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NONLINEAR MODAL ANALYSIS OF A ONE-DIMENSIONAL BAR UNDERGOING
UNILATERAL CONTACT VIA THE TIME-DOMAIN BOUNDARY ELEMENT METHOD

Jayantheeswar Venkatesh, Anders Thorin, Mathias Legrand
Structural Dynamics and Vibration Laboratory
Department of Mechanical Engineering
McGill University
Montreal, Quebec, H3A 0C3, Canada

ABSTRACT

Finite elements in space with time-stepping numerical schemes,
even though versatile, face theoretical and numerical difficulties
when dealing with unilateral contact conditions. In most cases,
an impact law has to be introduced to ensure the uniqueness
of the solution: total energy is either not preserved or spurious
high-frequency oscillations arise. In this work, the Time Domain
Boundary Element Method (TD-BEM) is shown to overcome these
issues on a one-dimensional system undergoing a unilateral Sig-
norini contact condition. Unilateral contact is implemented by
switching between free boundary conditions (open gap) and fixed
boundary conditions (closed gap). The solution method does not
numerically dissipate energy unlike the Finite Element Method
and properly captures wave fronts, allowing for the search of
periodic solutions. Indeed, TD-BEM relies on fundamental solu-
tions which are travelling Heaviside functions in the considered
one-dimensional setting. The proposed formulation is capable
of capturing main, subharmonic as well as internal resonance
backbone curves useful to the vibration analyst. For the system
of interest, the nonlinear modeshapes are piecewise-linear un-
separated functions of space and time, as opposed to the linear
modeshapes that are separated half sine waves in space and full
sine waves in time.

Introduction

In structural dynamics, autonomous conservative systems most
commonly exhibit continuous families of periodic orbits in the
phase space, usually referred to as modes of vibration. A major
task of modal analysis is to accurately compute natural frequen-
cies and corresponding mode shapes as they are known to properly
predict the frequencies under which the associated periodically
forced systems will resonate, at least in linear and smooth nonlin-
ear frameworks.

Characterizing the modes of vibration of smooth nonlinear
mechanical systems (systems governed by PDEs that are smooth
with respect to the unknown displacement and velocity) is a cur-
rent topic of interest in the academic and industrial spheres. It
relies on computing periodic solutions which are sensitive to
numerical accuracy. For example, a dissipative time-marching
numerical scheme cannot describe autonomous periodic solutions.

The dynamics of two impacting bodies is characterized by
the travelling waves emanating from the contact interface. In the
one-dimensional setting chosen in this work, these waves couple
time and space, in the sense that they are functions of the form
f(x £ ct) where c is the wave velocity. Uncoupling time ¢ and

space x leads to numerical and theoretical issues. In the Finite El-
ement Method (FEM), the displacement commonly takes the form
u(x,t) = Y ; ¢i(x)u;(t), where u;(¢) is the i-th displacement
participation and ¢; (x), the corresponding shape function. This
leads to spurious oscillations, dispersion, and energy dissipation,
for most numerical schemes dealing with unilateral contact con-
ditions [11]. Additionally, an impact law is required to uniquely
describe the time-evolution of a space semi-discretized formu-
lation [5]. The impact law should be purely elastic to preserve
energy, making it difficult to describe lasting contact phases which
are expected to exist in the continuous framework. The Wave
Finite Element Method (WFEM), which appropriately combines
space and time, has shown promising results for one-dimensional
systems undergoing contact conditions [28].

In this work, a variant of the Boundary Element Method
(BEM), called the Time Domain Boundary Element Method (TD-
BEM) [19], is used to solve for the nonlinear modes [14] of
the one-dimensional bar with fixed boundary at one end and a
unilateral contact condition on the other.

Both BEM and FEM are weighted residual methods but the
weighting function in BEM is defined as the fundamental solu-
tion [27] of the considered PDE. The fundamental solution is
defined as the response of a body subjected to a Dirac delta in-
put, irrespective of the boundary conditions. When boundary
conditions are included, the fundamental solution transforms to
the classical Green’s function [12]. It is then straightforward
to compute the response of a linear system to any distributed
body forces and any boundary conditions through the principle
of superposition reflected by a convolution operation [9]. How-
ever, a major limitation of BEM is that fundamental solutions are
known exactly only for simple PDEs. In general, they can only
be approximated thus reducing the accuracy of BEM.

Various types of BEM are available in literature such as
Domain-BEM (D-BEM) [8], Time Domain-BEM (TD-BEM),
Dual Reciprocity-BEM (DR-BEM) [2, 17], Frequency Domain-
BEM (FD-BEM) [10], Convolution Quadrature-BEM (CQ-
BEM) [1, 24]. D-BEM and DR-BEM both discretize time and
space separately, hence are not of interest here. In contrast, CQ-
BEM and TD-BEM provide a formulation in space and time
allowing to precisely capture traveling waves [19], at least for
one-dimensional problems in space. CQ-BEM, first introduced
by Lubich [18] and later used for transient analysis [1, 24] dif-
fers from TD-BEM in the way the integrals are computed, i.e.
using the Convolution Quadrature Method (CQM). Application
of CQM to the TD-BEM improves the numerical stability of the



solution [23]. However, it has a low computational efficiency for
large scale problems. For these reasons, TD-BEM is chosen in
this work.

First, the investigated mechanical system is described. Then,
the simulation methods used to compute the time evolution of
the system are detailed, and a comparison with a benchmark
problem is provided to validate the methodology and illustrate its
accuracy. This is followed by a brief explanation of the shooting
technique used to find the periodic solutions. The frequency-
energy plot and the mode shapes of main vibratory response,
subharmonic response as well as the internal resonances of the
system of interest are presented and discussed.

1 Problem of interest

A one-dimensional elastic bar of length L, constant cross-
sectional area A, Young’s Modulus E and mass density p is
considered. The bar is fixed at x = 0 and subject to unilateral
contact conditions at x = L, as shown in Fig. 1. The initial

L

— g(t) —
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Figure 1: Bar with unilateral contact condition

displacement field of the bar at time # = 0 is uy(x) and the corre-
sponding initial velocity is vo(x) where x € [0; L]. The signed
distance, or gap function, between the contact node at x = L and
the rigid foundation is

g(t):gO_M(L’t)’ Vi (1)

where g is the gap at the resting position. When contact occurs
(g = 0), an elastic wave propagates inside the bar at velocity
¢ = / E/p. The local equation which dictates the displacement
u(x, t) of the one-dimensional bar is

pAu(x,t)— EARu(x,t) =0, Yx €]0;L[, Yt >0 (2)
with the boundary condition

u(0,¢) =0, Vi >0. 3)

Contact is described using Signorini’s conditions
gt) >0, oyu(L,t) <0, g(t)-0xu(L,t) =0, Vt>0. (4

These inequalities are responsible for the nonlinear behavior of
the dynamics.

The objective is to find the nonlinear modes of the above-
described system, defined as continuous families of periodic orbits.
Formally, the goal is to find functions u satisfying (2), (3) and (4)
together with real numbers T > 0, such that V7 > 0 and Vx €
[0; L], u(x,t +T) =u(x,t).

2 Simulation methods

This section introduces the background of the one-dimensional
TD-BEM, including the algorithm used to implement unilateral
contact conditions. The methodology is then validated using a
benchmark problem [11].

2.1 Formulation of TD-BEM

In TD-BEM, a time-dependent fundamental solution of the
PDE (2) is used. The fundamental solution u™* captures, at the
field point x and time ¢, the effect of a unit impulse § applied at
the source point & and time 7, that is the solution of

1
Biu*(x, t.E,1)— C—zatzu*(x,t, £,7) = .. 5)
Solving (5) leads to the fundamental solution for this problem [13]
¢
W16 ) = ~S H[e( = 7) — v — &) ©)

where H is the Heaviside function and |x — &| is the distance
between the field and source points. Noting that £ and x are any
point in the interval [0; L], the variables £ and x are interchange-
ably used when required [9] and the same applies to ¢ and 7 in the
time interval. The method of weighted residuals can be applied to
Eqn. (2) using u*(x,t, £, 7) as the weighting function. From here
on, u(x, t) and u™*(x,¢, £, v) are written as u and u* respectively,
when required by compactness. The weighted residual statement
takes the form

t L 1 t L
/ / 2y u*dxdr — —2/ / Puu*dxdt =0.  (7)
o Jo ¢ Jo Jo

Substituting Eqn. (6) in (7), and taking the second weak form, i.e.
integrating by parts twice, yields

t L 1 t L
0= / / u 2u*dxdr — —2/ / u d7u*dxde
o Jo = Jo Jo
t L t L
+/(; ((3xu u) O)dr —/0 ((u OxU )lo)dr ®)

1 L N 1 rL N
-3 \ ((8tuu ))O)dx + 0_2/0 ((u a u™) O)dx.

The fundamental solution features the following properties [9]:

1. Causality: u*(x,t,£,7) =0ifc(t — 1) < |x — &|;

2. Invariance by time translation: u*(x,¢,§,7) = u*(x,t +

& t+h);

3. Reciprocity: u*(x,t,&,t) = u*(, —1,x,—t).
The distributional derivative of the displacement u* with respect
toxand t

| R " c
Ea,u (x,t,6, 1) =0u"(x,t,§,7) = ES\X—EI—C(t—r) )

and the causality property of the fundamental solution (8) yield
the internal point equation

u(E.1) = %M(L,l —(L=§)/0) + %M(OJ —§/0)
_/’ dxu(L. V) u*(L.1.£ 1)dr
0
_/t 3,u(0,7)u*(0,1, &, 7)dr (10)
0
L

1 L
—6—2/ ug(x) 0 u*(x,1,&,0)dx
0

where u(x,-) is extended for negative ¢ by u(x,t) = 0. The
last integral in Eqn. (10) should be understood in the following



distributional way using Eqn. (9):

L
/ ug(x) d;u*(x,1,&,0)dx =
0

up(§ —ct) ifé—ct>0and & +ct > L
uop(€ + ct) ifé—ct<Oand&é+ct <L
ug(§ —ct) +upE+ct) ifé—ct>0andé+ct <L
0 otherwise.

The integrals over [0; L] are dealt with by discretizing this in-
terval into sub-intervals onto which are defined piecewise-linear
polynomials [7] to approximate uo(x) and vo(x). This discretiza-
tion is used to find the unknown functions u¢ and vg. In a similar
fashion, time integrals over [0 ;] are dealt with by considering
a time discretization scheme with n time steps of length At; be-
tween two successive time steps, d,u(0,7) and d,u(L,7) are
approximated by constant interpolation functions.

Equation (10) shows that u(x,t) is formulated as a lin-
ear combination of the boundary conditions u(0,7), u(L,t),
dxu(0,1), dxu(L,t), ug(x) and vo(x). Exactly half of these
boundary conditions are unknown and need to be calculated. This
is done by evaluating Eqn. (10) at £ = 0 and £ = L, leading
to two linear equations at every instant #; = i A¢ which can be
gathered in the matrix form

Hu=Gdu—b (11)

where H is a square matrix of dimension 2 x 2, G is a rectangular
2 x 2n matrix and b is the vector computed from the two last
terms of Eqn. (10). Quantity u is the vector (2 x 1) of bound-
ary displacements at instant #; and du is the vector (2n x 1) of
boundary tractions computed from the time integration over [0; #;].
Equation (11) can be solved for the two unknown boundary con-
ditions at #; stacked in either u or 0, u or both, and then inserted
back into Eqn. (10) to recover the solution.

2.2 Switching boundary conditions
The complementarity conditions (4) at x = L are accounted
for by switching the boundary conditions at the time instants
when the gap opens or closes. The time discretisation may lead
to undesirable residual penetration of the contacting end of the
bar into the rigid foundation. Such penetrations are handled by
projecting the contacting end of the bar on the rigid foundation.
Doing so creates an extra shock wave, reducing the accuracy of
the solution; choosing an appropriate time step leading to small
penetration is therefore essential. Overall, at any given instant #;,
one of the following conditions applies:
1. contact is not activated: g(t;) > 0 and d,u(L,t;) = 0,
2. contact or penetration occurs: g(#;) < 0 and
(a) contact remains closed: dyu(L,t;) <0,
(b) contact is released: d,u(L,t;) > 0.
The darker grey portion in Fig. 2 shows the bar with zero dis-
placement and the lighter grey portion shows the stretched bar at
a given instant ;.
Open Gap The sign of the gap defined in Eqn. (1) is monitored
at every time step g(¢;). If it is positive, the contacting node
atx = L is free: dyu(L,t;) = 0.
Penetration or Contact If g(¢;) = 0, no adjustment is required.
When g(#;) < 0 (penetration occurs), the displacement of the
contacting node is adjusted to satisfy the Signorini conditions:

u(L,t;) = go, as shown in Fig. 2. In both cases, the contact

force can be computed from the reaction force exerted by the

wall. Two cases are to be considered depending on the sign
of this contact force.

Lasting Contact If g(#;) = 0 and the contacting force is
positive, i.e. reaction force d,u(L,1;) is negative, the
contact will remain at the next time step. This is mod-
elled by a fixed boundary condition.

Release When the contacting force becomes negative, i.e.
dxu(L,t;) > 0, the contacting node is released and the
gap will be open at the next time step #;4;. This is
modelled by a free boundary condition.

gti) <o
2

12z
\; u(L,t;)

correction
—

Figure 2: Adjustment in case of penetration

Input: total number of time steps 7, initial gap go, boundary
conditions, initial conditions u and vg, wave velocity

c=+E/p
1 fori =1:ndo
2 Compute g(#;) = go — u(L,t;) using Eqn. (11)
3 —— Switching Boundary Conditions --
4 if g(z;) > 0 then
5 ‘ Set free boundary condition at x = L
6 else
7 u(L. 1) < go
8 Set fixed boundary condition at x = L
9 Compute dxu(L,t;) using Eqn. (11)
10 end
11 —— End Switching Boundary Conditions —-—
12 end

Output: u(L,t;), dxu(L,t;), 0xu(0,t;)

Algorithm 1: Unilateral contact in TD-BEM

The proposed algorithm 1 summarizes the approach. It is essen-
tially a time-marching procedure where the gap and the contact
force are computed. Once all the boundary values are found, the
internal displacements can be computed using Eqn. (10).

2.3 Validation of the proposed algorithm

The numerical properties of TD-BEM are illustrated on a one-
dimensional bar, bouncing on a rigid foundation and subjected to
constant external body force. One end of the bar is free and the
other undergoes unilateral contact conditions. For some specific
parameters, the bar bounces periodically against the rigid founda-
tion [11]. The displacement of the contacting node of the bar is
compared with the analytical solution [11] and FEM with forward
Lagrange multipliers with an explicit time-marching technique [6]
in Fig. 3. Time steps are chosen such that both computation time
are comparable.
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Figure 3: Bouncing bar solution: analytical solution [—], TD-
BEM [- - -] and FEM [—]

TD-BEM accurately captures the traveling waves propagating
at a finite speed and generated by unilateral contact, with no
spurious oscillations. Energy is conserved over time, as opposed
to the chosen FEM simulation. TD-BEM does not necessitate an
impact law to retrieve the exact solution. This allows for both
non-impulsive lasting contact and energy preserving solutions.

3 Autonomous periodic solutions

Nonlinear modal analysis helps understand the vibratory signa-
ture of nonlinear dynamical systems [26]. Various techniques
and tools exist in the literature to compute the nonlinear modes,
such as asymptotic-numerical methods [4], invariant manifold
techniques [22], Fourier methods [16] and shooting [15, 21]. To
characterize nonlinear modes, we compute periodic solutions.
Because the system is deterministic, it suffices to verify that the
initial displacement uo and the initial velocity vy repeat them-
selves after a period 7' to be found, that is

uo(x) =u(x,T) and wvo(x) =v(x,T). (12)

In this work, initial velocity is assumed to be zero. This implies
the existence of an axis of symmetry in the solution explaining
the mode shapes observed in the next section.

Shooting and TD-BEM are employed to find the sought fami-
lies of periodic solutions. Since vy = 0, Eqn. (12) reduces to just
solving ug(x) = u(x, T). The space domain is discretized into
N —1 cells with N nodes. The initial displacement is then approxi-
mated as ug(x;) ~ upi, i = 1,..., N, denoted uy. Similarly, the
displacement at 7" is approximated by its values u;,i = 1,..., N,
denoted u. This last quantity is computed from the unknowns
upand 7T using the above-described TD-BEM. Periodicity with
zero initial velocity is enforced by solving

f(ug, T) =up—u(uy, 7)) =0 (13)

where f : R¥*!1 — R since N independent equations are
generally provided for N 41 unknowns. Accordingly, the solution
space is expected to be a one-dimensional manifold [3]. However,
it was observed that in the subharmonic case, the N equations
provide N — 1 independent equations, yielding a two-dimensional
manifold.

Eqn. (13) is solved using a Newton’s solver that shoots for val-
ues of initial displacement ug;, i = 1,..., N. Since the system
is underdetermined, outputs of the Newton’s solver are elements
of a continuum of solutions. Parametric continuation is employed
to recover this continuum of solutions, starting from a known

solution, the limit case linear grazing mode. When parametric
continuation misses the solution as frequency increases, a more
sophisticated arc-length continuation is used instead. The TD-
BEM solver as well are arc-length continuation are implemented
using MATLAB® 2015.

4 Results

Young’s Modulus E, mass density p and length of the bar L
are arbitrarily chosen equal to one and the initial gap is chosen
as go = 0.001 so that g9 < L. The resonant frequencies of
undamped linear systems are independent of the vibratory energy:
this corresponds to vertical backbone curves in the frequency—
energy diagram. This no longer holds for nonlinear systems, as
illustrated by the first two nonlinear modes of vibration of the
system of interest, see Fig. 4. The backbone curves show the
main vibratory resonances in the vicinity of w;(E) and w,(E),
subharmonic resonances near w, (E)/2 and internal resonances
observed along the first nonlinear backbone curve.

Energy

| | |
w1 wy/2 w2

Frequency

Figure 4: Backbone curves via TD-BEM & shooting. linear mode
[—1], nonlinear main vibratory response [—], subharmonic of
the second mode (w,/2) [—], internal resonance [- - -]. labels
are referred to in the following figures

Subharmonic resonances and internal resonances are typical
of nonlinear dynamics and cannot be observed in linear systems.
They are briefly discussed in the sequel. The backbone curves
in Fig. 4 have a vertical part and a curved part. The vertical
part corresponds to the linear mode and denotes that contact is
not activated. The energy is frequency-independent until contact
is initiated which gives rise to a non-straight backbone curve.
Linear mode shapes of a fixed—free bar are standing sine waves,
but this no longer holds when a contact nonlinearity is introduced:
instead, travelling waves are observed because contact induces
shock waves.

4.1 Main vibratory responses
Figure 5 shows the displacement of the contacting node and con-
tact force over one period of the first nonlinear mode. The con-
tacting node first travels freely (fixed—free bar), then hits the rigid
foundation and remains on it (fixed—fixed bar); eventually, the
contact force vanishes and the contacting end is released.
Figures 6 and 7 show the motion corresponding to first and
second modes over one period. Mode shapes are no longer sepa-
rated half sine waves in space and full sine waves in time as in the
linear case. Instead, they are unseparated piecewise-linear space
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Figure 5: First nonlinear mode trajectory: displacement of con-
tacting node [—] and corresponding unilateral contact force
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Position u(x, t)

gpace x)

Figure 6: First nonlinear mode space-time trajectory: (@ in Fig. 4

time functions with a clear indication of the characteristic lines.
Also, the surface plots show that the two modes are different,
even though the displacement of the contacting node has a similar
pattern. In particular, one point of the bar is a node for the second
mode: it has a constant zero displacement over time, see the blue
line in Fig. 7. In this respect, it is similar to the second mode of
the linear system.

0q
o

Position u(x, ¢)

Space (x )

Figure 7: Second nonlinear mode space-time trajectory with one
node in space: (p  in Fig. 4

4.2 Subharmonic response

Subharmonic resonances, defined as the resonances at special
frequencies equal to an integer sub-multiple of the natural fre-
quencies, exist only in nonlinear systems [14]. The second mode,
considered over two periods, defines a new periodic trajectory
of frequency w,/2. In the energy—frequency graph, this corre-
sponds to a new backbone curve similar to the second mode, but of
half frequency (and same energy), called subharmonic backbone
curve.

Time 0 Continuum
Figure 8: Constant energy continuum at every point of the sub-
harmonic backbone curve in the vicinity of w,/2: limits of the
continuum (grazing) [—] & second mode over two periods [—]

A phenomenon, new in the continuous framework, is ob-
served along this subharmonic backbone curve. As illustrated in
Fig. 8, a continuum of periodic orbits is observed at every single
point in the subharmonic curve with a minimal period 275. For
a given frequency, co-existing solutions are found with identical
energy but with distinct shapes. A similar property named bridge
is reported for a two-dof vibro-impact spring-mass system [25].

A trajectory is said to graze when the contacting end reaches
the rigid foundation with zero velocity and recedes away without
lasting contact: it is the limit case between no contact and contact.
The shaded portion in Fig. 8 shows the previously mentioned
continuum delimited by two solutions with one contact phase and
one grazing instant per period, which are actually the same but
shifted by a duration of 27w /w, = T,. Every other solution in the
continuum has two contact phases per period. Fig. 9 shows the
motion corresponding to grazing solution over one period.

Position u#(x, ¢)

Figure 9: Grazing subharmonic nonlinear mode space-time tra-
jectory: (¢ in Fig. 4

4.3 Internal resonance
Another phenomenon existing only in nonlinear systems is the
internal resonance. In some experiments with nonlinear systems,
the excitation of a mode at a frequency actuates the response
of a distinct higher frequency mode. This interaction property
has been used to design vibration absorbers [20] for instance.
Figure 10 shows an internal resonance of a high-frequency mode
interacting with a lower frequency mode: the mode shape exhibits
a large similarity with the first mode shape but also includes
high-frequency content.

Figure 11 displays the displacement of the contacting end
for the first mode and the internal resonant mode with the same
frequency of vibration. In the internal resonant case, a mode with
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Figure 10: Internally resonant space-time trajectory emanating
from the first main backbone curve: (d in Fig. 4
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Figure 11: Displacement of the contacting end of the bar: first
nonlinear mode [—] and internal resonant mode [—]. A low-
magnitude high-frequency solution combines with the first non-
linear mode of vibration

frequency about 12 times (see Fig. 11, the wave has 12 nodes in
one period) the frequency of the first non-smooth mode seems to
interact with the first nonlinear mode.

Conclusions

The periodic autonomous dynamics of a one dimensional bar
fixed on one end and subject to unilateral contact conditions
on the other was investigated. Periodic solutions were targeted
in order to build the nonlinear modes of vibration. Unilateral
contact conditions give rise to travelling waves which cannot be
accurately captured using FEM. In contrast, TD-BEM formulated
in space-time domain showed promising numerical characteristics
in capturing travelling wave phenomenon.

First, TD-BEM with boundary conditions depending on the
contact state was shown to simulate the time-evolution of a bounc-
ing bar with high accuracy, opening doors to the search of periodic
solutions of unilateral contact problems. Such periodic solutions
were computed via an implementation of TD-BEM within a shoot-
ing method, and continuation techniques were used to recover the
whole modes.

Backbone curves in the energy—frequency diagram were pre-
sented for the first two modes. One of such curves is a sub-
harmonic curve of the second mode. The backbone curve of the
subharmonic mode was shown to correspond to a two-dimensional
continuum of periodic solutions, delimited by two grazing solu-
tions and centered around the second mode. Vertical branches
emanating from the first mode backbone curve were found to cor-
respond to internal resonances. The periodic motions associated
to such internal resonances were computed and these are help-
ful in predicting the possibility of sudden resonances in real life

applications, when vibrating in the vicinity of these frequencies.

The next step will consist in extending the presented method-
ology to higher dimensions in space [10]. Future works also
include stability analysis of the computed modes.

Nomenclature
L, p, A length, mass density, cross-sectional area of the bar
wave velocity
Young’s modulus of the bar
field point in space
source point in space
time
source point in time
time period of oscillation
t time-step
total number of time-steps
time dependent gap function
go initial gap
u(x,t) space-time displacement field
d¢, 05 first derivative with respect to ¢, x
92,02 second derivative with respect to 7, x
0z first derivative with respect to t
E A0,u internal traction within the bar
Ug(x) initial displacement
vo(x) initial velocity
u*(x,t,&, t) fundamental solution
5 Dirac distribution
H(x) Heaviside function
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