the 394 

20-year RL: Z20-f1=169.31[94.00;335.74] and Z20-f2=79.30[66.31;98.92], with the latter no 395 

longer lying within the CI of the former.  In this case, it seems that all extremes do not have 396 

the same distribution, some being clearly out of the range of the others.  Such cases are really 397 

difficult to handle with classical EVT. 398 

6. Expected Changes in Return Levels 399 

In view of the comparative analysis above, the new approach using an extrapolation of the 400 

linear trends in mean, standard deviation, and number of rainy days to compute the 20-year 401 

RLs in 2020 seems at least coherent, and even better suited to some cases than the first 402 

method, with smaller confidence intervals.  It was therefore applied to study the possible 403 

changes in future RLs relative to the present values. 404 

Figure 10 shows the spatial distribution of the 20-year RLs in 2020 obtained with method 405 

M2 (Z20-f2) according to whether they lie or do not lie inside the CI of the present 20-year 406 



RLs obtained with the same method (Z20-p2).  In general terms, for the three seasons 407 

considered, there are more gauges with Z20-f2 outside the Z20-p2 CI – in particular, 67% for 408 

autumn, 76% for winter, and 72% for spring.  For these gauges, the direction of the change is 409 

different in autumn from that in spring and winter.  In autumn, there are 31 gauges with 20-410 

year RLs in 2020 higher than those of the present, while in winter and spring there are 47 and 411 

44 gauges, respectively, with future RLs lower than those of the present. 412 

Figure 11 shows the spatial distributions of the 20-year RLs.  The present RLs are on the 413 

left, the future ones in the centre, and the differences between the two on the right, with blue 414 

(red) meaning decreasing (increasing) values of the 20-year RLs in 2020. The main decrease 415 

in the 20-year RLs is in winter for the overall study area.  The gauges with a significant 416 

decreasing trend in variance systematically show a decrease in RL. This is reflected in a major 417 

decrease in the extreme rainfall events in winter.  Spring also shows a general decrease for the 418 

study area as a whole, but less than in winter, and more notable high values in the north.  The 419 

behaviour in autumn is different.  Much of the Extremadura Region shows an increase in the 420 

future RLs, particularly notable in the mid-north where the increase is greatest.  The areas of 421 

increase closely match those of increases in the standard deviation shown in Fig. 4.  This 422 

underlines the role that changes in variance play in changes in extremes.  There is a decrease 423 

in the east of the Region, as well as a slight decrease in the northeast.  In sum, if the observed 424 

trends actually continue linearly in the future, and considering the maps in the centre for the 425 

future RLs in the three seasons considered, autumn will clearly become the season with the 426 

greatest extreme rainfall events because of the major decrease in winter. 427 

7. Conclusions 428 

We have described an EVT study calculating non-stationary RLs of extreme rainfall in 2020 429 

for Extremadura (SW Spain) using a set of complete daily rainfall time series from 72 gauges 430 



for the period 1961-2010. For each time series, the exceedences over either a fixed or time-431 

varying threshold u were subjected to a 'runs declustering' procedure.  The resulting extreme 432 

rainfall data time series were then fitted with a flexible GPD, and the occurrence dates with a 433 

Poisson process in order to calculate the RLs. 434 

Two approaches to computing future rainfall RLs with POT were studied.  In the first, 435 

trends in the extremes considering all the days were identified, taking into account a time-436 

varying threshold based on a linear quantile regression and, when appropriate, a trend in the 437 

GPD scale parameter.  Then, in the second, we calculated the RLs considering only the rainy 438 

days, examining the impact of evolutions of the mean and variance and of the number of rainy 439 

days.  In this second case, we applied a novel adaptation of a stationarity test to rainfall that 440 

had been designed and used for temperature time series, finding that it was indeed satisfied 441 

for the majority of the gauges for all three seasons considered. 442 

The principal objective of the present work was to compare estimates of the 20-year RLs 443 

expected in 2020 using the aforementioned two methods.  The main conclusions that we can 444 

draw are: 445 

- Generally, the two approaches give comparable results for the future RLs, but there 446 

are some exceptions.  These are mainly due to the sensitivity to the threshold of the 447 

identification of the trend in the scale parameter, and may sometimes lead to 448 

unrealistic results.  The use of the mean and variance constitutes a more robust 449 

approach when the identification of a trend in the GPD scale parameter is difficult and 450 

very sensitive to the threshold choice.  It also leads to reduced CIs. 451 

- There are special cases for which both approaches seem to fail.  They give different 452 

values for the future RLs, but probably neither of them is reliable. 453 

- The future evolution of the RLs varies from season to season.  There are decreases in 454 

winter and spring, and increases in autumn.  The evolution of the variance was seen to 455 



play a major role in the estimation of the extremes since the increases in autumn 456 

closely matched the increases in the variance.  There was relatively little evolution in 457 

the number of rainy days, and it had the correspondingly least impact.  These results 458 

showed a decrease in extreme rainfall events in the near future (2020), with the 459 

central-eastern part of the Extremadura Region showing the greatest decrease for both 460 

winter and spring.  In autumn however, the increasing trends in both mean and 461 

variance lead to the opposite behaviour – an increase in extreme rainfall events, with a 462 

wide area showing changes in the 20-year RLs in 2020 that range from +5 to +15 mm. 463 

The present results for the RLs in Extremadura are consistent with previous findings 464 

covering Spain showing a decrease in spring and winter (Goodess and Jones 2002; Rodrigo 465 

and Trigo 2007; García et al. 2007; Acero et al. 2011) and an increase in autumn (García et al. 466 

2007; Acero et al. 2011). 467 

The negative trends in this southwestern part of the IP could be related to the prevailing 468 

positive phase of the North Atlantic Oscillation (NAO) during the last few decades.  Since 469 

this oscillation is known to influence rainfall over the southwest of the IP (Rodríguez-Puebla 470 

et al. 1998; García et al. 2002; Trigo et al. 2004), it could be the cause of the decreasing 471 

winter rainfall for this region.  As mentioned above, extrapolating observed trends does not 472 

allow the two signals to be separated, and complementary analyses with the aid of climate 473 

simulations might be necessary to better understand the impact of climate change on extreme 474 

rainfall in the region. 475 

The results for spring and autumn are in agreement with those reported by Fernández-476 

Montes et al. (2014) for the relationship between extreme precipitation days and circulation 477 

types.  They find a decrease in extreme precipitation days in the west of the Iberian Peninsula 478 

mainly due to a decrease in the frequency of cyclonic southwesterly flow.  But in autumn, 479 



extreme precipitation becomes more frequent (as in the present study) due to the 480 

northwesterly flow. 481 

It was important to carry out this type of study for a small region and to consider different 482 

seasons so as to better understand the possible evolution of extreme rainfall events.  Also, the 483 

procedure that was newly tested in this work was found to be reasonable for the estimation of 484 

future extremes, opening up the possibility of using the evolution of mean and variance as 485 

projected by climate models to anticipate possible changes in a more distant future. 486 

There are two situations for which the application of EVT does not seem appropriate: first, 487 

for the summer season in the study area because it includes very few rainfall events, and 488 

second, when a time series presents exceedence values or exceedence frequencies well above 489 

(or below) the other values.  These cases will be further analysed in future work in order to 490 

investigate other possible ways of inferring rare levels in such cases 491 
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 599 

Appendix: Bootstrap procedures for confidence intervals 600 

Trends in the parameters of the GPD: 601 

A distribution of 20-year RLs in 2020 is computed by executing the following steps 500 602 

times: 603 

- Simulate a random number of days with rainfall over the linear threshold u(t) by a 604 

Poisson process with the observed intensity. 605 

- Compute the corresponding rainfall amounts for these exceedence dates as      606 

             , with     being the residuals of the observed exceedences, determined 607 

by sampling among the      with replacement. 608 

- Identify trends in the scale parameter of this new sample. 609 

- Extrapolate the trends to derive a future 20-year RL. 610 

Trends in mean, variance, and number of rainy days: 611 

Again, a distribution of the future 20-year RLs is constructed by 500 re-samplings in the 612 

following steps: 613 

- Simulate mean seasonal numbers of rainy days as the observed numbers + a randomly 614 

chosen shift from the linear trend. 615 

- Compute the corresponding rainfall amounts as            where     is obtained by block 616 

bootstrapping YR values (with a block of length 10, to manage temporal dependency). 617 



- Compute the 20-year RL of     and the future mean, variance, and number of rainy days 618 

by extrapolating linear trends fitted to the new sample. 619 

- Derive the future 20-year RL. 620 



======= TABLE 1 ======= 

Table 1. For the three seasons considered, the number of positive or negative trends in the 

mean, variance, and number of rainy days, with the number of significant trends of each sign 

in parentheses. 

 Mean Variance Number of rainy days 

 +  -  +  -  +  -  

Autumn 23 (4) 49 (22) 50 (7) 22 (2) 67 (29) 5 (0) 

Winter 4 (0) 68 (48) 12 (0) 60 (37) 46 (41) 26 (7) 

Spring 10 (1) 62 (38) 20 (1) 52 (11) 50 (16) 22 (2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



======= FIGURE CAPTIONS ======= 

Figure 1. Location of the study area (Extremadura) in the Iberian Peninsula, and the spatial 

distribution of the gauges used with the correspondent altitude showed in the scale. 

 

Figure 2. Spatial distribution of the 95th percentile of rainy-day rainfall amounts (mm) used 

as threshold. 

 



Figure 3. Spatial distribution of the observatories that satisfy the stationarity of the extremes 

of the residuals computed from the rainy-day time series. 

 

 

 

 

 

 

 

 

 

 



Figure 4. Spatial distribution of the linear trends in mean, standard deviation, and number of 

rainy days for the three seasons considered.  Solid triangles mean a trend significant at the 

10% level.  Open triangles mean a non-significant trend (according to a Mann-Kendall test at 

10%).  Upward triangles mean a positive trend, and downward negative.  The size of the 

triangles represents the value of the trend for each gauge. 

 

 

 

 

 

 

 

 

 

 



Figure 5. Linear trends in the time-varying threshold used in method M1 (left) and in the GPD 

scale parameter (right) for the three seasons considered.  Upward triangles mean a positive 

trend, and downward negative.  The size of the triangles represents the value of the trend for 

each gauge. 

 

 

Figure 6. Spatial distribution of the 20-year RLs (Z20) in mm for the future climate in 2020, 

calculated from the all-day time series (left) using method M1 and from the rainy-days-only 

time series (right) using method M2. 



 



Figure 7. Spatial distribution of the 20-year RLs in 2020 obtained through the stationarity test 

(Z20-f2) that lie or do not lie inside the CI of the 20-year RLs obtained through extrapolation 

of the scale parameter (Z20-f1). 

 

 

 

Figure 8. Spatial distribution of the width of the 20-year RL (Z20) confidence intervals (mm) 

in 2020, calculated from the all-day time series (left) using method M1 and from the rainy-

days-only time series (right) using method M2. 



 



Figure 9. For Torrejoncillo gauge in winter (northernmost red point in Fig. 9-winter): (top) 

exceedences (dots) of the time-varying 98th percentile threshold (line); (centre) trend in the 

scale parameter (non-parametric in black, parametric in red); (bottom) a set of three plots for 

the mean, standard deviation, and number of rainy days (seasonal values in black, linear 

trends in red). 

 

 



Figure 10. Spatial distribution of the 20-year RLs in 2020 obtained through the stationarity 

test (Z20-f2) that lie or do not lie inside the CI of the present 20-year RLs obtained with the 

same method (Z20-p2). 

 

 

 

 

 

 

 

 



Figure 11. Spatial distribution of the 20-year RLs (mm) for each season considered for the 

present time (left) and future time (centre), and the differences between the present and the 

future cases (right). 

 


