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Abstract

Based on @revious study for temperatyr@ new method for the calculation of rstationary

return levels for extreme rainfall is described and appliedsttuthwestern Spanish Regian
Extremadurausingthe peaksoverthreshold approach. Bothl-alays and rainglaysonly

datesets were considereshdthe 20year return levels expected in 2020 were estimated taking
different trends into account: first, for all days, considering a-tiefgendent threshold and

the trend in the scale parameter of @eneralized Pareto Distributipand second, for rainy

days only, considering the role of how the mean, variance, and number of rainy days evolve.
Generally, the changes in mean, variance and number of rainy days can explain the observed
trends in extremes, and their extrapolation gives more robust estimalifoesesults point to

a decrease of futureturn levelsn 2020 for spring and winter, but an increase for autumn.

Keywords: Extreme Value Theory, Return levels, Extreme Rainfall, Peaks Over Threshold
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1. Introduction

The Fifth Assessment Report of tkergovernmental Panel on Climate Change (IPCC)
provides likelihood forecasts about climate change, one of which is an increase in the
frequency, intensity, and/or amount of heavy rainfall over most land areas (IPCC 2013).
Extreme rainfall events causevere damage to human populations through ecological
disasters, destruction of infrastructure, and loss of life. In 2013, a large area in central Europe
received high amounts of precipitatid@everal places received as much as their normal
monthly precijtation within just one or two days. The excess of precipitation resulted in high
water levels in such European rivers as the Danube, Elbe, and Rhine. Thisasvieeen
extensively analysed

(http://cib.knmi.nl/mediawiki/index.php/Central_European_flogdi2013.

Extremes are commonly defined as rare return levels estimated using the statistical
Extreme Value TheorfEVT). For example, according to the study of Van den Besselaar et
al. (2013) for the period 1952010, a reduction in the return period oate 1-day and &day
rainfall has been demonstrated from 19910 to 19942010 in northern Europe. This
decreasing trend in the return period is indicative of increasing precipitation extremes and is
coherent with previous extreme precipitation studie®igog the whole of Europe (Klein

Tank et al. 2003; Alexander et al. 2006).

For the Iberian Peninsula (IP), recent work points to a decreasing trend in the values of
extreme rainfall for winter and spring (Garcia et al. 2007; Acero et al. 2011). Hovrgut
there is an increase in rare extreme precipitation events corresponding to long return periods
over the southern and easintral IP (Acero et al. 2011). Other work for the IP has focused
on particular regions in Spain. For instance, Begueria @(l1) showed for the northeast a

significant decrease in extreme rainfall intensity in winter, but an increase in spring.
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The present study intends to refine these results to a smaller regional scale using and
comparing two approaches to compute nearréuQyear return leveléRLs) for daily
rainfall. The extrapolation to the near future, namely around year 2020, is based here on the
identification and extrapolation of recent observed trends rather than the use of climate model
resultsessentially beasse practitioners who have to estimate RLs for operational purposes
often only have at their disposal observational {seges of the studied variable at the
desired location. The limitations of such an approach have, however, to be borne in mind.
The generally linear trends identified from observed tisegies and extrapolated to the future
involve both climate change and inemnual variability signals present in the observation
period considered. These are linked, and thus very difficult to sepsodteat extrapolation
must be limited to the very near future for which the assumption of the continuation of an
unchanged trend may be reasonable. Therefore, if the values obtained are used operationally,
then such estimates have to be updated regutadrder to revise any decisions that have

been taken.

Following the first papers dealing with ngtationarity in natural extreme events (Parey et
al. 2007, 2010) there have been recently a large amount of literature on these subjects,
especially concerning hydrology (see Bayazit 2015 for a review). There are still discussions
around the pertinence ekplicitly taking nonstationarity into account in the estimations
(Seinaldi 2015, Senaldi and Kilsby 2015, Montanari and Koutsoyiannis 2014,
Koutsoyiannis and Montanari 2015). Nevertheless, different definitions and estimations of
non-stationary returmevels or return periods have been proposed and compared (Rootzen and
Katz 2013, Cheng et al. 2014, Obeyselerd Sala014, Prosdocimi et.a2014, Read and
Vogel 20152016, 2016bh Silva et al. 2015), the trends being estimated either with time or
other physically based covariates. The aim here is not to discuss the precise estimation of a

future return level or return period but rather to test another wanpdéllingnon
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stationarity. The 2@ear return levels are used as an illustration of therdifices, and are

just computed as in the stationary context with the values of the extreme value distribution
parameters obtained in 2020 with the different extrapolation methods. However, the different
trend modeling can be used to compute return leveistorn periods according to either of

the definitions proposed in the literature. Furthermore, one advantage of the proposed
approach based on trends in mean and variance of the whole sample over the more classical
use of trends in the extreme value wlgttion parameters is that these last trends are

identified in smaller samples consisting of the extreme events only, and may not reflect some
significant trends even though significant evolution may have been detected for the mean
and/or variance. Untihow, no similar work had been done for precipitation time series

through a systematic study of the stationarity test consisting in testing the stationarity of the
extremes once trends in mean and variance have been removed. Such a study could be of
greatinterest for the calculation of future extreme events, especially because it allows the use
of climatemodel projected changes in mean and variance, which are generally more reliable

than those of the extremes, as well as the use of other covariatashan t

Following Parey et al2010, two approaches will be compared. The first one is the
commonly used application of the statistical EVT considering trends in the parameters of the
distributions (Friederichs and Hense 2007, 2008; Friederichs 2010; (Rott2@12).
SecondlyParey et al(2010 or Acero et al(2014) provide another approach to estimating
future temperature extremes from the generally stationary extremes of a centred and
normalized variable and the changes in mean and variance of the whole dataset. This
procedure was shown to take better accounhahges in the mean and variance, especially
the latter, than the commoner use of the trends in the parameters of the extreme value model.

In this paperthe application of thisecondapproactto rainfall time seriesvill be studiedand
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the results compadeo the extrapolation of trends in the extreme value distribution

parameters.

The organizatin of the paper is as followshe general methodological framework is
described in Se@ and its application to the special case of rairfale seriesn section3.
The data that were selected amlysed are described in SecTHe main results are
presented and discussed in Sec. 5. The expected future changes in the return levels are then

presented in Sec. 6, and the conclusions are drawn in.Sec. 7

2. Methods

In this section, after reindingthe conditions of application &VT and, in particular, the
peaksoverthreshold POT) method chosen here, the two approaches to investigating extreme

levels in a norstationary contexwill be presented.

2.1 General framework

We shall apply EVT taveaky dependen(quickly decreasing correlationgime series
with seasonalityin any characteristics as mean, variaaoed extreme parametees)d which
can be nosstationary To handle this, we first tackieasonalities by working separately for
each seasorPOT is usually appdto independendbservations which is not the case here
Theexceedencegenerallyoccur in clusters, making it necessary to apply a declustering
procedure to identify approximayeihdependent cluster maxima. The scheme that we used is
known asruns declusteringLeadbetter et al. 1989). In our work, clusters are separataid by
leastoneday with value below the threshold. Then, for each cluster, the day with the
maximumvalue is chosen, and a series of th€sdays (whereC is the number of clusters) is
considered, together with their dates and the intensity @xteedencelhen b apply POT

theoryit is necessary to find goodbalance between the two approximations made when



109 using EVT zthe probabilistic approximation which needs to define a threshold high enough
110 to approximate the far tail distribution as a Generalized Pareto Distribution @id@pe

111  corresponding dates didse excessesa Poisson process whose intensity is another

112  parameter of the POT methaahd the statistical estimation procedure which demands a

113 sufficient number of values to ensure a sufficiently robust @RDPoissofit. The GPD has
114  two parameters UKhe scale parameter, athe shape parameter (Coles 2001yo methods
115 were used to check thtte thresholds were reasonafm®les2001). First, we studied the

116 stability of the shape parameter when fitting the GPD over a range of thresholdsecénd,

117 the mean residual life plots were considered.

118 It is usual to refer to extreme values in terms of quantiles or return leveld\-yida
119 return levelZy is the level expected to be exceeded once eNgmars in a stationary context.

120 For the POT method, it is expressed, depending on the value of the shape parameter, as

121 R L —EPZ %o,s: </Ltr (1)
122 or
123 < L QE- &k0J, +:;/ Fsog</ Mr (2)

124  whereny is the number of observations per season/aiscthe Poisson intensity which is the
125 probability of an individual observation exceeding the threshold likelihood ratio test is

126  systematically applied to check whether an exponential distribug)) €an beused.

127 2.2 Extrapolation of trends in the GPD parameters

128 The first approach to computing future RLs consistdefining a timedependent threshold
129 toinfer nonstationarity. It is based on a linear quantile regression (Koenker 2005) of the

130 threshold chosen as a high percentile ofdis&ibutionandwas alsaised in other works (e.g.
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Roth et al. 2012)We test that the dates exceedenceoverthe threshold after declustering is

a stationary Poisson process with a likelihood ratio test at 5% significance level (we tested
()= @&ersus I(t)= G- Pusing the likelihood ratio testThe GPD is fitted using the

maximum likelihood criterion, and the trend of the GPD scale parameter is tested using the
likelihood ratio test with a 5% significanéevel (Coles 2001) The confidence interval is
computed here by bootstrapping in orderatcetthe uncertainty in the trends into account.

The bootstrapping procedure is detaileth@Appendix.

In this approaclvased only on extremesnce linear trends have been identified in the
threshold and in the logarithm of the GPD scale parameter, they can be extrapolated to infer

those parameters in 2020 and compute the correspondiyep?®RL.

2.3 Extrapolation of trends in mean and viance

Another idea proposed by Parey ef(a010 is to use trends in the main characteristics of the
whole distribution rather than trends in extreme values dilg.idea is that in this kind of
situation thenon-stationarityof extremes is in a statistical framewankinly explainedoy

that of the mean and the variand® do so, it is necessary to find a simple enough
transformation of the whole dataset in order to get a pragésstationary extremedn the

following this process is named the residual process and is defined later.

Parey et al. (2010, 2013) and Acero e(2014) have shown that, for temperature,
stationarity of the extremes can be obtained by removingpacametric temporal evolutions
of the mean anthe standard deviation from the original time series. -plarametric
temporal evolutions are chosen in order to capture in the santi@ear(in generalfrend,all
thenon-stationarity. For instancé climate the effect of climate change often cmsidered
as linear at least on short peri@sl interannual variability signals such as the North

Atlantic Oscillation (NAO) cannot, in general, be associated with a linear tfemelglobal



155 signal is highly non linear. The trend estimatisone bydcal regression (LOESS) with an

156 optimal smoothing parameter given by a modified partitioned wralg$ation procedure

157 (Parey et al. 2013). The stationarity of the extremes of the obtained residuals is then

158 subjected to a test which checks whether tharpaters of the extreme value distribution

159 fitted to the extremes of the residuals can be considered constant. The principle of the test can

160 be summarized as follows:

161 1. Compute a nonparametric trend for the mean of the observed timeX{eriesing
162 LOESS: IY:P
163 2. Compute the variance &8 =R L :: :P, F IY:P;%and its nonparametric trend
164 @ : P using the same LOESS

) Nig?&:¢; i .
165 3. ComputeY PR, LT@' , Where; : P, is the residual process
166 4. Estimate+ P and &1 P, the frequency of the Poisson and the scale petearof
167 the GPD respectively the two followingways
168 a. As constantin time:, &)
169 b. As nonparametric functions of time P, using Kernel density for the intensity
170 of the Poisson an@l P, using cubic splines for the scale parameter of the GPD
171 c. And their distances: +L kiQDi/ZkﬁP, F ho@dg\%é éL king/z:é'JP, F
172 &); @dgvg, D being the number of days
173 5. Compute 500 samples of the same numbexoéedencewith the constant

174 parametersy and & and the 500 distances between the parameters estimated as



175 congant or time varying from these 500 sampM#& get an estimate of the

176 distribution of éand +in the stationary case

177 6. Situate the distances+tand é&in the distribution of distances previously obtained
178 froma stationary distribution to accept or reject the hypothesis

179 7. Remark In the same wayve can do the same simulation okimg + P, and & P,

180 instead of 4 and & and thus we can compute the power of the test of stationarity
181 of extremes.

182 8. Remark:We cannot get a residual process with stationarity properties if we take
183 linear trends instead of the nparametic ones.

184 2.4 Summary

185 In sum, two different approaches were taken to calculating near future RLs:

186 - M1: Alinear threshold is taken, and, as the objective is to study the temporal change
187 in extremesthe GPD parameters are allowed to vary with time according to the

188 following widely accepted trend modeft)= /and log )= l¢+ W*t. Once the

189 trend in ) is known (and significant according to a likelihood ratio test at 5%), its

190 linearextrapolation to 2020 is used to calculate the/@8r RLs in that year (Z21).

191 - M2: Aresidual processs constructed whose extremes can be considered as stationary
192 (a test is applied to check for this). Then, to calculate thged0RLs in 2020 (Z20

193 f2), the daily mean and standatelviationin that year are estimated byear

194 extrapolation of the linedarendsestimated from observations

195 Finally, to draw maps of the spatial distribution of trends and return levels, some

196 parameters are spatially interpolated by a kriging procedure.



197 3. Application to rainfall time series

198 Precipitation is a complex variable in that it conflates two distinct process=zsirrence

199 (rain or no rain) and rainfall (quantity of rain when it rains). Therefore, when precipitation is
200 averaged for all the days in a season, the result is a mig oiithprocesses, and a change in

201 mean may be due either to changes in the quantity of rain, a change in the distribution of rainy
202 days, or both. This is why we preferred to consider rainy days only to compute the mean and
203 the variance. For the applicatiof classical POT, this separation does not really matter,

204 because values over the chosen threshold correspond only to rainy days. The only difference
205 is in the computation of the frequency of threshold crossing, estimated as the number of

206 thresholdexceedence divided by the total number of days: the total number of days is either
207 the length of the season or the number of rainy days in the season. The two are linked,

208 however. Ifuis the selected high threshoig,the mean seasonal number of events

209 exceedingu, ny the number of days per season, agpthe mean number of rainy days per

210 season, then:

N,_ Ny Nk
211 Ny Ne Ny (3)
212 Now, to study extreme values with the POT approach using a GPD, it is first necessary to

213 select a threshold The threshold chosen was different for thedalys case (98th percentile

214  of the daily rainfall time series) and the raitdgysonly case (95th peentile of the norzero

215 values of the time series) and for each gauge. The two methedsbed in the previous

216 sectioneach confirmed that the threshold values for both theaalé and the raingtaysonly

217  precipitation time series could indeed be comgd suitable Finally, it is necessary to ensure

218 independence of the values above the selected threshold. Since many rainfall events over the

219 |IP are due to frontal systems, one can expect consecutive days with high rainfall amounts
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exceeding the thresltb We apply thaleclusterzationprocedure defined in the previous

section For each season, the length of the new series ranged from 40 to 70.

For the second approachie work with the raimdaysonly time series denotedg: B, and
we want to define a stationary time serigs P. Then the stationarity of the extremes of

;e P has to be tested using the previgudscribed procedure

If the stationarity of the extremes ¢f : P,.cannot be rejected, how can the return |&eel
estimated? Indeed, ¥fis the threshold foYg, thenYg >V is equivalent to{g >w, with
W=sg*v+mg, andmg andsg being the mean and standard deviation in the desired time period,

respectively. Then
w=[= [
Vo= \(*sR (4)
lrw=1v

where I andlgy are the corresponding values of the parameters over the threstarid \{
andl, are those obtained fok over the threshold. Then, ifl,, is the mean frequency of
exceedencef thresholdw for all days, not only rainy days, one hmgdw=I ry*ng. Thus the

N-year return level g becomes:

< LS E—;‘ K0 J, o[ F sCwith I being computed dsw*nr/ny, Ns/ny being the mean

proportion of rainy days angk the mean number of rainy days in the desired time period, or

<(;LSE—[él c0Jg+qa;! Fsg (5)
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Now, to compute the 2@ear RL in 2020, one has to estimate values of the mean and standard
deviation in that year. This was done by extrapolation from the observations, using linear
regression in order to allow comparison with the first approach. Wisayr regression for

the daily values (mean) and the daily standard deviation compu(Eg(&s <\, : P)*was

used to calculate the observed trends in mean and standard deviation for rainy days. In
practice, the future mean and standard deviation are estimated for the year 2020 from the
linear extrapolations. Thus,nfk; andsgs are these estimated meardatandard deviation
values in the future period, therssg#v+mgsas was stated above. Lastly, a linear trend is
fitted to the number of rainy days and extrapolated to 2020 to obtain the future expected
number of rainy days. The RLs are then calculagdg these estimated future quantities,
and the corresponding confidence intervals are constructed by the bootstrap procedure

described in Parey et al. (2010) (seeAppendix).
4. Data

The study area was the Extremadura Region, in the southwest of the IP (Fig. 1), with a total
area of 41635 kmz2. There is a contrasting orography: the extensive areas of the Rivers Tagus
and Guadiana depressions have altitudes under 400 m a.s.|, wiitlegilba's highest peak is

over 2400 m a.s.l. Three main mountain ranges in Extremadura lead to a complex distribution

of rainfall over the study area.

To detect trends in time series of extreme values requires highly reliable data. Reliability
is usuallyachieved by carefully selecting time series which involve no changes in location,
instrument type, or measuring procedure. In the present study, an additional criterion was that

only records with no missing data were selected.

The time series were takemm an extensive database of daily rainfall time series

provided by the Spanish National Meteorology Agency (AEMET). The set of series had to



264  cover the orographic diversity of the Extremadura Region, leaving no large areas without
265 coverage because thetdisution of rainfall over the Region is very complex due mainly to

266 the effects of altitude.

267 The final choice was a set of 72 homogeneous daily rainfall time series corresponding to
268 gauges as regularly spaced as possible over Extremadura. Their logsgishewn in Fig. 1.
269 The study period was 1961 to 2010. There are no gauges in the mountainous areas of
270 Extremadura due to the absence of population and difficult accessibility. The altitudes of the

271 chosen gauges range from 185 to 796 m a.s.l.

272 Data homogeeity was checked using thelidsed program RHTestV3, developed at the
273 Climate Research Branch of the Meteorological Service of Canada, and available from the
274 ETCCDMI Website (http://etccdi.pacificclimate.org/soft). This program is capable of

275 identifying multiple step changes at documented or undocumented cpairgs. It is based
276 on a twoephase regression model with a common linear trend (Wang 2003). Homogeneity
277 was tested on the monthly time series. This analysis, together with the metadata of the
278 stations, showed that none of the 72 time series had clpanigis significant at 5%, with all

279 of them being homogeneous in the cited period of study.

280 For this study of precipitation extremes over Extremadura, in view of the highly seasonal
281 nature of the IRainfall, each season was studied separately. The working definition of the

282 seasons was: wintekDecember, January, and February; spritMarch, April, and May; and

283 autumn xSeptember, October, and November. The summer months were not considered due
284 tothe lack of sufficient rainy days in most parts of Extremadura. As an illustratiameRig

285 shows the spatial distribution of the thresholghe 95th percentile of rainy day rainfall

286 amounts) for the precipitation over Extremadura. The patterns tirdsholds for the three

287 seasons considered are quite similar, with higla&ies in the north and noethst



288 corresponding to the more mountainous areas, and lower in thsontia, corresponding to
289 the least rainy area. Autumn is the season with tHeebktgralues of the threshold, closely
290 followed by winter. The lowest values are for spring. There is thus a clear difference in the

291 rainfall distributions for each season, justifying the separation.

292 5. Results

293 This section presents the main resultsal€ulating the 2¢ear RLs in 2020. First, we shall
294  deal with the preliminary results for the shape parameter in a stationary context. Its value is
295 zero for most of the observatories for all the seasons considered according to the likelihood

296 ratio testat a 95% confidence level.

297 5.1. Stationarity test

298 In order to check the hypothesis that the-parametric temporal evolutions are essentially
299 linked to the evolutions of the mean and variance, the previously described methodological
300 approach was used test for the stationarity of the extremes of the standardized residuals
301 computed from the rainglay time series. Figure 3 shows the distribution of the gauges that

302 verified this stationarity at a 90% confidence level either totally or partially.

303 The statimarity test was quite well satisfied for all three seasons considered. In autumn,
304 68 (94%) gauges satisfied the test for the scale parameter and the Poisson intensity, while 4
305 satisfied it only for the Poisson intensity. In winter, 62 (86%) gaugesisdtibe test for the

306 scale parameter and the Poisson intensity, and 10 satisfied it only for the Poisson intensity.
307 Finally, in spring, 70 (97%) gauges satisfied the test for the scale parameter and the Poisson
308 intensity, 1 gauge satisfied it for the Psma intensity only, and 1 for the scale parameter only.
309 When stationarity was rejected for the scale parameter, we systematically tested for a linear

310 trend in the scale parameter of the standardized variable using the likelihood ratio test as done
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in method M1. In each case, we found that the remainingpazametric temporal evolution
did not represent a significant increasing or decreasing linear trend. This means that

interannual variability was the main factor leading to rejection of stationarity.

5.2. 20year return levels in 2020

5.2.1. Trends in mean, variance, number of rainy days, and POT parameters

To present the values and the significance of the trendsieddghows for each season
considered the spatial distribution of the linear trends in the number of rainy days and in the
mean and standard deviation of the rainfall on those days. Blue means negative and red
positive. Black triangles mean a trend thaigsiicant at the 10% level, and open triangles
mean the trend is not significant (at the 10% significance level according to akadall

test). Upward pointing triangles mean positive, and downward negative. The size of the

triangles represents thalue of the trend for each gauge. Table 1 summarizes the results.

In autumn, the mean rainfall shows a decreasing trend for Extremadura as a whole, with 49
negative trends, 22 of them being significant. Although there are 23 positive trends, they are
notappreciable in the figure because their values are too low. The trend in standard deviation
is clearly positive over most of Extremadura. The number of significant trends of either sign
in this statistical moment is low howeveonly 7 of the 50 positie trends and 2 of the 22
negative trends. Finally, the number of rainy days shows a positive behaviour, with 93% of
the observatories having a positive trend, 29 of them being significant. The impact of these

opposite behaviours on the estimated futetarn level is of interest.

In winter, mean and variance both show negative trends for the whole area studied. For the
mean, there are 48 significant negative trends of the 68 total, and, for the variance, there are

37 significant negative trends of tB6 total. None of the low number of positive trends is



334 significant for either mean or variance. The number of rainy days shows a different pattern in
335 winter, with mainly positive trends for a great part of Extremadura, and 89% of these trends

336 being signiicant.

337 Spring shows a behaviour similar to that of winter for the three variables. The mean and
338 variance trends are mainly negative for Extremadsra whole, except in the nontbst
339 where there are positive trends in the variance. The number otdaysyshows a mainly

340 positive behaviour with 16 of the 50 observatories showing a significant positive trend.

341 Figure5 shows the spatial distribution of the trends intthre-varying threshold used in

342 method M1 and in the GPD scale paramelfar each seson considered. One sees that the
343 threshold trends, and to a lesser extém@ippear closer to the trends in standard deviation than
344  to those in the mean. In particular, it seems that where the standard deviation trends are

345 largest there is an additiontaénd in 1

346 5.2.2. Comparison of the 2@ear RLs obtained for 2020

347 The following step is to compare the future RLs in the year 2020 obtained for all days by
348 extrapolating the trends in the threshold €relGPD scale parameter usingthrod M1 (Z20

349 f1) with the 2020 RLs obtained by extrapolating the linear trends in the daily mean and
350 standard deviation of the amount of rain of rainy daystlh@sumber of rainy days using

351 method M2 (Z26f2). Figure6 shows the spatial distribution tifese two sets of future 20

352 year RLs in 2020 for each season considered. One observes in the figure that there are
353 especially differences in winter and spring. Fighishows the spatial distribution of the

354 observatories with Z2€ inside the 221 CI (which was here estimated by bootstrapping to
355 take the uncertainty of the trend into account). First, it has to be mentioned that4tie Z20
356 Cls are larger than those of Z8) as shown in Figre 8 for the three seasons considered.

357 This clearly illustrées the greater uncertainty in the estimation of trends from a smaller
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sample in ,ethod M1. Then, overall, for by far the greater part of the observatoried2220
lies inside the Z2@1 CI for all three seasons considereall of the observatories in taumn,
69 in winter, and 71 in spring. Thus, although Z20s generally lower than Z2f1, when
the uncertainties are taken into account and the Cls overlap, the two values are equally

possible.

Looking in greater depth at the exceptions, one finds ffferent cases concerning the

trends:

- Trends in mean and variance are identified, but not in the scale parameter. In these
cases, although there might be a trend in the threshold, it is very low. This is the case
IRU RQH JDXJH LQ V S Unistant buRtherZ i€ & Bighificabht\deErBasing
trend in the mean, leading to ZEDbeing significantly lower than Z2f1.

- Atrend is identified in the scale parameter but not in the mean and variance. For all
such cases, the trend in the scale parameter is found to be very sensitive to slight
changes in the threshold, leading to different results for the RL. For the SaneVic
de Alcantara gauge in particular (westernmost red point in7Rignter), with the
98th percentile as threshold, one finds a significant trend in the scale parameter, and
Z20-f1=111.11[75.88;151.35]. But, with the 98.5th percentile as thresholdinoise

no significant trend in the scale parameter, and4208.35[48.73;107.97].

Finally, there are very special cases for which neither method seems to be well adapted.
This may be so when there is an isolated maximum much greater than the rest of the
exceedence or there is a high frequencye{ceedencelocated in just a short section of the
whole time series. Figuillustrates this behaviour for Torrejoncillo in winter (northern red
point in Fig.7-winter). From top to bottom, it shows tagceedencedistribution, the
temporal evolutions of the scale parameter, and a set of figures with the temporal evolutions

and linear trends of mean, standard deviation, and number of rainy days. e aoetric
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evolution of the scale parameter ismstted using cubic splines with a smoothing parameter
obtained by crossalidation since the extremes are independent, as stated before. As can be
seen, thexceedenceare mainly located in the centre of the time series where they are the
highest in vale. At the beginning of the period, the values are lower, and there are only a

few exceedenceat the end of theeriod. In view of this distribution, one can understand the
second plot which shows the temporal evolution of the scale parameter. Negsithelred

line showghe great rise in the trerad the scale parametetrecall that the trend is linear for

log() implied by the need for a parametric form seems to make no sense, st aetras
exaggerateduch an important increasing trentlloreover considering the bottom three

plots, one observes that, although the mean and standard deviation increase at the same time
as does the scale parameter, their trends are smoother, so that this approach is unable to take
the isolated maximum of thzase into account properly. This leads to different results for the
20-year RL: Z20f1=169.31[94.00;335.74] and ZZA=79.30[66.31;98.92], with the latter no
longer lying within the CI of the formeiin this case, it seems that all extremes do not have

the same distribution, some being clearly out of the range of the others. Such cases are really

difficult to handle with classical EVT.

6. Expected Changes in Return Levels

In view of the comparative analysis above, the new approach using an extrapl&t®n
linear trends in mean, standard deviation, and number of rainy days to computg/dae 20
RLs in 2020 seems at least coherent, and even better suited to some cases than the first
method, with smaller confidence intervals. It was therefore apjlistlidy the possible

changes in future RLs relative to the present values.

Figure D shows the spatial distribution of the-g8ar RLs in 2020 obtained withathod

M2 (Z20-f2) according to whether they lie or do not lie inside the CI of the presere220
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RLs obtained with the same method (£22). In general terms, for the three seasons
considered, there are more gauges with-220utside the Z2(p2 CI +in particular, 67% for
autumn, 76% for winter, and 72% for spring. For these gauges, the dirgictienchange is
different in autumn from that in spring and winter. In autumn, there are 31 gauges-with 20
year RLs in 2020 higher than those of the present, while in winter and spring there are 47 and

44 gauges, respectively, with future RLs lower ttlase of the present.

Figure 1 shows the spatial distributions of the-yar RLs. The present RLs are on the
left, the future ones in the centre, and the differences between the two on the right, with blue
(red) meaning decreasing (increasing) valdfab®20year RLs in 2020. The main decrease
in the 20year RLs is in winter for the overall study area. The gauges with a significant
decreasing trend in variance systematically show a decrease in RL. This is reflected in a major
decrease in the extremanfall events in winter. Spring also shows a general decrease for the
study area as a whole, but less than in winter, and more notable high values in the north. The
behaviour in autumn is different. Much of the Extremadura Region shows an incréase in
future RLs, particularly notable in the mnbrth where the increase is greatest. The areas of
increase closely match those of increases in the standard deviation shown in Fig. 4. This
underlines the role that changes in variance play in changesémes. There is a decrease
in the east of the Region, as well as a slight decrease in the northeast. In sum, if the observed
trends actually continue linearly in the future, and considering the maps in the centre for the
future RLs in the three seasansidered, autumn will clearly become the season with the

greatest extreme rainfall events because of the major decrease in winter.

7. Conclusions

We have described an EVT study calculating-stationary RLs of extreme rainfall in 2020

for ExtremaduraQW Spain) using a set of complete daily rainfall time series from 72 gauges
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for the period 196:2010. For each time series, #eceedenceover either a fixed or time
varying thresholdi were subjected to a 'runs declustering' procedure. The resultreghex
rainfall data time series were then fitted with a flexible GPD, and the occurrence dates with a

Poisson process in order to calculate the RLs.

Two approaches to computing future rainfall RLs with POT were studied. In the first,
trends in the extrenseconsidering all the days were identified, taking into account a time
varying threshold based on a linear quantile regression and, when appropriate, a trend in the
GPD scale parameter. Then, in the second, we calculated the RLs considering only the rainy
days, examining the impact of evolutions of the mean and variance and of the number of rainy
days. In this second case, we applied a novel adaptation of a stationarity test to rainfall that
had been designed and used for temperature time series, findingwas indeed satisfied

for the majority of the gauges for all three seasons considered.

The principal objective of the present work was to compare estimates ofylear2ZBLs
expected in 2020 using the aforementioned two methods. The main camglillsibwe can
draw are:

- Generally, the two approaches give comparable results for the future RLs, but there
are some exceptions. These are mainly due to the sensitivity to the threshold of the
identification of the trend in the scale parameter, and maesmes lead to
unrealistic results. The use of the mean and variance constitutes a more robust
approach when the identification of a trend in the GPD scale parameter is difficult and
very sensitive to the threshold choice. It also leads to reduced Cls.

- There are special cases for which both approaches seem to fail. They give different
values for the future RLs, but probably neither of them is reliable.

- The future evolution of the RLs varies from season to seaBuoere are decreases

winter and spring, and increases in autumn. The evolution of the variance was seen to
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play a major role in the estimation of the extremes since the increases in autumn
closely matched the increases in the variance. There was relatively little avaiutio

the number of rainy days, and it had the correspondingly least impact. These results
showed a decrease in extreme rainfall events in the near future (2020), with the
centraleastern part of the Extremadura Region showing the greatest decreashk for bot
winter and spring. In autumn however, the increasing trends in both mean and
variance lead to the opposite behaviaian increase in extreme rainfall events, with a

wide area showing changes in they&@r RLs in 2020 that range from +5 to +#hBn.

Thepresent results for the RLs in Extremadura are consistent with previous findings
covering Spain showing a decrease in spring and winter (Goodess and Jones 2002; Rodrigo
and Trigo 2007; Garcia et al. 2007; Acero et al. 2011) and an increase in autuma ¢Galrci

2007; Acero et al. 2011).

The negative trends in this southwestern part of the IP could be related to the prevailing
positive phase of the North Atlantic Oscillation (NAO) during the last few decades. Since
this oscillation is known to influence rainfall over the southwest ofRH&odriguezPuebla
et al. 1998; Garcia et al. 2002; Trigbal.2004), it could be the cause of the decreasing
winter rainfall for this region As mentioned above, extrapolating observed trends does not
allow the two signals to be separated, and comefgary analyses with the aid of climate
simulations might be necessary to better understand the impact of climate change on extreme

rainfall in the region.

The results for spring and autumn are in agreement with those reported by Fernandez
Montes et al.Z014) for the relationship between extreme precipitation days and circulation
types. They find a decrease in extreme precipitation days in the west of the Iberian Peninsula

mainly due to a decreasethre frequency of cyclonic sowtkesterly flow. But irautumn,
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extreme precipitation becomes more frequent (as iprigent study) due to the

northwesterly flow.

It was important to carry out this type of study for a small region and to consider different
seasons so as to better understand the possibldienafiextreme rainfall events. Also, the
procedure that was newly tested in this work was found to be reasonable for the estimation of
future extremes, opening up the possibility of using the evolution of mean and variance as

projected by climate models anticipate possible changes in a more distant future.

There are two situations for which the application of EVT does not seem appropriate: first,
for the summer season in the study area because it includes very few rainfall events, and
second, when ante series presenexceedencealues orexceedencé&equencies well above
(or below) the other values. These cases will be further analysed in future work in order to

investigate other possible ways of inferring rare levels in such cases
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600 Appendix: Bootstrap procedures for confidence intervals

601 Trends in the parameters of the GPD:

602 A distribution of 20year RLs in 2020 is computed by executing the following steps 500

603 times:

604 - Simulate a random number of days with rainfall over the linear thres(iploy a

605 Poisson process with the observed intensity.

606 - Compute the corresponding rainfall amounts for tlee®eedencdates as. :P, L

607 QP E &:PY:P, with Y:P.being the residals of the observeekceedence determined
608 by sampling among th&: P with replacement.

609 - Identify trends in the scale parameter of this new sample.

610

Extrapolate the trends to derive a futurey2@r RL.

611 Trends in mean, variance, and number of rainy days:

612 Again, a distribution of the future 2@ar RLs is constructed by 506samplings in the

613 following steps:

614 - Simulate mean seasonal numbers of rainy days as the observed numbers + a randomly
615 chosen shift from the linear trend.

616 - Compute the corresponding ril amounts asg& Q E IYzwhere &is obtained by block

617 bootstrappingrr values (with a block of length 10, to manage temporal dependency).



618 - Compute the 2Qear RL of & and the future mean, variance, and number of rainy days
619 by extrapolating linear trends fitted to the new sample.

620 - Derive the future 2gear RL.



Table 1.For the three seasons considered, the number of positive or negative titieds in
mean, variance, and number of rainy days, with the number of significant trends of each sign
in parentheses.

Mean Variance Number ofrainy days

+ - + - + -

Autumn | 23(4)  49(22)  50(7) 22(2) 67 (29) 5 (0)
Winter 4 (0) 68(48) 12(0) 60(37) 46(41)  26(7)
Spring | 10(1) 62(38) 20(1) 52(11) 50(16) 22(2)




Figure 1.Location of the study area (Extremadura) in the Iberian Peninsula, and the spatial
distribution of the gages used with theorrespondent altitude showed in the scale.
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Figure 2. Spatial distribution of the 95th percentile of raday rainfall amounts (mm) used
as threshold.
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Figure 3. Spatial distribution of the observatories that satisfy the stationarity of the extremes
of the residuals computed from the raitigy time series.

autumn

winter

@ Intensity and scale OK
@® Intensity OK

@® Scale OK

X Intensity and scale NO




Figure 4 Spatial distribution of the linear trends in mean, standard deviation, and number of
rainy days for the three seasons considered. Solid triangles mean a trend signiteant at
10% level. Open triangles mean a rsgnificant trend (according to a Ma#iendall test at
10%). Upward triangles mean a positive trend, and downward negative. The size of the
triangles represents the value of the trend for each gauge.
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Figure 5 Linear trends in theme-varying threshold used inethod M1 (left) and in the GPD
scale parameter (right) for the three seasons considered. Upward triangles mean a positive
trend, and downward negative. The size of the triangles represendubef the trend for

each gauge.

0.10
0.005
0.05
0.00 0.000
-0.05
-0.005
-0.10
0.2
0.005
0.1
0.0 0.000
-0.1
-0.005
-0.2
V = 0.0312
210 | 7 = 00156
0.005
v = 0.0078
0.05
0.00 0.000
-0.05
-0.005
-0.10

Figure 6 Spatial distribution of the 2@ear RLs (Z20) in mm for the future climate in 2020,
calculated from the kday time series (left) usingethod M1 and from the rairgaysonly
time series (right) using ethal M2.






Figure 7 Spatial distribution of the 2@ear RLs in 2020 obtained through the stationarity test
(Z20-f2) that lie or do not lie inside the CI of the-g8ar RLs obtained through extrapolation
of the scale parameter (Z20).

Figure 8 Spatialdistribution of the width of the 2@ear RL (Z20) confidence intervals (mm)
in 2020, calculated from thelalay time series (left) usingaethod M1 and from the rainy
daysonly time series (right) usingethod M2.






Figure 9 ForTorrejoncillogauge in winter (northernmost red point in Figviditer): (top)
exceedence(dots) of the tim&arying 98th percentile threshold (line); (centre) trend in the
scale parameter (ngrarametric in black, parametric in red); (bottom) a set of three plots for
the mean, standard deviation, and number of rainy days (seasonal values in black, linear

trends in red).



Figure D. Spatial distribution of the 2@ear RLs in 2020 obtained through the stationarity
test (Z20f2) that lie or do not lie inside the CI tife present 2@Qear RLs obtained with the
same method (Z2p2).



Figure 11 Spatial distribution of the 2@ear RLs (mm) for each season considered for the
present time (left) and future time (centre), and the differences between the preskat and
future cases (right).



