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Introduction

In structural dynamics, autonomous conservative systems most commonly exhibit continuous families of periodic orbits in the phase space, usually referred to as modes of vibration. A major task of modal analysis is to accurately compute natural frequencies and corresponding mode shapes as they are known to properly predict the frequencies under which the associated periodically forced systems will resonate, at least in linear and smooth nonlinear frameworks.

Characterizing the modes of vibration of smooth nonlinear mechanical systems (systems governed by PDEs that are smooth with respect to the unknown displacement and velocity) is a current topic of interest in the academic and industrial spheres. It relies on computing periodic solutions which are sensitive to numerical accuracy. For example, a dissipative time-marching numerical scheme cannot describe autonomous periodic solutions.

The dynamics of two impacting bodies is characterized by the travelling waves emanating from the contact interface. In the one-dimensional setting chosen in this work, these waves couple time and space, in the sense that they are functions of the form f .x ˙ct / where c is the wave velocity. Uncoupling time t and space x leads to numerical and theoretical issues. In the Finite Element Method (FEM), the displacement commonly takes the form u.x; t/ D P i i .x/u i .t /, where u i .t / is the i -th displacement participation and i .x/, the corresponding shape function. This leads to spurious oscillations, dispersion, and energy dissipation, for most numerical schemes dealing with unilateral contact conditions [START_REF] Doyen | Timeintegration schemes for the finite element dynamic Signorini problem[END_REF]. Additionally, an impact law is required to uniquely describe the time-evolution of a space semi-discretized formulation [START_REF] Ballard | Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem[END_REF]. The impact law should be purely elastic to preserve energy, making it difficult to describe lasting contact phases which are expected to exist in the continuous framework. The Wave Finite Element Method (WFEM), which appropriately combines space and time, has shown promising results for one-dimensional systems undergoing contact conditions [START_REF] Yoong | The Wave Finite Element Method applied to a one-dimensional linear elastodynamic problem with unilateral constraints[END_REF].

In this work, a variant of the Boundary Element Method (BEM), called the Time Domain Boundary Element Method (TD-BEM) [START_REF] Mansur | A time-stepping technique to solve wave propagation problems using the boundary element method[END_REF], is used to solve for the nonlinear modes [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF] of the one-dimensional bar with fixed boundary at one end and a unilateral contact condition on the other.

Both BEM and FEM are weighted residual methods but the weighting function in BEM is defined as the fundamental solution [START_REF] Vladimirov | Generalized Functions in Mathematical Physics[END_REF] of the considered PDE. The fundamental solution is defined as the response of a body subjected to a Dirac delta input, irrespective of the boundary conditions. When boundary conditions are included, the fundamental solution transforms to the classical Green's function [START_REF] Duffy | Green's Functions with Applications[END_REF]. It is then straightforward to compute the response of a linear system to any distributed body forces and any boundary conditions through the principle of superposition reflected by a convolution operation [START_REF] Cartwright | Underlying Principles of the Boundary Element Method[END_REF]. However, a major limitation of BEM is that fundamental solutions are known exactly only for simple PDEs. In general, they can only be approximated thus reducing the accuracy of BEM.

Various types of BEM are available in literature such as Domain-BEM (D-BEM) [START_REF] Carrer | Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation[END_REF], Time Domain-BEM (TD-BEM), Dual Reciprocity-BEM (DR-BEM) [START_REF] Agnantiaris | Three-dimensional structural vibration analysis by the dual reciprocity BEM[END_REF][START_REF] Loeffler | Dual reciprocity boundary element formulation applied to non linear darcian diffusive advective problems[END_REF], Frequency Domain-BEM (FD-BEM) [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF], Convolution Quadrature-BEM (CQ-BEM) [START_REF] Abreu | Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method[END_REF][START_REF] Schanz | Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach[END_REF]. D-BEM and DR-BEM both discretize time and space separately, hence are not of interest here. In contrast, CQ-BEM and TD-BEM provide a formulation in space and time allowing to precisely capture traveling waves [START_REF] Mansur | A time-stepping technique to solve wave propagation problems using the boundary element method[END_REF], at least for one-dimensional problems in space. CQ-BEM, first introduced by Lubich [START_REF] Lubich | Convolution quadrature and discretized operational calculus[END_REF] and later used for transient analysis [START_REF] Abreu | Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method[END_REF][START_REF] Schanz | Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach[END_REF] differs from TD-BEM in the way the integrals are computed, i.e. using the Convolution Quadrature Method (CQM). Application of CQM to the TD-BEM improves the numerical stability of the solution [START_REF] Saitoh | Convolution quadrature time-domain boundary element method and acceleration by the fast multipole method in 2D viscoelastic wave propagation[END_REF]. However, it has a low computational efficiency for large scale problems. For these reasons, TD-BEM is chosen in this work.

First, the investigated mechanical system is described. Then, the simulation methods used to compute the time evolution of the system are detailed, and a comparison with a benchmark problem is provided to validate the methodology and illustrate its accuracy. This is followed by a brief explanation of the shooting technique used to find the periodic solutions. The frequencyenergy plot and the mode shapes of main vibratory response, subharmonic response as well as the internal resonances of the system of interest are presented and discussed.

Problem of interest

A one-dimensional elastic bar of length L, constant crosssectional area A, Young's Modulus E and mass density is considered. The bar is fixed at x D 0 and subject to unilateral contact conditions at x D L, as shown in Fig. 1. The initial 

where g 0 is the gap at the resting position. When contact occurs (g D 0), an elastic wave propagates inside the bar at velocity c D p E= . The local equation which dictates the displacement u.x; t/ of the one-dimensional bar is A@ 2 t u.x; t / EA@ 2 x u.x; t/ D 0; 8x 2 0 I LOE; 8t 0 (2) with the boundary condition u.0; t/ D 0; 8t 0:

(3) Contact is described using Signorini's conditions g.t/ 0; @ x u.L; t / Ä 0; g.t/ @ x u.L; t/ D 0; 8t 0: (4)

These inequalities are responsible for the nonlinear behavior of the dynamics. The objective is to find the nonlinear modes of the abovedescribed system, defined as continuous families of periodic orbits. Formally, the goal is to find functions u satisfying (2), (3) and (4) together with real numbers T > 0, such that 8t 0 and 8x 2 OE0 I L, u.x; t C T / D u.x; t/.

Simulation methods

This section introduces the background of the one-dimensional TD-BEM, including the algorithm used to implement unilateral contact conditions. The methodology is then validated using a benchmark problem [START_REF] Doyen | Timeintegration schemes for the finite element dynamic Signorini problem[END_REF].

Formulation of TD-BEM

In TD-BEM, a time-dependent fundamental solution of the PDE ( 2) is used. The fundamental solution u captures, at the field point x and time t , the effect of a unit impulse ı applied at the source point and time , that is the solution of @ 2 x u .x; t; ; / 1 c 2 @ 2 t u .x; t; ; / D ı ; :

Solving ( 5) leads to the fundamental solution for this problem [START_REF] Graff | Wave Motion in Elastic Solids[END_REF] u .x; t; ;

/ D c 2 H OEc.t / jx j ( 6 
)
where H is the Heaviside function and jx j is the distance between the field and source points. Noting that and x are any point in the interval OE0 I L, the variables and x are interchangeably used when required [START_REF] Cartwright | Underlying Principles of the Boundary Element Method[END_REF] and the same applies to t and in the time interval. The method of weighted residuals can be applied to Eqn. (2) using u .x; t; ; / as the weighting function. From here on, u.x; / and u .x; t; ; / are written as u and u respectively, when required by compactness. The weighted residual statement takes the form

Z t 0 Z L 0 @ 2 x u u dxd 1 c 2 Z t 0 Z L 0 @ 2 t u u dxd D 0: (7) 
Substituting Eqn. ( 6) in [START_REF] Carrer | Boundary Element Method formulations for the solution of the scalar wave equation in one-dimensional problems[END_REF], and taking the second weak form, i.e. integrating by parts twice, yields

0 D Z t 0 Z L 0 u @ 2 x u dxd 1 c 2 Z t 0 Z L 0 u @ 2 t u dxd C Z t 0 .@ x u u / ˇL 0 Á d Z t 0 .u @ x u / ˇL 0 Á d 1 c 2 Z L 0 .@ t u u / ˇt 0 Á dx C 1 c 2 Z L 0 .u @ u / ˇt 0 Á dx: (8) 
The fundamental solution features the following properties [START_REF] Cartwright | Underlying Principles of the Boundary Element Method[END_REF] 

Z L 0 u 0 .x/ @ u .x; t; ; 0/dx D 8 < :u 0 . ct / if ct 0 and C ct > L u 0 . C ct / if ct < 0 and C ct Ä L u 0 . ct / C u 0 . C ct/ if ct 0 and C ct Ä L 0 otherwise:
The integrals over OE0 I L are dealt with by discretizing this interval into sub-intervals onto which are defined piecewise-linear polynomials [START_REF] Carrer | Boundary Element Method formulations for the solution of the scalar wave equation in one-dimensional problems[END_REF] to approximate u 0 .x/ and v 0 .x/. This discretization is used to find the unknown functions u 0 and v 0 . In a similar fashion, time integrals over OE0 I t are dealt with by considering a time discretization scheme with n time steps of length ; between two successive time steps, @ x u.0; / and @ x u.L; / are approximated by constant interpolation functions. Equation [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF] shows that u.x; t/ is formulated as a linear combination of the boundary conditions u.0; t/, u.L; t /, @ x u.0; t /, @ x u.L; t /, u 0 .x/ and v 0 .x/. Exactly half of these boundary conditions are unknown and need to be calculated. This is done by evaluating Eqn. ( 10) at D 0 and D L, leading to two linear equations at every instant t i D it which can be gathered in the matrix form

Hu D G @ x u b ( 11 
)
where H is a square matrix of dimension 2 2, G is a rectangular 2 2n matrix and b is the vector computed from the two last terms of Eqn. [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF]. Quantity u is the vector (2 1) of boundary displacements at instant t i and @ x u is the vector (2n 1) of boundary tractions computed from the time integration over OE0I t i . Equation ( 11) can be solved for the two unknown boundary conditions at t i stacked in either u or @ x u or both, and then inserted back into Eqn. [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF] to recover the solution.

Switching boundary conditions

The complementarity conditions (4) at x D L are accounted for by switching the boundary conditions at the time instants when the gap opens or closes. The time discretisation may lead to undesirable residual penetration of the contacting end of the bar into the rigid foundation. Such penetrations are handled by projecting the contacting end of the bar on the rigid foundation. Doing so creates an extra shock wave, reducing the accuracy of the solution; choosing an appropriate time step leading to small penetration is therefore essential. Overall, at any given instant t i , one of the following conditions applies: 1. contact is not activated: g.t i / > 0 and @ x u.L; t i / D 0, 2. contact or penetration occurs: g.t i / Ä 0 and (a) contact remains closed: @ x u.L; t i / Ä 0, (b) contact is released: @ x u.L; t i / > 0. The darker grey portion in Fig. 2 shows the bar with zero displacement and the lighter grey portion shows the stretched bar at a given instant t i . Open Gap The sign of the gap defined in Eqn. ( 1) is monitored at every time step g.t i /. If it is positive, the contacting node at x D L is free: @ x u.L; t i / D 0. Penetration or Contact If g.t i / D 0, no adjustment is required.

When g.t i / < 0 (penetration occurs), the displacement of the contacting node is adjusted to satisfy the Signorini conditions: u.L; t i / D g 0 , as shown in Fig. 2. In both cases, the contact force can be computed from the reaction force exerted by the wall. Two cases are to be considered depending on the sign of this contact force.

Lasting Contact If g.t i / D 0 and the contacting force is positive, i.e. reaction force @ x u.L; t i / is negative, the contact will remain at the next time step. This is modelled by a fixed boundary condition. Release When the contacting force becomes negative, i.e. @ x u.L; t i / > 0, the contacting node is released and the gap will be open at the next time step t i C1 . This is modelled by a free boundary condition. Output: u.L; t i /, @ x u.L; t i /, @ x u.0; t i / Algorithm 1: Unilateral contact in TD-BEM

The proposed algorithm 1 summarizes the approach. It is essentially a time-marching procedure where the gap and the contact force are computed. Once all the boundary values are found, the internal displacements can be computed using Eqn. [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF].

Validation of the proposed algorithm

The numerical properties of TD-BEM are illustrated on a onedimensional bar, bouncing on a rigid foundation and subjected to constant external body force. One end of the bar is free and the other undergoes unilateral contact conditions. For some specific parameters, the bar bounces periodically against the rigid foundation [START_REF] Doyen | Timeintegration schemes for the finite element dynamic Signorini problem[END_REF]. The displacement of the contacting node of the bar is compared with the analytical solution [START_REF] Doyen | Timeintegration schemes for the finite element dynamic Signorini problem[END_REF] and FEM with forward Lagrange multipliers with an explicit time-marching technique [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF] in Fig. 3. Time steps are chosen such that both computation time are comparable. TD-BEM accurately captures the traveling waves propagating at a finite speed and generated by unilateral contact, with no spurious oscillations. Energy is conserved over time, as opposed to the chosen FEM simulation. TD-BEM does not necessitate an impact law to retrieve the exact solution. This allows for both non-impulsive lasting contact and energy preserving solutions.

Autonomous periodic solutions

Nonlinear modal analysis helps understand the vibratory signature of nonlinear dynamical systems [START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF]. Various techniques and tools exist in the literature to compute the nonlinear modes, such as asymptotic-numerical methods [START_REF] Arquier | Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes[END_REF], invariant manifold techniques [START_REF] Pesheck | A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds[END_REF], Fourier methods [START_REF] Laxalde | Complex nonlinear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF] and shooting [START_REF] Laxalde | Nonlinear modal analysis of mechanical systems with frictionless contact interfaces[END_REF][START_REF] Peeters | Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques[END_REF]. To characterize nonlinear modes, we compute periodic solutions. Because the system is deterministic, it suffices to verify that the initial displacement u 0 and the initial velocity v 0 repeat themselves after a period T to be found, that is u 0 .x/ D u.x; T / and v 0 .x/ D v.x; T /: [START_REF] Duffy | Green's Functions with Applications[END_REF] In this work, initial velocity is assumed to be zero. This implies the existence of an axis of symmetry in the solution explaining the mode shapes observed in the next section. Shooting and TD-BEM are employed to find the sought families of periodic solutions. Since v 0 D 0, Eqn. ( 12) reduces to just solving u 0 .x/ D u.x; T /. The space domain is discretized into N 1 cells with N nodes. The initial displacement is then approximated as u 0 .x i / u 0i , i D 1; : : : ; N , denoted u 0 . Similarly, the displacement at T is approximated by its values u i , i D 1; : : : ; N , denoted u. This last quantity is computed from the unknowns u 0 and T using the above-described TD-BEM. Periodicity with zero initial velocity is enforced by solving f.u 0 ; T / D u 0 u.u 0 ; T / D 0 [START_REF] Graff | Wave Motion in Elastic Solids[END_REF] where f W R N C1 ! R N since N independent equations are generally provided for N C1 unknowns. Accordingly, the solution space is expected to be a one-dimensional manifold [START_REF] Allgower | Numerical Continuation Methods: an Introduction[END_REF]. However, it was observed that in the subharmonic case, the N equations provide N 1 independent equations, yielding a two-dimensional manifold.

Eqn. ( 13) is solved using a Newton's solver that shoots for values of initial displacement u 0i , i D 1; : : : ; N . Since the system is underdetermined, outputs of the Newton's solver are elements of a continuum of solutions. Parametric continuation is employed to recover this continuum of solutions, starting from a known solution, the limit case linear grazing mode. When parametric continuation misses the solution as frequency increases, a more sophisticated arc-length continuation is used instead. The TD-BEM solver as well are arc-length continuation are implemented using MATLAB R 2015.

Results

Young's Modulus E, mass density and length of the bar L are arbitrarily chosen equal to one and the initial gap is chosen as g 0 D 0:001 so that g 0 L. The resonant frequencies of undamped linear systems are independent of the vibratory energy: this corresponds to vertical backbone curves in the frequencyenergy diagram. This no longer holds for nonlinear systems, as illustrated by the first two nonlinear modes of vibration of the system of interest, see Fig. They are briefly discussed in the sequel. The backbone curves in Fig. 4 have a vertical part and a curved part. The vertical part corresponds to the linear mode and denotes that contact is not activated. The energy is frequency-independent until contact is initiated which gives rise to a non-straight backbone curve. Linear mode shapes of a fixed-free bar are standing sine waves, but this no longer holds when a contact nonlinearity is introduced: instead, travelling waves are observed because contact induces shock waves.

Main vibratory responses

Figure 5 shows the displacement of the contacting node and contact force over one period of the first nonlinear mode. The contacting node first travels freely (fixed-free bar), then hits the rigid foundation and remains on it (fixed-fixed bar); eventually, the contact force vanishes and the contacting end is released.

Figures 6 and7 show the motion corresponding to first and second modes over one period. Mode shapes are no longer separated half sine waves in space and full sine waves in time as in the linear case. Instead, they are unseparated piecewise-linear space 4 time functions with a clear indication of the characteristic lines. Also, the surface plots show that the two modes are different, even though the displacement of the contacting node has a similar pattern. In particular, one point of the bar is a node for the second mode: it has a constant zero displacement over time, see the blue line in Fig. 7. In this respect, it is similar to the second mode of the linear system. 

Subharmonic response

Subharmonic resonances, defined as the resonances at special frequencies equal to an integer sub-multiple of the natural frequencies, exist only in nonlinear systems [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF]. The second mode, considered over two periods, defines a new periodic trajectory of frequency ! 2 =2. In the energy-frequency graph, this corresponds to a new backbone curve similar to the second mode, but of half frequency (and same energy), called subharmonic backbone curve. A phenomenon, new in the continuous framework, is observed along this subharmonic backbone curve. As illustrated in Fig. 8, a continuum of periodic orbits is observed at every single point in the subharmonic curve with a minimal period 2T 2 . For a given frequency, co-existing solutions are found with identical energy but with distinct shapes. A similar property named bridge is reported for a two-dof vibro-impact spring-mass system [START_REF] Thorin | Nonsmooth modal analysis: Investigation of a 2-dof spring-mass system subject to an elastic impact law[END_REF].

A trajectory is said to graze when the contacting end reaches the rigid foundation with zero velocity and recedes away without lasting contact: it is the limit case between no contact and contact. The shaded portion in Fig. 8 shows the previously mentioned continuum delimited by two solutions with one contact phase and one grazing instant per period, which are actually the same but shifted by a duration of 2 =! 2 D T 2 . Every other solution in the continuum has two contact phases per period. Fig. 9 shows the motion corresponding to grazing solution over one period. 

Internal resonance

Another phenomenon existing only in nonlinear systems is the internal resonance. In some experiments with nonlinear systems, the excitation of a mode at a frequency actuates the response of a distinct higher frequency mode. This interaction property has been used to design vibration absorbers [START_REF] Oueini | Dynamics of a cubic nonlinear vibration absorber[END_REF] for instance. Figure 10 shows an internal resonance of a high-frequency mode interacting with a lower frequency mode: the mode shape exhibits a large similarity with the first mode shape but also includes high-frequency content.

Figure 11 displays the displacement of the contacting end for the first mode and the internal resonant mode with the same frequency of vibration. In the internal resonant case, a mode with A lowmagnitude high-frequency solution combines with the first nonlinear mode of vibration frequency about 12 times (see Fig. 11, the wave has 12 nodes in one period) the frequency of the first non-smooth mode seems to interact with the first nonlinear mode.

Conclusions

The periodic autonomous dynamics of a one dimensional bar fixed on one end and subject to unilateral contact conditions on the other was investigated. Periodic solutions were targeted in order to build the nonlinear modes of vibration. Unilateral contact conditions give rise to travelling waves which cannot be accurately captured using FEM. In contrast, TD-BEM formulated in space-time domain showed promising numerical characteristics in capturing travelling wave phenomenon.

First, TD-BEM with boundary conditions depending on the contact state was shown to simulate the time-evolution of a bouncing bar with high accuracy, opening doors to the search of periodic solutions of unilateral contact problems. Such periodic solutions were computed via an implementation of TD-BEM within a shooting method, and continuation techniques were used to recover the whole modes.

Backbone curves in the energy-frequency diagram were presented for the first two modes. One of such curves is a subharmonic curve of the second mode. The backbone curve of the subharmonic mode was shown to correspond to a two-dimensional continuum of periodic solutions, delimited by two grazing solutions and centered around the second mode. Vertical branches emanating from the first mode backbone curve were found to correspond to internal resonances. The periodic motions associated to such internal resonances were computed and these are helpful in predicting the possibility of sudden resonances in real life applications, when vibrating in the vicinity of these frequencies.

The next step will consist in extending the presented methodology to higher dimensions in space [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF]. Future works also include stability analysis of the computed modes. initial gap u.x; t / space-time displacement field @ t , @ x first derivative with respect to t , x @ 2 t , @ 2 x second derivative with respect to t, x @ first derivative with respect to EA@ x u internal traction within the bar u 0 .x/ initial displacement v 0 .x/ initial velocity u .x; t; ; / fundamental solution ı Dirac distribution H.x/ Heaviside function
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 1 Figure 1: Bar with unilateral contact condition displacement field of the bar at time t D 0 is u 0 .x/ and the corresponding initial velocity is v 0 .x/ where x 2 OE0 I L. The signed distance, or gap function, between the contact node at x D L and the rigid foundation is g.t / D g 0 u.L; t /; 8t(1)

Figure 3 :

 3 Figure 3: Bouncing bar solution: analytical solution [ ], TD-BEM [ ] and FEM [ ]

4 .

 4 The backbone curves show the main vibratory resonances in the vicinity of ! 1 .E/ and ! 2 .E/, subharmonic resonances near ! 2 .E/=2 and internal resonances observed along the first nonlinear backbone curve.

Figure 4 :

 4 Figure 4: Backbone curves via TD-BEM & shooting. linear mode [ ], nonlinear main vibratory response [ ], subharmonic of the second mode (! 2 =2) [ ], internal resonance [ ]. labels are referred to in the following figures Subharmonic resonances and internal resonances are typical of nonlinear dynamics and cannot be observed in linear systems.They are briefly discussed in the sequel. The backbone curves in Fig.4have a vertical part and a curved part. The vertical part corresponds to the linear mode and denotes that contact is not activated. The energy is frequency-independent until contact is initiated which gives rise to a non-straight backbone curve. Linear mode shapes of a fixed-free bar are standing sine waves, but this no longer holds when a contact nonlinearity is introduced: instead, travelling waves are observed because contact induces shock waves.
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 56 Figure 5: First nonlinear mode trajectory: displacement of contacting node [ ] and corresponding unilateral contact force [ ]

LFigure 7 :

 7 Figure 7: Second nonlinear mode space-time trajectory with one node in space: b in Fig. 4

Figure 8 :

 8 Figure 8: Constant energy continuum at every point of the subharmonic backbone curve in the vicinity of ! 2 =2: limits of the continuum (grazing) [ ] & second mode over two periods [ ]

LFigure 9 :

 9 Figure 9: Grazing subharmonic nonlinear mode space-time trajectory: c in Fig. 4

LFigure 10 :Figure 11 :

 1011 Figure 10: Internally resonant space-time trajectory emanating from the first main backbone curve: d in Fig. 4

  L, , A length, mass density, cross-sectional area of the bar

	c E x t T t n g	wave velocity Young's modulus of the bar field point in space source point in space time source point in time time period of oscillation time-step total number of time-steps time dependent gap function
	g 0	
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