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Trial-and-Error Learning of Repulsors
for Humanoid QP-based Whole-Body Control

Jonathan Spitz Karim Bouyarmane Serena Ivaldi Jean-Baptiste Mouret

Abstract— Whole body controllers based on quadratic pro-
gramming allow humanoid robots to achieve complex motions.
However, they rely on the assumption that the model perfectly
captures the dynamics of the robot and its environment,
whereas even the most accurate models are never perfect. In this
paper, we introduce a trial-and-error learning algorithm that
allows whole-body controllers to operate in spite of inaccurate
models, without needing to update these models. The main idea
is to encourage the controller to perform the task differently
after each trial by introducing repulsors in the quadratic
program cost function. We demonstrate our algorithm on (1)
a simple 2D case and (2) a simulated iCub robot for which the
model used by the controller and the one used in simulation
do not match.

I. INTRODUCTION

Like humans, humanoid robots need to carefully coordi-
nate dozens of degrees of freedom for even the most basic
tasks, like standing upright or walking [1]. This challenge can
be tackled in a principled way with Quadratic Programming-
based Whole-Body Controllers (QB-based WBC) [2]: at
each time-step, an optimizer minimizes a cost function
that describes the task(s), under constraints that model the
dynamics of the robot interacting with its environment [3].
This optimization is performed many times per second by
casting it as a quadratic program with linear constraints,
which can be solved efficiently on modern computers.

The most fundamental assumption of QP-based WBC is
that the model accurately captures the dynamics of both
the robot and the environment. Unfortunately, no model
is ever perfect and thus such controllers often fail when
the real world and the model do not match, even when
using accurate state estimators and even when assuming
perfect state feedback from the robot (which allows for
small perturbations to be absorbed to a certain extent). For
instance, the robot’s dynamics (contact forces, center of
mass, friction cones, etc.) is rarely known with precision.
Even with a good dynamics model extracted by CAD and
refined by dynamics parameters identification [4], [5], there
are elasticities, nonlinearities and coupled dynamics effects
which are impossible to model and measure accurately on
a complex platform like a humanoid, especially in presence
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of multiple contacts [6]. Some parts of the environment are
also generally unknown, like the exact mass of objects or
the friction of the floor, or might not be modeled accurately
because of imperfect sensors. Ultimately, the robot may also
be damaged [7], or some parts may be worn out. Overall,
in practice, setting a QP-based WBC for humanoids almost
always involves long hand-tuning sessions of the model and
the cost function [8].

The fact that a WBC can fail when its model is imperfect
is not a problem per se: humans often fail when they have
imperfect information or when their “internal model” is
different (e.g., when they move under perturbations [9] or
after an injury). Humans, however, learn from their mistakes,
i.e. they adapt their behavior until they find a way to achieve
their objective. By contrast, a QP-based WBC with a fixed
model and tasks structure will keep performing the same
faulty behaviors.

Ideally, we would like to see humanoid robots that (1)
attempt to achieve a whole body task with their WBC, (2)
fail (e.g., fall down), and (3) try again until they achieve
the desired task. We would also like the learning process to
succeed after only a few trials (less than a dozen) and a few
minutes [10], [11], [12], in particular because of the limited
energetic autonomy of robots. The main question here is:
“how to incorporate new information from the real world
into a QP-based WBC?”

Since a QP-based WBC assumes a perfect QP optimizer,
only two elements can be updated in such a trial-and-
error process: the cost function and the model (i.e., the
constraints). The most classic approach is to update the
model according to the data acquired during each trial,
i.e. perform a classic model identification [13]. Neverthe-
less, identifying the model of a full humanoid is far from
being straightforward, as (1) identification can seldom be
performed with only proprioceptive sensors [4], and (2) for
a humanoid structure, it might require exciting the system in
specific ways which may be unsafe for the robot [14]. More
importantly, some effects cannot be captured by tuning the
parameters of classic models. To take an extreme example, a
humanoid walking through a flooded room would experience
significant viscous forces, which are usually not taken into
account in the classical model for the robot moving in an
indoor environment.

Our main insight is that even if a model makes inaccurate
predictions for some behaviors, this is not necessarily the
case for all the behaviors [15], [16], [7], [17]. In the previous
flooded room example, the viscous forces are likely to be
negligible if the robot is moving slowly; therefore a learning



process could discover that the WBC works fine when the
robot moves slowly, without needing to update the model
to take viscous forces into account. Similar situations are
common when robots perform highly dynamic motions:
while a perfect model might be required to move at high
speed, a less accurate model might be enough for a lower
speed motion. The redundancy of the robot also implies that
many tasks can be achieved in different ways with equivalent
costs. In case of damage, the redundancy of the robot plays
a similar role: the behaviors that do not use the damaged
parts (e.g., a blocked joint) will be accurately predicted by
the model, whereas those that rely on broken ones will have
very different outcomes [15], [7]. In other words, we can use
an imperfect model if we know its limits.

In the present paper, we introduce this idea in the QP-
based WBC framework for whole-body motion, leading to a
novel learning approach. When the robot performs a whole-
body movement that, at some point, fails (for example, the
robot falls), it should try to avoid repeating the same behav-
ior. This “information” should be added to the QP problem
so that the controller takes into account the “failures”. The
key challenge is that we cannot simply add penalties for
failed states because the “bad decision” (i.e., the control
command and the state that caused at some point the failure)
is very likely to have happened much before the moment
when the robot actually “fails” or falls. In essence, this
problem is the classic “temporal credit assignment problem”
in reinforcement learning [18], which is one of the most
important problems of the field. For example, if a humanoid
robot falls on the ground, then it reaches a failed state when
it hits the ground; but penalizing the failed state would
mean repulsing from the ground, which is something that
we already know and is already identified as a bad state.
Instead, at some point of its trajectory, the robot took a series
of decisions that led to the failed state: these are the states
that should be avoided. In classic reinforcement learning (e.g.
Q-learning, see [18]), we would propagate the knowledge of
the failed state to the previous state and start a new episode,
but this means a prohibitive number of trials for a complex
humanoid robot with many degrees of freedom (thousands
in a complex space).

Our main concept is that we can update the cost function
of the QP controller after each trial so that the robot tries
to solve the task in different ways until it finds one that
is satisfying. To do so, we use the state-space trajectory
of failed trials to introduce repulsors along the trajectory
that push the QP controller away from states that have
already been visited, while still attempting to solve the task.
Between each episode, a gradient-free optimization algorithm
searches for the best repulsors so that the next trial is as
different as possible while still “solving” the task. This
new episodic, trial-and-error algorithm enables QP-based
whole-body controllers to adapt in a few trials to unknown
situations, like damage, and to imperfect models of the robot
or its environment.

We show the effectiveness of our approach on a toy-
example (a particle moving in 2D) and on a simulated iCub

humanoid robot for a squatting task, in a situation where the
robot model is wrong: the robot’s feet are smaller in reality
than in the QP model, which causes the QP controller to fail.

II. BACKGROUND

A. Humanoid QP-based whole-body control

Whole-body control for humanoid robots is essentially for-
mulated by prioritized multi-task controllers with strict task
priorities [19] or multi-task controllers with soft task priori-
ties (also called weights) [20], [21]. A now well-established
classical formulation for the latter is the quadratic program-
ming (QP) formulation, which solves, at every timestep of
the control loop, the following QP problem:

min
q̈, f ,τ

m

∑
k=1

wk

∥∥∥g̈k− g̈d
k

∥∥∥2
(1)

under constraints Mq̈+N = JT f +Sτ (2)
Jq̈+ J̇q̇ = 0 (3)
f ∈ K (4)
qmin ≤ q≤ qmax (5)
q̇min ≤ q̇≤ q̇max (6)
τmin ≤ τ ≤ τmax (7)
∀ (i, j) ∈ ColPairs d(Bi,B j)> 0 , (8)

where q is the configuration of the robot (including the 6D
position and orientation of the floating-base), q̇ and q̈ are (as
an abuse of notation) the configuration-space velocity and
acceleration (thus respectively including the angular velocity
and angular acceleration of the base, which are not the
time derivatives of the base orientation representation), M
is the inertia matrix, N the gravity and Coriolis term, J
the stacked Jacobian matrices at the contact points, f the
vector composed of all the point contact forces, τ the actuator
torques, S a selection matrix that maps the dimension of the
actuated joints n− 6 to the dimension of the configuration
space n, K the cross product of the linearized Coulomb
friction cones at the contact points, ColPairs the set of
collision pairs (i, j), each pair inducing a collision avoidance
constraint between the strictly convex bounding volumes of
body Bi of the robot and body B j of either the robot or the
environment, and d is the corresponding distance function
between these bounding volumes. Equations (5), (6), and (8)
are converted into linear constraints on q̈ by using finite
differentiation and velocity dampers [22].

A task gk, with its relative weight wk, is any mapping
Rn → Rnk , where nk is the dimension of the task. A task
is characterized by its Jacobian matrix Jk = ∂gk

∂q and a
desired acceleration behaviour g̈d . A classical behaviour is
the attractor behaviour, which is used to bring the task to a
desired set-point value gref

k . The attractor behaviour writes:

g̈d
k ,−αk(gk−gref

k )−2
√

αkġk . (9)

It models a critically-damped mass-spring-damper system
with unit apparent mass, parameterizable stiffness αk, and
critical damping 2

√
αk. This is the most used task in QP



controllers. We use it in the examples below to make the
humanoid robot perform a squatting motion. The attractor
task in this example is on the center-of-mass (CoM) c with
reference setpoint that is lowered from the standing up
posture CoM cref,1 to the crouching posture CoM cref,2.

As opposed to using non-linear contrained optimisation for
whole-body trajectory generation [23], a QP can be solved
in few milliseconds and thus allows for online control.

B. Learning with humanoid robots

A large part of the work about learning motion controllers
for humanoid robots has focused on the optimization of
neural networks [24], [25] or Central Pattern Generators
(CPG) [24], [26] in simulation, with the hope of transferring
the optimized controller to the physical robot; some others
rely on more classic reinforcement learning approaches (e.g.
Q-learning) and learn discrete policies (e.g., [27]). However,
all these approaches assume that the simulation perfectly
captures the dynamics of the robot. The few experiments
performed with real robots involve learning very few param-
eters (typically from 2 to 4) for simple walking patterns [28],
[29], because only a few dozen of controller evaluations can
be reasonably performed with a robot.

While interesting from an artificial intelligence perspec-
tive, these learning approaches are far from being competitive
with QP-based WBC: they can only generate simple motion
for a single task (e.g. walking forward) and are often open-
loop. In addition, they are not compatible with QP-based
WBC, which prevents the two communities to exchange
ideas and progress together.

A handful of papers combine QP-based WBC with some
form of learning (e.g. [30]). Modugno et al. [31] exploited
a black-box optimizer (CMA-ES [32]) to learn the temporal
profiles of the task weights of a QP-based controller, using
a simulated robot. In [8] they used constrained variants
of CMA-ES to learn safe task weights that guarantee that
the controller never violates constraints. However, the opti-
mization was still done offline and not on the real robot.
Mukovskiy et al. [33] learned movement primitives from
human motion captures, and combined them with model
predictive control and planning to generate whole body
motions on the HRP-2 robot. Clever et al. [34] used motion
generated in simulation with a QP-based WBC to learn
motion primitives, which can then be employed instead of
the QP-based WBC while having a lower computational cost.
Overall, these papers use learning in simulation only and
aim at making whole body control more reliable and less
computationally demanding. Contrary to the present paper,
they do not aim at incorporating data from failed executions
into the controller itself. Although not tested on a physical
robot (to our knowledge), the approach proposed by Lober
et al. [35] is probably the closest to the present work. In
this work, the authors used Bayesian Optimization (BO) [7],
which is a model-based black-box optimization algorithm,
to move an intermediate waypoint for a QP-based WBC.
However, as noted by the author, BO does not scale besides
a few parameters (about 5 to 10 parameters to optimize).

The same observation was done by Antonova et al. [36] that
used BO and CMA-ES to optimize the 16 parameters of a
walking controller for a simulated planar robot.

Finally, in a study related to the present paper, but not
directly related to learning, Gori et al. used force fields as
attractors and repulsors to model targets and obstacles inside
a reaching/tracking controller for the upper-body of iCub
[37]. The authors, however, only applied their approach to
the upper-body of the robot on a fixed base, and relied on
real-time perception of visual targets and obstacles. In other
words, they did not attempt to learn, that is, to improve
performance after several trials; instead, they only adapted
the current controller to the environment.

C. Transferability in robot learning

It is well documented that optimizers overfit simulators
most of the time, which leads to behaviors that are high-
performing in simulation, but low-performing in reality. This
issue is commonly called the “reality gap” [38], [16], [39].

Many ideas have been explored to cross this “reality gap”,
especially in evolutionary robotics. The proposed solutions
range from adding noise to the simulation [38], [40] to
automatically improving simulators [41], [11]. One of the
most successful approaches is the “transferability approach”
[16], [15], [39]: instead of attempting to correct the simulator,
the transferability approach hypothesizes that the simulator
is accurate for some behaviors and not others; it is therefore
possible to (1) learn the limits of the simulation, which is a
supervised learning problem, and (2) encourage the learning
process to select behaviors that are within these limits.

This idea was recently used to learn new walking policies
for a damaged 6-legged robot in less than 2 minutes / a
dozen trials [7]. In these experiments, the robot can find a
working policy because some behaviors from the simulated,
intact robot perform the same on the damaged, real robot
(typically because they do not rely on the damaged part). Put
differently, the algorithm finds the subset of high-performing
solutions that work similarly in the simulated, intact robot
and the physical, damaged robot. However, this algorithm
does not fit the QP-based WBC framework, since it is
designed to learn parametrized policies (e.g. CPGs or neural
networks). In the present work, we exploit the same concept
of transferability, but we formulate it in a way that leverages
the benefits of modern WBC.

III. REPULSOR LEARNING

A. Repulsor behavior with the QP controller

When the robot executes a QP-controlled motion that leads
to a failure (e.g. the robot falling down, the QP failing
to find a solution, etc.), we want to instruct the controller
to avoid that motion. Let t 7→ qfail(t) be the trajectory in
the configuration space, corresponding to such an ultimately
failing motion. The trajectory is discretized in a number nr
of repulsor configurations (qfail

1 , . . . ,qfail
nr ).

In order to write a QP-compatible repulsor task from
a repulsor configuration qfail

j , we take inspiration from
the behavior of the Coulomb’s inverse-square law between



electrically charged point particles. Considering the current
configuration q and the the repulsor configuration qfail

j as two
positive electric charges, the desired behavior writes:

min
q̈

∥∥∥∥q̈− ∆

‖∆‖3

∥∥∥∥2

, ∆ , β

(
q−qfail

j

)
, (10)

where β is a diagonal matrix with non-negative, and at least
one positive, elements. Changing the elements in β affects
the repulsion strength along each coordinate, which can also
be set to zero. Let us denote the desired acceleration of the
repulsor behavior from qfail

j as:

q̈rep(qfail
i ),

∆

‖∆‖3 . (11)

Adding the set of repulsors from the failed motion to
the QP (1) with respective weights (wrep

1 , . . . ,wrep
nr ), the latter

becomes:

min
q̈, f ,τ

m

∑
k=1

wk

∥∥∥g̈k− g̈d
k

∥∥∥2
+

nr

∑
j=1

wrep
j

∥∥∥q̈− q̈rep(qfail
j )
∥∥∥2

(12)

under constraints (2) to (8).

As described in Section II-A, a classical QP task behavior
is to attract the task to a desired set-point, using spring-
damper dynamics (9). When there is a mismatch between the
QP model and reality, this behaviour can cause the robot to
fail. Our insight is that using the data from failed attempts to
add repulsor tasks will cause the QP to explore away from
previously visited states, while still trying to complete the
task. The individual joint gains (β ) determine how much
each joint is repulsed by the repulsor, while the task weights
(wrep

j ) determine the strength of each repulsor.
Fig. 1 illustrates this behaviour in a simple two-

dimensional state-space where there is a mismatch between
the QP model and the real world. In example A, the hatched
area represents the mismatch between the real world robot
and its simulated model (i.e., the model used to compute the
controls) which drives the state “downwards” preventing the
QP to reach the task’s goal. Adding repulsors on the failed
trajectory causes the QP to explore away from the hatched
area and complete the task (A.2). In the second case (B.1
and B.2), we reach a failed state when entering the hatched
area. Adding the repulsors (red triangles) effectively changes
the path followed by the QP in B.2, which approaches the
goal from another configuration.

B. Optimizing the repulsors

The position of the added repulsors is determined by
the trajectories previously explored by the QP-based WBC.
However, the individual joint gains (β ) and the weight of
each repulsor task (wrep

j ) need to be tuned: if they are
too high, the QP-based WBC will not solve the task (the
repulsors will dominate the cost function of the quadratic
program); if they are too small, then the next behavior is
likely to be very close to the current failed ones, and therefore
likely to fail as well. As a consequence, we need to optimize
the gains and the weights so that the QP-based WBC solves

Fig. 1. Intuition of the repulsors approach, shown in a 2D state-space
for simplicity. Each panel shows the path followed by the state from the
start (blue, filled) to the task goal (green, hollow). Hatched areas show a
mismatch between the QP model and the real world. Repulsors are shown
with red triangles.

the task as best as possible, while being as far as possible
from the previous failed attempts.

These two objectives can be evaluated for a vector of
individual joint gains diag(β ) and a set of i · nr repulsor
weights W = [wrep

1 , . . . ,wrep
i×nr

] by running the QP controller
(Eq. 12) for T time-steps without interacting with the phys-
ical robot, that is, by simulating the robot with the same
model as the QP controller, and computing the two following
cost functions: (1) the average distance of the QP-generated
trajectory from each repulsor (cE ) and (2) the tracking error
of the QP task (cT ). More formally, we compute:

cE(β ,W ),
1

i ·nr

∫ T

0

i·nr

∑
j=1

exp
(
−
∥∥∥q−qfail

j

∥∥∥2
)

(13)

cT (β ,W ),
∫ T

0

m

∑
k=1

wk

∥∥∥gk−gd
k

∥∥∥2
dt , (14)

where i is the current episode number and T is the duration
of each episode.

We normalize cE and cT using a Monte Carlo estimate
of the bounds for each cost. More specifically, we run the
QP controller K times (e.g., K = 100) with random values
for β and W ; we estimate [cE ,cT ] for each run; then, we
normalize cE and cT using the 5th and 95th percentiles (to
avoid potential outliers):

CE(β ,W ),
cE(β ,W )− I5%(cE)

I95%(cE)− I5%(cE)
(15)



CT (β ,W ),
cT (β ,W )− I5%(cT )

I95%(cT )− I5%(cT )
(16)

where I5%(x) denotes the 5th percentile of x and I95%(x) the
95th percentile.

Lastly, we combine CE and CT in a single cost function
C:

C(β ,W ), λ ·CE(β ,W )+(1−λ ) ·CT (β ,W )+P(t) (17)

where λ is a user-defined parameter that represents the trade-
off between the two cost functions, i.e. between exploration
and exploitation. A penalty P(t) is added to the cost if a
failed state is reached before the end of the allotted episode
time:

P(t) = 2
t

Tallotted
(18)

C(β ,W ) is not differentiable since it involves solving a QP
program at every time-step. We therefore consider it as a
black-box function that we optimize with CMA-ES1 [32],
a state-of-the-art global optimizer for non-linear, stochastic,
black-box global optimization.

This optimization typically requires hundreds of calls to
the cost function, which makes the overall optimization
computationally demanding (at least several minutes for a
humanoid using a modern computer). Nevertheless, our aim
is primarily to reduce the interaction time, that is, the time
spent trying controllers on the real robot, because we assume
that computers will be faster and faster in the future. In
addition, CMA-ES can take full advantage of multi-core
computers and clusters to speed up the computation. It is
also important to highlight that the optimization becomes
harder after each episode, since we increase the number of
parameters to optimize after each episode on the physical
robot. Our approach is therefore not likely to work with more
than a dozen of episodes; it still fits our use case well because
we aim at performing at most a dozen of learning episode
with the physical robot.

C. Episodic learning
The learning algorithm searches for high-performing, al-

ternative control strategies until it has exhausted its budget of
episodes (or until a satisfying solution is found). Algorithm 1
details the full learning loop, which is based on three main
steps:

1) attempt to complete the task using the QP controller
in the real world (with the physical robot); record the
trajectory and the tracking cost cT (β ,W ) (line 6);

2) add new repulsors R using the state-space trajectory
q(i) of the last episode (line 11);

3) optimize the parameters of the repulsors (β ,W ) with
CMA-ES and the QP controller, using the model of
the controller as a simulator (line 12).

After each episode, the robot is reset to its initial position.
The output of the algorithm is the set of repulsors, joint gains,
and repulsor weights that correspond to the best tracking cost
in the real world.

1We use the implementation of the libcmaes library: https://
github.com/beniz/libcmaes

Algorithm 1 Repulsor learning
1: procedure LEARN
2: R← /0 . set of repulsors
3: C∗← ∞ . best cost so far
4: β ∗,W ∗← 0,0 . best parameters
5: for i from 1 to N do . for each episode
6: q(i) ← Run episode in real world using QP

controller with R(β ,W ) and compute cT (β ,W ) (Eq. 14)
7: if cT < c∗T then . update the best parameters
8: R∗←R
9: β ∗,W ∗← β ,W

10: cT ← c∗T
11: for j from 1 to nr do . add new repulsors
12: R←R ∪q(i) (t j), t j =

j−1
nr−1 T

13: β ,W ← argmin(SIMEPISODE(R)) . CMA-ES
14: return R∗,β ∗,W ∗

15: procedure SIMEPISODE(R)
16: Run episode using QP model, controlled by QP with

R(β ,W ) (Eq. 12)
17: Calculate exploration cost, CE , using (Eq. 13, 15)
18: Calculate task cost, CT , using (Eq. 14, 16)
19: return C(β ,W ) (Eq. 17)

IV. EXPERIMENTAL RESULTS

A. 2D particle

Our first objective is to validate the concept of repulsor
learning on a simple and visual example (Fig. 2). To do so,
we implemented our algorithm for a simple two-dimensional
particle of mass 1 kg that has to start from state (1,0) and
reach state (−1,0). At each time-step, the QP controller
chooses the magnitude of a 2D force, which is applied
on the particle with the standard equation of dynamics. To
introduce a mismatch between the QP model and the “real
world”, we placed a circular obstacle of radius 0.3 around
(0,0) which is unknown to the QP controller. Hitting the
obstacle puts the particle in a ”failed state”, which halts the
controller. In higher-dimensional spate spaces, the equivalent
of this obstacle would be a zone in which the robot fails,
for instance, a zone of the state-space in which a humanoid
robot fails to maintain its balance. After each episode, we
add 6 repulsors, resulting in 8 to 32 parameters to optimize2,
depending on the episode number. Since the optimization
procedure is stochastic, we replicate each experiment 20
times to gather statistics. To optimize the cost, CMA-ES is
given a budget of 500 calls to the cost function.

The results show that three episodes are enough to reach
the target state (Fig. 2A). In a typical run (Fig. 2B), the
particle first hits the obstacle (for which there is a mismatch
between the model and the “reality”), which is expected since
the controller has no knowledge of the obstacle. Repulsors
are then added, but the second episode is often too close to
the obstacle. At the third episode, the particle usually reaches

2The particle has a 2-dimensional state. The number of parameters is
2+6× i, where 6 is the number of repulsors and i the learning episode.



Fig. 2. Tracking cost for the particle task (20 replicates). A: Median of the
best tracking cost since the beginning of the learning process and 25th-75th

percentiles. The task is solved after only 3 to 4 seconds of interaction time
(3 to 4 episodes). B: Behavior of a typical controller. The first two episodes
(trajectories 1 and 2) hit the obstacle; the third tested trajectory solves the
task and obtains the best tracking cost; the fourth trajectory is very different
from the third trajectory, but it obtains a higher cost. The selected controller
is the third one.

   "real" physical world          model for the controller

small feet big feet

Fig. 3. The mismatch between the “real world” iCub (left, small feet) and
its internal model in the QP controller (right, large feet) causes the iCub
robot to fail in the real world, even though the QP-based WBC generates a
feasible joints trajectory. The “real world” here is in Gazebo.

the target state. After this episode, the algorithm explores
more complex trajectories, but the resulting trajectories often
have a high tracking error because they have to be different
from the “good” trajectory that was found at the third
episode.

B. iCub squatting with a mismatch in feet geometry

We then evaluate our approach with a QP-based WBC
for the iCub robot, with a mismatch between the internal
model of the QP controller and the model simulated in
Gazebo3. iCub is a 53-DOF full humanoid robot, with 7-

3In this case, the simulated robot in Gazebo is the “real world” robot.

Fig. 4. Tracking cost for the iCub squatting task (13 replicates). Median of
the best tracking cost since the beginning of the learning process and 25th-
75th percentiles. The task performance increases (lower cost) on average as
more trials are performed, with the major improvement between the first
and second trials.

DOF arms, 3-DOF torso and 6-DOF legs. It is fully open-
source in both mechanics and software [42]. Its dynamics
model, represented in a URDF format, is used by a software
abstraction layer to control the simulated robot in Gazebo
as if it was the real one [43]. Wrenches, contact forces and
center of mass are computed for both the real and simulated
robot by open-source libraries for dynamics estimation [44].
To optimize the cost, CMA-ES is given a budget of 500 calls
to the cost function.

We created a QP-based WBC for iCub using the MC-RTC
framework [3]. The controller is composed of a position
task for the robot’s center of mass (CoM), the left hand
and the right hand. Each position task switches its set-point
position every tperiod seconds, taking iCub from a standing
to a crouching configuration and back. When both the QP
controller and Gazebo, i.e., the “real world”, have the exact
same model, iCub is able to perform the squatting task
with the “classic” QP controller with three tasks (and no
repulsors). However, we introduce a mismatch to the QP
model that causes iCub to fail when performing the task.
Specifically, we provide iCub with a different (smaller) pair
of feet, as shown in Figure 3, which is a common occurrence
in this platform as different variations of it are used in labs
around the world. The model in the QP controller no longer
reflects the real world robot: as expected, the “classic” QP
controller with the three tasks fails, and the robot falls.

Therefore, we start learning the repulsors as described in
Section III. The controlled robot has 53DOF, which would
result in a 53-dimensional repulsor if all the joints would
be considered (more if the full state would be considered,
including velocities and accelerations). However, most of the
joints of iCub are not “critical” for balancing (e.g., 9 DOF
in each hand). For this reason, and for keeping the number
of parameters to optimize as low as possible, we designed
a repulsor state of 8-DOF, with the following joints:
[“torso pitch”, “torso roll”, “torso yaw”, “neck pitch”,
“l hip pitch”, “r hip pitch”, “l knee”, “r knee”].



We run the learning algorithm for 6 episodes, adding 6 new
repulsors after each episode and optimizing their parameters
before making a new attempt at fulfilling the task with
the “real robot”. The number of parameters to optimize is
therefore dim(β )+dim(W )× i = 8+6× i, ranging from 14
(i = 1, first episode) to 38 (i = 5, last episode).

There is a clear improvement in the task performance
when using repulsors, as seen in Fig. 4. As more trials are
performed and new repulsors are added, the performance
increases further. Although the robot is not able to perform
the same squatting motion as expected by the QP-based
WBC (because the QP controller is using a wrong model),
it is still able to perform a comparable squatting motion
without falling down (see the Supplementary Video). The
CoM trajectories from one learning process are shown in
Fig. 5. Here we can see that the original trajectory, i.e.
without repulsors (shown in blue), is not able to make the
robot stand up after performing the squat (the robot falls). In
three of the following trials iCub performed a smaller squat
(see the Supplementary video) and was able to go back to a
standing position.

V. CONCLUSION AND DISCUSSION

Learning repulsors is a novel and promising approach to
mix QP-based WBC with trial-and-error learning. It enables
applying QP controller to real world robots, despite the
inevitable model errors, and without requiring to identify or
improve the robot model used by the QP controller. In the
two experimental setups of this paper, only 3 to 5 episodes
are required to find a controller that works in spite of an
important mismatch between the model used in the controller
and the real world. This low number of episodes makes it
easy to use our approach on physical humanoids robot and
significantly lowers the risk of breaking them.

Nevertheless, the way we learn repulsors is only a first
“proof of concept” of the idea and we believe the concept
can be improved in several ways. First, the trade-off between
solving the task and exploring needs to be well-tuned to
obtain satisfying results. In future work, we will explore the
use of stack-based formulations of the whole-body problem
[19] (instead of the weight-based approach followed here),
which would change the way we combine the repulsors with
the main task.

A second direction of improvement is to accelerate (and
potentially improve) the optimization of the repulsors by
using a more data-efficient optimization algorithm. For in-
stance, Bayesian optimization [7], [29] with an appropriate
prior could require fewer calls to the cost function to find
high-performing solutions. In addition, the proposed algo-
rithm does not use all the available information. For instance,
the score achieved in the real world is currently ignored by
the algorithm, whereas it could be used to guide the search
for the best repulsors.

Overall, learning repulsors offers a new view of humanoid
robot learning that bridges the gap between modern whole
body control and reinforcement learning. We believe it opens
many new research avenues to make humanoids robot that

Fig. 5. Center of mass trajectories of the iCub robot for 5 episodes of
a typical learning process in the “real world” (here the Gazebo simulation
with small feet). The original trajectory, i.e. without repulsors, is shown
in blue. Episodes 2, 4 and 5 led to satisfying behaviors (not falling,
squatting movement). See the supplementary Video for a a visualization
of the behaviors.

can both benefit from sophisticated control methods and
adapt to unexpected situations.

VI. ACKNOWLEDGMENT
The authors would like to thank Brice Clement

for the engineering support; the IDH team for their
help with the QP controller (https://github.com/
jrl-umi3218/Tasks); Gabriele Nava and Silvio Traver-
saro for their help with the iCub’s URDF.

REFERENCES

[1] S. Ivaldi, O. Sigaud, B. Berret, and F. Nori, “From humans to
humanoids: the optimal control framework,” Paladyn, vol. 3, no. 2,
pp. 75–91, 2012.
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