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A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo-chemo-mechanical aging of rubbers 1 Introduction

The question of the relative influence between local chemo-physical evolutions and the local thermo-mechanical state is fundamental for materials science. This question appears for different materials and applications, e.g. material processing, environmental aging, recycling. A wide literature on these topics especially regarding experimental aspects exist. The constitutive and the numerical modeling of these phenomena have received growing attention since the last decade and one can find different approaches and different applications in the litterature. For instance, in [START_REF] Loeffel | A chemo-thermo-mechanically coupled theory for elasticviscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction[END_REF], the authors investigate a multiphysics model of the oxydation of metallic thermal barrier coatings in severe operating conditions. In [START_REF] Gigliotti | Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments[END_REF], [START_REF] Gigliotti | Assessment of chemo-mechanical couplings in polymer matrix materials exposed to thermo-oxidative environments at high temperatures and under tensile loadings[END_REF] and [START_REF] Johlitz | Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics[END_REF] the thermo-oxydation aging of a polymer matrix including chemical reactions, diffusion and mechanical coupling is proposed. The modeling of the curing of polymers and the vulcanization of rubbers, including chemo-thermo-mechanical couplings has been investigated in [START_REF] Lion | On the phenomenological representation of curing phenomena in continuum mechanics[END_REF], [START_REF] Mahnken | Thermodynamic consistent modeling of polymer curing coupled to viscoelasticity at large strains[END_REF], [START_REF] Kannan | A thermodynamical framework for chemically reacting systems[END_REF] and [START_REF] André | Thermo-mechanical behaviour of rubber materials during vulcanization[END_REF]. All these works share the same philosophy that chemo-physical evolutions are strongly coupled to the thermo-mechanical behavior and must be taken into account in a robust and consistent thermodynamical framework.

From a general scientific point of view, assuming both, a stochiometric chemical process and a local mixture as a whole hypothesis (i.e., at a material point x(X, t) the relative velocities of chemical species are null), the question of coupling thermo-chemo-mechanical mechanisms in a continuum framework does not pose major difficulties. The appropriate thermodynamical framework can be found in [START_REF] Prigogine | Introduction to thermodynamics of irreversible processes[END_REF] for instance. Nevertheless, even for simple cases, some questions remain opened for the case of nearly-incompressible materials. The nearlyincompressibility constraint and the fact that soft materials are sensitive to thermal dilation and chemical volume variations raises the question of the influence of chemical reaction on the thermal and mechanical states. The role of the hydrostatic pressure on the chemical process also need to be taken into account. In this paper we propose to define a mechanical volume variation directly linked to the nearly incompressibility constraint. Another question concerns the chemical contribution to the free energy. In NGuyen et al ( 2016), we have proposed a chemical thermodynamic free energy potential that introduces an induction temperature below which no chemical reactions occurs. This is compatible with the existence of a reference state (that is stress and evolution free). The chemical thermodynamical force (i.e. the chemical affinity) derives from the thermodynamic potential and takes into account a mechanical contribution.

In this paper, we propose to use a mixed free energy form inspired by a partial Legendre transform of the Helmoltz free energy where the volume variation is replaced by the hydrostatic pressure (as similarly adopted in [START_REF] Lion | Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature[END_REF]). The chemical affinity is therefore directly linked to the hydrostatic pressure. Furthermore, we investigate the case of fully incompressible materials as a limit of quasi-incompressibility. We show that the proposed model can phenomenologically represent aging phenomena that are strongly coupled to the thermal and mechanical state on trial examples.

Experimental motivations

The developments proposed in this paper are motivated by experimental observations done during studies of the fatigue life of different rubber materials: a silicone rubber filled with silica and a butadiene rubber filled with carbon black (see [START_REF] Grandcoin | A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers[END_REF]; [START_REF] Delattre | On the dynamical behavior of filled rubbers at different temperatures: Experimental characterization and constitutive modeling[END_REF]). We observe different behaviors depending both on the mechanical loading and the kind of specimens used. For thin specimens (used for tension), we mainly observed damage due to fatigue. For larger specimens, where heat build can lead to important thermal gradients in the specimen, we observe a stiffening phenomena. Obviously, this phenomena is strongly related to the amplitude of the mechanical loading: for high amplitudes, damage is the dominant phenomenon, and for small amplitudes behavior does not evolve.

Figure 1 shows the evolution of the dynamical stiffness and the maximum surface temperature of a filled rubber specimen during fatigue test at room temperature. These results show that for the first 10 000 cycles the specimen temperature increases due to self heating while in the same time we can observe a thermal softening phenomena. This is classical for filled rubber. This softening phase may also include internal damage. After 10 000 cycles, a thermal equilibrium is reached and the dynamical stiffness increases. This phenomenon may be caused by a chemo-physical evolution of the material. In figure 2 the temperature variation is heterogeneous except in the central zone of the surface of the specimen where it is nearly-homogenous. A temperature elevation of 30 o is observed at the surface of the specimen. The temperature elevation is probably higher inside the specimen. Aging can be confirmed with mechanical characterization test lead after fatigue at room temperature. In figure 3, we show simple shear relaxation tests on a double-shear specimens that are previously submitted to fatigue. We observe a stiffer relaxed behavior after fatigue. Obviously, this permanent (irreversible) stiffing or aging phenomena is only observed for specific fatigue conditions on large enough specimens. More details on the experimental protocol adopted for fatigue and characterisation tests can be found in [START_REF] Grandcoin | A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers[END_REF]. In [START_REF] Garnier | The influence of cyclic loading conditions on the viscoelastic properties of filled rubber[END_REF], the authors also observed a non monotonous evolution of the dynamical stiffness during cyclic loading tests with an unexpected stiffening effect on a filled nitrile rubber.

Constitutive modeling

Kinematic

We adopte the same approach as in NGuyen et al (2016). We consider a chemical process with a single stochiometric reaction. We can define a local internal variable ξ(X, t) that describes the relative advance of reaction (or chemical conversion). We assume that both the mechanical and the thermal behavior are related to the chemical process through the chemical conversion ξ. Typically ξ, can be taken as the normalized concentration of newly created sulfur cross-links at a material point.

We also assume that, in the reference state, no chemical reaction occurs and the material is stress free. As we are interested in a thermal aging phenomena, we also assume that the evolution and the initiation of the chemical reaction are strongly dependent on the temperature. Thus, we assume it exists an initiation temperature under which no reactive process can occur. To consider the nearly incompressible behavior, the thermal dilatation, the chemical volume variation and the viscoelastic strain, it is adopted the following splitting of the deformation gradient:

F = J 1/3 F e • F v with J = J Θ J m J ξ (1)
where F e and F v are isochoric elastic and viscous deformation gradients. The thermal, mechanical and chemical volume variation are given respectively by:

J Θ = 1 + α Θ (Θ -Θ 0 ) (2) J m = J J Θ J ξ
(3)

J ξ = 1 + α ξ g(ξ) (4) 
where α Θ and α ξ are material coefficients of thermal dilatation and chemical shrinkage/dilation1 , Θ 0 is the initial (reference) temperature, g(ξ) is a chemical shrinkage/dilatation function.

Thermodynamic

In the current configuration, the first and second thermodynamic principles (conservation of energy and entropy production) take the following local form (the dot superscript refers as the so-called material time derivative):

ρ ė -σ : D -ρr + div x q = 0 (5) ρΘ ṡ -ρr + div x q - grad x Θ Θ • q ≥ 0 (6)
where e is the specific internal energy, σ is the Cauchy stress, r is a furnished (exterior) heat power (defined by volume unit) and q is the eulerian heat flux, s is the specific entropy, ρ is the current density, div x and grad x are respectively eulerian divergence and eulerian gradient. It is more practical to introduce another state potential, the free energy that takes mainly two forms: Gibbs or Helmoltz.

We propose in this paper to use a mixed free energy form defined as follows:

ϕ = e + β -Θs = ψ + β (7)
where ψ is the Helmoltz free energy and β is a potential related to the nearly incompressible behavior. The free energy ϕ is a mixed free energy that depends on state variables, B, Θ, on internal variables, Be , ξ, and on hydrostatic pressure p. The potential β depends on both p and J. This mixed form can be viewed as a partial Legendre transformation of the Helmoltz free energy in some simple situations. This concept has been recently used in [START_REF] Lion | Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature[END_REF] to investigate the caloric behavior of nearly incompressible media with irreversible volume changes. Combining eq. ( 5) and eq. ( 6) with definition (7), one can obtain the following inequality:

φ = σ : D -ρ φ + ρ β -ρ Θs φ intr - grad x Θ Θ • q φ Θ ≥ 0 ( 8 
)
where φ is the total dissipation φ intr and φ Θ are respectively the intrinsic and thermal parts of the dissipation. The material time derivatives of kinetic variables are defined from the following expressions:

J = J (1 : D) (9) Ḃ = L • B + B • L T - 2 3 (1 : D) B (10) Ḃe = L • Be + Be • L T -2 Ve • Do v • Ve - 2 3 (1 : D) Be (11) 
where B = F • F T and Be = F e • F e T are isochoric left Cauchy-Green tensors, Ve comes from the polar decomposition

F e = Ve • Re , Do v = Re • D v • RT e .
Assuming the following dependence: ϕ( B, Be , Θ, ξ, p) and β(J, p, Θ, ξ), The material time derivative of ϕ and β can be expressed as:

φ = 2 B • ∂ϕ ∂ B D : D + 2 Be • ∂ϕ ∂ Be D : D + ∂ϕ ∂Θ Θ + ∂ϕ ∂ξ ξ + ∂ϕ ∂p ṗ -2 Be • ∂ϕ ∂ Be : Do v (12) β = J ∂β ∂J 1 : D + ∂Θ ∂Θ Θ + ∂p ∂p ṗ + ∂ξ ∂ξ ξ ( 13 
)
Inserting eq. 12 and 13 in 8, the dissipation can be rewritten as:

φ = σ -2ρ B • ∂ϕ ∂ B D -2ρ Be • ∂ϕ ∂ Be D + ρJ ∂β ∂J 1 : D + ρ -s - ∂ϕ ∂Θ + ∂β ∂Θ Θ + ρ ∂β ∂p - ∂ϕ ∂p ṗ + ρ ∂β ∂ξ - ∂ϕ ∂ξ ξ + 2ρ Be • ∂ϕ ∂ Be : Do v + - grad x Θ Θ • q ≥ 0 (14)
We assume that dissipation is only due to both thermal diffusion and internal variable evolutions 2 , the following constitutive equations are obtained:

                     σ = σ o 2ρ B • ∂ϕ ∂ B D + σ v 2ρ Be • ∂ϕ ∂ Be D -ρJ ∂β ∂J 1 s = - ∂ϕ ∂Θ + ∂β ∂Θ ∂β ∂p = ∂ϕ ∂p (15) 
and the following inequalities must holds:

                 φ m = 2ρ Be • ∂ϕ ∂ Be : Do v ≥ 0 ∀ Do v φ ξ = ρ ∂β ∂ξ - ∂ϕ ∂ξ ξ ≥ 0 ∀ ξ φ Θ = - grad x Θ Θ • q ≥ 0 ∀q ( 16 
)
2 Internal variables evolutions are assumed to be independent from each others.

Using the definition of intrinsic dissipation, the energy conservation, eq. ( 5) can be re-written as follows:

ρΘ ṡ = φ intr φ m +φ ξ +ρr -div x q (17)
From the constitutive equation of the entropy given at eq. ( 15), the material time derivative of the entropy can be derived and inserted in the previous equation:

ρC p Θ = φ m + φ ξ + l m + l ξ + ρr -div x q (18)
where l m , l ξ are respectively mechanical and chemical coupling terms defined by:

l m = Θ ∂σ ∂Θ : D - ∂σ v ∂Θ : Do v + ρΘ ∂ 2 ϕ ∂Θ∂p - ∂ 2 β ∂Θ∂p ṗ ( 19 
)
l ξ = ρΘ ∂ 2 ϕ ∂Θ∂ξ - ∂ 2 β ∂Θ∂ξ ξ ( 20 
)
The heat capacity is defined as follows:

C p = -Θ ∂ 2 ϕ ∂Θ 2 - ∂ 2 β ∂Θ 2 (21) 3.3 A simple thermo-chemo-viscoelastic model
We consider the case of isotropic behaviors (thermal and mechanical) and we propose to adopt the following potentials:

ρ 0 ϕ = µ 0 (I 1 ( B) -3) + µ v (I 1 ( Be ) -3) + C 0 Θ -Θ 0 -Θlog Θ Θ 0 -C 1 (Θ -Θ 0 ) 2 2Θ 0 + C 2 Θ ind log Θ Θ ind (1 -ξ) n+1 n + 1 -Θ 0 log Θ 0 Θ ind (22) ρ 0 β = p(J m -1) + p 2 J Θ J ξ 2K v ( 23 
)
where I 1 ( B), I 1 ( Be ) are the first invariants of the left Cauchy-Green total and elastic isochoric tensors, µ 0 , µ v are the mechanical modulus that depend on Θ and ξ, C 0 and C 1 are the heat coefficients (that are assumed to be constant in this paper), C 2 is a heat coefficient related to the chemical process (that is exothermic in the present case), Θ ind is an induction temperature for the chemical process3 , n is a chemical parameter, K v is the compressibility modulus (that is assumed as constant). The initial mass density ρ 0 is related to the current mass density through the relation: ρ = Jρ 0 . We can remark that the mixed potential β is similar to a perturbed Lagrangian form used in the case of purely incompressible formulation for which Kv → ∞.

In this case p can be viewed as a Lagrange multiplier. We can also remark that the nearly incompressible mechanical behavior strictly act on J m and not on J. Therefore, the modulus K v has clearly the sense of a mechanical compressibility modulus.

Using definitions 22 and 23 in 15, we obtain the following:

σ = 2 J µ 0 (Θ, ξ) BD + 2 J µ v (Θ, ξ) BD e - p J Θ J ξ 1 (24) s = - 1 ρ 0 ∂µ 0 ∂Θ (I 1 ( B) -3) - 1 ρ 0 ∂µ v ∂Θ (I 1 ( Be ) -3) + C 0 ρ 0 log Θ Θ 0 + C 1 ρ 0 (Θ -Θ 0 ) Θ 0 - C 2 ρ 0 Θ ind Θ (1 -ξ) n+1 n + 1 - pα Θ J J 2 Θ J ξ + p 2 α Θ J ξ 2K v (25) p = - K v J Θ J ξ (J m -1) (26) 
The heat capacity and latent heat terms are obtained from eqs. ( 21), ( 19) and ( 20):

C p = - Θ ρ 0 ∂ 2 µ 0 ∂Θ 2 (I 1 ( B) -3) - Θ ρ 0 ∂ 2 µ v ∂Θ 2 (I 1 ( Be ) -3) + C 0 ρ 0 + C 1 ρ 0 Θ Θ 0 + C 2 ρ 0 Θ ind Θ (1 -ξ) n+1 n + 1 + 2 ρ 0 Θpα 2 Θ J J 3 Θ J ξ (27) l m = Θ ∂σ ∂Θ : D - ∂σ v ∂Θ : Do v + Θ J Jα Θ J 2 Θ J ξ - pα Θ J ξ K v ṗ (28) l ξ = Θ J ∂ 2 µ 0 ∂Θ∂ξ (I 1 ( B) -3) + ∂ 2 µ v ∂Θ∂ξ (I 1 ( Be ) -3) ξ - C 2 Θ ind J (1 -ξ) n ξ + Θ J ∂g ∂ξ - pJα Θ α ξ J 2 Θ J 2 ξ - p 2 α Θ α ξ 2K v ξ (29) 
From eq (27), one can deduce that the physical requirement C p > 0 implies constraints on the material parameters and their evolutions. As we assume the independence of internal variables evolutions, we have to satisfy the following inequalities:

             φ m = 2µ v J Be : Do v ≥ 0 ∀ Do v φ ξ = A ξ ξ ≥ 0 ∀ ξ φ Θ = - grad x Θ Θ • q ≥ 0 ∀q (30)
where A ξ is the chemical affinity defined by:

A ξ = C 2 J Θ ind log Θ Θ ind (1 -ξ) n - 1 J ∂µ 0 ∂ξ (I 1 ( B) -3) - 1 J ∂µ v ∂ξ (I 1 ( Be ) -3) + pα ξ ∂g ∂ξ -1 J Θ J 2 ξ + pJ Θ 2K v J (31) 
One can remark that a fully coupled formulation is obtained: chemical affinity depends on temperature, hydrostatic pressure, mechanical elastic isochoric transformations. The mechanical contribution to the chemical evolution depends on the evolution of mechanical parameters with respect to chemical states and to function g. We propose to adopt the following evolution equations that fulfill requirements of eqs. ( 30) and objectivity:

       Do v = 1 2τ BD e ξ = k(Θ) < A ξ > q = -k t grad x Θ ( 32 
)
where τ is a characteristic relaxation time (that can depend on Θ, ξ), k is a kinetic term that depends on Θ, k t is an isotropic conductivity parameter which is assumed as constant in this paper. The Mac-Cauley brackets4 , < • > are introduced in the evolution law to avoid undesirable chemical reversion. Finally, we assume that the chemical reaction leads to shrinkage defined from the following function:

g(ξ) = exp -1 -exp -(1-ξ) 2 exp -1 (33)
4 Applications to homogeneous test cases

The material parameters used for the tests are given in table 1.

Density ρ 0 (Kg/m 3 ) 1000 Thermal α Θ (K -1 ) C 0 (J/m 3 /K) C 1 (J/m 3 /K) kt(W/m/K) 2.2e -4
4.6e 6 1e 6 0.22 Mechanical Kv(P a) µ 0 (P a) 1.0e 9

1.e 6 (0.2 + 1.5e -3 (Θ -273) + 0.35ξ) τ (s) µv(P a) 0.0818 -0.0183ξ -0.001(Θ -273)

1.e 5 (0.2 + 2.5ξ) + 8.e 7 /(Θ -200)

Chemical C 2 (J/m 3 /K) A((P a.s) -1 ) Ea(J/mol) Θ i (K) 3.0e 5 1.3e -6 2.4e 4 343 n αξ 1.3 1.e -3
Table 1 Material parameters

Adiabatic cyclic simple shear with constant hydrostatic pressure

The transformation is assumed to be homogeneous and corresponds to simple shear with isotropic dilatation. The deformation gradient and the eulerian gradient of velocity are expressed as follows5 :

F(t) =   λ 1/3 γ(t) 0 0 λ 1/3 0 0 0 λ 1/3   , L(t) =   0 γ (t)/λ 1/3 0 0 0 0 0 0 0   , γ(t) = γ 0 sin(2Πf t)
(34) where f is the frequency, γ 0 is the amplitude of the shear deformation and λ is the dilatation. The viscoelastic Cauchy-Green tensor is assumed to be defined as follows:

Be (t) =   B e11 (t) B e12 (t) 0 B e12 (t) B e22 (t) 0 0 0 1/(B e11 (t)B e22 (t) -B e12 (t) 2 )   (35) 
Using eqs. ( 24) and ( 26), the shear stress and the hydrostatic pressure can be expressed as (time dependance does not appear for the sake of simplicity):

σ 12 = 2µ 0 (Θ, ξ) λ 4/3 γ + 2µ v λ 4/3 (Θ, ξ)B e12 p = -K v J Θ J ξ ( λ J Θ J ξ -1) (36) 
The dilatation is therefore defined by:

λ = J Θ J ξ (1 -p J Θ J ξ K v ) (37) 
The mechanical and chemical evolutions equations are obtained from eqs. (32) as follows:

Ḃe = L • Be + Be • L T - 1 τ (Θ, ξ) BD e • Be ξ = k(Θ) < C 2 λ Θ ind log Θ Θ ind (1 -ξ) n - ∂µ 0 ∂ξ γ 2 λ 5/3 - 1 λ ∂µ v ∂ξ (tr( Be ) -3) + pα ξ ∂g ∂ξ -1 J Θ J 2 ξ + pJ Θ 2λK v > (38) 
and the chemical kinetic term is defined from classical Arrhenius behavior:

k(Θ) = Aexp -Ea RΘ ( 39 
)
where R = 8.314J/mol/K is the ideal gaz constant, A is the kinetic constant and E a is the activation energy. The thermal equilibrium in adiabatic condition can be written as:

ρ 0 λ C p Θ = l m + l ξ + φ m + φ ξ , Θ(0) = 293K ρ 0 C p = -Θ ∂ 2 µ v ∂Θ 2 (tr( Be ) -3) + C 0 + C 1 Θ Θ 0 + C 2 Θ ind Θ (1 -ξ) n+1 n + 1 + 2Θ pα 2 Θ λ J 3 Θ J ξ l m = Θ ∂σ ∂Θ : D - 1 2τ ∂σ v ∂Θ : BD e l ξ = - C 2 Θ ind λ (1 -ξ) n ξ + Θ λ ∂g ∂ξ - pλα Θ α ξ J 2 Θ J 2 ξ - p 2 α Θ α ξ 2K v ξ (40) 
The set of differential and algebraic equations ( 36), ( 38), ( 45) can be numerically solved for given values of p which is assumed constant in this test and γ(t). In this paper, we have used a monolithic forward-Euler integration scheme6 .

In figure 4, the activation of a chemical evolution with a self-heating due to a cyclic mechanical loading is shown. One can remark that when the temperature increase is too small the reaction rate is strictly zero (induction phase). In figures 5, the influence of the hydrostatic pressure on the chemical conversion and temperature evolution is shown. A compression state (positive values of p) is more favorable to a dilatation state (negative values of p). Computing the value of the dynamic shear modulus for each cycle, we can plot its evolution for various shear amplitudes. Figure 6 shows that the proposed model can reproduce the phenomena experimentally observed in figure 1 from a qualitative point of view. A thermal softening is followed by a stiffening phase. Obviously, this phenomena only occurs if self-heating is sufficient, i.e. when the mechanical amplitude is large enough.

Adiabatic temperature aging under constant elongation

In this example, we investigate the case of an adiabatic aging of a band of rubber under constant elongation. The mechanical behavior is assumed to be fully incompressible. The deformation gradient and the eulerian gradient of velocity are defined as follows: The viscoelastic Cauchy-Green tensor is assumed to be as follows:

F(t) =     λ(t) 0 0 0 J Θ J ξ λ(t) 0 0 0 J Θ J ξ λ(t)     , L(t) =     λ (t) 0 0 0 - λ (t) √ J Θ J ξ 2λ(t) 3/2 0 0 0 - λ (t) √ J Θ J ξ 2λ(t) 3/2     λ(t) =    1 + λ 0 t 0.1 if t ≤ 0.1 1 + λ 0 if t > 0.1 (41) 
Be (t) =   B e11 (t) 0 0 0 B e22 (t) 0 0 0 1/(B e11 (t)B e22 (t))   (42) 
Using eq. ( 24), the non vanishing stress components are given by: As J m = 1 (incompressible case), eq. ( 26) does not apply and p is defined from the condition of uniaxial stress (σ 22 = σ 33 = 0):

σ 11 = 4 3 µ 0 (J Θ J ξ ) 5/3 (λ 2 - J Θ J ξ λ ) + 2 3 µ v J Θ J ξ (2B e 11 -B e 22 - 1 B e 11 B e 22 ) - p J Θ J ξ σ 22 = σ 33 = 2 3 µ 0 (J Θ J ξ ) 5/3 ( J Θ λ -λ 2 ) + 2 3 µ v J Θ J ξ (2B e 22 -B e 11 - 1 B e 11 B e 22 ) - p J Θ J ξ ( 
p = 2 3 µ 0 (J Θ J ξ ) 2/3 ( J Θ λ -λ 2 ) + 2 3 µ v (2B e 22 -B e 11 - 1 B e 11 B e 22 ) (44) 
The mechanical and chemical evolutions equations are obtained from eqs. ( 38) considering K v → ∞. The thermal equilibrium simplifies to the one defined in the previous example with a supplementary source term r(t):

ρ 0 J Θ J ξ C p Θ = l m + l ξ + φ m + φ ξ + ρ 0 J Θ J ξ r(t), Θ(0) = 293K with ρ 0 r(t) =    28e 6 ( t 30 ) if t ≤ 30 0 if t > 30 (45) 
In figure 7, we show the numerical responses of the same explicit integration scheme as used in the previous example. One can remark that the higher the extension (or compression) is, the lower the chemical conversion is. In figures 7(c) and 7(d), the thermal aging effect on the relaxed component of the stress is illustrated.

Conclusion

The thermo-chemo-mechanical coupling in soft materials such as rubbers or polymers is of high interest to understand and modelize the complex interactions that take place in these materials when cyclic thermo-mechanical loadings are considered. In this paper, we propose a general constitutive multiphysics model that can phenomenologically represent this complex behavior. We show, on trial examples, that this framework can qualitatively represent thermo-mechanical aging for incompressible and nearly incompressible materials. We adopt a mixed free energy that be linked to a partial Legendre transform of the Helmoltz free energy. Both the mixed form and the splitting of the volume variation into mechanical, chemical and thermal contributions allow to naturally introduce a The introduction of the proposed model in Finite-Elements is straightforward using a monolithic multi-fields approach. This step is required to identify the material parameters and to fully validate the model. From an experimental point of view, it is mandatory to consider non homogeneous tests as it seems impossible to control and measure locally a chemical conversion during a thermo-mechanical test. Furthermore, chemo-physical aging could also be coupled to other physical phenomena like damage, strain induced crystallization and so on. It is therefore required to provide new and original, experimental tests or experimental methods to investigate these coupled phenomena.
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 12 Fig.1Evolution of the dynamical stiffness and the surface temperature variation of a dumbell specimen submitted to fatigue cyclic test, 12Hz, ±10% of dynamic amplitude with +50% of static preload (butadiene rubber filled with carbon black).

Fig. 3

 3 Fig.3Mechanical characterization tests at room temperature on double shear specimens that are previously submitted to fatigue (12Hz, ±50% of dynamical amplitude)

Fig. 4 Fig. 5

 45 Fig. 4 Results of the cyclic adiabatic shear test for various dynamic amplitudes of shear at f = 12Hz, p = 0 M pa

Fig. 6

 6 Fig. 6 Dynamic modulus evolution during cyclic simple shear tests for various amplitudes at f = 12Hz and p = 0 M pa

Fig. 7

 7 Fig. 7 Results of the thermal aging uniaxtial tension test for various values of extension adiabatic conditions

Depending on the process considered, chemical evolution can lead to shrinkage or expansion.

For free hydrostatic pressure conditions, no chemical reactions are assumed to occurs if Θ < Θ ind

Mac-Cauley brackets are defined by < f >= f if f > 0 and < f >= 0 otherwise.

As we consider constant hydrostatic tests, the dilatation amplitude λ do not depends explicitly on time but only on ξ, Θ, p

The explicit resolution of differential equations must be done with care on the time increment.