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Post-Impact Adaptive Compliance for Humanoid Falls
Using Predictive Control of a Reduced Model

Vincent Samy1, Stéphane Caron1, Karim Bouyarmane2 and Abderrahmane Kheddar1,3

Abstract— We consider control of a humanoid robot in
active compliance just after the impact consecutive to a fall.
The goal of this post-impact braking is to absorb undesired
linear momentum accumulated during the fall, using a limited
supply of time and actuation power. The gist of our method is
an optimal distribution of undesired momentum between the
robot’s hand and foot contact points, followed by the parallel
resolution of Linear Model Predictive Control (LMPC) at each
contact. This distribution is made possible thanks to torque-
limited friction polytopes, an extension of friction cones that
takes actuation limits into account. Individual LMPC results
are finally combined back into a feasible CoM trajectory sent
to the robot’s whole-body controller. We validate the solution in
full-body dynamics simulation of an HRP-4 humanoid falling
on a wall.

I. INTRODUCTION

Designing humanoids robots with robust falling and recov-
ery strategies is as important as agile walking or whole-body
attitude control. The DARPA Robotics Challenge highlighted
how falls that are not properly handled result in substantial
hardware damage. Several fall avoidance strategies were
thus experimented, including reliable but conservative ap-
proaches [1], foothold replacement on the fly [2], planning
of additional contacts on the fly [3], etc. There is certainly
room for improvement, and such strategies shall be fur-
ther investigated. Nevertheless, even the most sophisticated
legged creatures in nature do end-up in situations were fall
is inevitable, and so will humanoid robots. Our research is
focused on dealing with falls when they occur and that cannot
be recovered from by trying to reduce damage as much as
possible.

A fall incurs relatively high impacts on the mechanical
structure of the robot, including linkage and actuators. Unfor-
tunately, there is not much to do at the software level to deal
with the propagation of mechanical impacts. Our conviction
is that the hardware design of humanoid robots must embed
impact-absorbing components at any rate, e.g. flexible cov-
ers [4], compliant contacting interfaces [5] or compliant joint
actuators coupled with gains tuning algorithms [6]. They can
be complemented by active or semi-active methods to reduce
impact intensity (pre-impact prevention) or further absorb its
effect (post-impact compliance).

In our previous work [7], we leveraged the brief amount
of time available in the pre-impact landing phase to adapt
the humanoid’s posture based on a predefined taxonomy of
postures suited to each fall direction. Then, to deal with the
post-impact phase, we suggested reducing PD gains in the
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low-level actuator controllers to realize a compliant spring-
damper-like behavior at the joint level. These post-impact
PD gains, first determined ad hoc from experiments, were
later derived automatically using a gain-adaptive whole-body
quadratic-programming controller [8]. We call this control
scheme “adaptive QP”. An adaptive-QP controller enables
the robot to comply during post-impact with PD gains
computed in accordance with its state variables. Combining
posture selection and gain adaption, we carried out real-world
experiments where the HRP-4 humanoid robot sustained
front and back falls on a soft mattress, starting from an
upright standing posture.

Post-impact recovery is about absorbing undesired mo-
mentum, accumulated during the fall, using contact forces.
This momentum cannot be absorbed instantly due to fric-
tion and actuation limits. However, it must be absorbed
before position limits (joint limits or collision with the
environment) are reached. The adaptive-QP scheme, being
an instantaneous and reactive control scheme, lacks the level
of foresight necessary to reach an efficient balance between
these two kinds of limitations.

The contribution of the present work is to comple-
ment adaptive-QP whole-body control with an adaptive-
compliance predictive controller that satisfies both post-
impact actuation and position limits. Due to the size of
receding-horizon problems, predictive control requires the
use of reduced dynamic models, which usually cannot
represent whole-body actuation limits. To overcome this,
we introduce a novel mapping of joint-torque limits into
actuation polytopes that generalize friction cones. We then
distribute momentum between contacts and solve the predic-
tive control problem using parallel computations, resulting in
a reduced-model trajectory that is finally tracked by adaptive-
QP control. The validity of this approach is demonstrated in
simulations with the HRP-4 humanoid robot.

II. BACKGROUND

A. Gain-adaptive QP-based whole-body control

In our recent work [8], we extended our whole-body QP
task-space controller [9] to include PD gains of the actuators
as part of the QP decision variables. We also demonstrated
that such a scheme applies to position or torque controlled
robots. The reason behind this approach was to automate PD-
gains tuning so as to make the robot compliant during the
post-impact phase, and hence reduce damage by absorbing as
much as possible the momentum accumulated while falling.
The PD coefficients have been inserted into the decision
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vector of a QP whole-body control problem as follows:

min
q̈,λ,K,B

∑
k

ωsp
k E

sp
k + ωλ‖λ‖2 + ωG(‖K‖2 + ‖B‖2) ,

s.t. HS q̈ + cS − (JTG)Sλ = KeS −BėS
τS ≤ KeS −BėS ≤ τS
τNS ≤ HNSq̈ + cNS − (JTG)NSλ ≤ τNS

q̈ ≤ q̈ ≤ q̈, λ ≥ 0, K ≥ 0, B ≥ 0

(1)

with q̈ ∈ RN the vector of generalized joint accelerations,
λ ∈ RNG the generator weights of linearized friction cones,
K ∈ RN−6 and B ∈ RN−6 the vectors of stiffness and
damping coefficients vector, ωk the positive weight of task
k, Esp

k the residual (error) vector of task k, H ∈ RN×N
the inertia matrix, c ∈ RN the vector of Coriolis and gravity
forces, JTG ∈ RN×NG the mapping from linearized friction
cones to the joint space and e = qref − q the vector of
joint deviations from a reference posture qref. The subscript
S denotes joints that are set to be compliant, for which
non-zero entries will appear in the vectors K and B. The
subscript NS denotes joint that are not set to be compliant.
Generally, qref is set as the state at the impact time, while
q̇ref is zero. Finally, variables such as τ (resp. τ ) denote
the upper bound (resp. lower bound) of the corresponding
variables. The lower and upper bound for the free-floating
base part of the dynamics equation is zero.

B. Polyhedra and polytopes
Polyhedra are convex sets realized by the intersection of

finitely-many halfspaces. They correspond to the inequality
constraints found in linear and quadratic programs, as well
as the dual constraints such as friction cones or ZMP
support areas that arise in mechanics [10]. A polytope is
a bounded polyhedron. It can be represented equivalently
as: (i) the intersection of finitely-many halfspaces, called the
H-representation, or (ii) the convex hull of a finite set of
vertices, called the V-representation. The latter can be written
mathematically as:

P =
{
x =

∑N
i=1 αivi

∣∣∣ ∀i, αi ≥ 0,
∑N
i=1 αi = 1

}
(2)

where the positive coefficients αi form a convex combination
of the N vertices vi of the polytope. Meanwhile, the H-
representation can be concisely written as:

Ax ≤ b (3)

where the matrix A = [A0 . . .AN ]T stacks halfspace nor-
mals Ai, so that AT

i x = bi is the equation of the ith

supporting halfspace of the polytope. The conversion from
H to V (resp. from V to H) representation of a polytope
is known as the vertex enumeration problem. Both can be
realized by the double-description algorithm [11].

III. REDUCED DYNAMIC MODEL

We approximate the whole-body dynamics at the center
of mass (CoM) of the robot and search for contact forces
that compensate for both gravity and post-impact linear
momentum. The Newton equation of motion that governs
the acceleration of the CoM is:

F = M(s̈− g), (4)

with M the total robot mass, s̈ the acceleration of the CoM,
g the gravity vector and F the net contact force (sum of all
external forces) applied to the robot.

Under the assumption that the initial linear momentum
M ṡ0 at impact is known, the goal of post-impact absorption
is to find a trajectory s̈(t) such that, at time t = tf , ṡ(tf ) =
0, meaning that all the linear momentum accumulated while
falling has been driven out of the system. Achieving this task
requires proper control of the net contact force F .

A. Actuation constraints
Let us consider again the full-body dynamics equation of

motion of the system

Hq̈ + c = JTF + ST τ . (5)

F = (JTG)λ is the stacked vector of contact forces and S is
a selection matrix of actuated joints among all the degrees of
freedom (DoFs) of the robot (hence the matrix that excludes
the floating-base DoFs from the total DoFs [12].

A fundamental property of the humanoid kinematic tree
topology is that it comprises at least 4 limbs (two legs and
two arms), indexed here with the variable c ∈ {lh, rh, lf, rf},
that extend from the root of the kinematic tree to the end-
effectors (respectively the two hands and two feet). The
contact force applied at the end-effector c is denoted Fc
(therefore we have F = (Fc)c∈{lh,rh,lf,rf}). The rest of the
DoFs, including the floating base are indexed with 0. Eq. (5)
can be rewritten as
H0

Hlh
Hrh
Hlf
Hrf

 q̈+


c0
clh
crh
clf
crf

=


JT0,lh J

T
0,rh J

T
0,lf J

T
0,rf

JTlh 0 0 0
0 JTrh 0 0
0 0 JTlf 0
0 0 0 JTrf


Flh
Frh
Flf
Frf

+


τ0
τlh
τrh
τlf
τrf

 ,
(6)

where Hc, cc, τc are the rows of respectively H , c and τ
and Jc is the reduced Jacobian of the contact points at the
end-effector c to the root of the kinematic tree, with respect
only to the set of joints of the considered limb (and not
with respect to all the DoFs of the robot). The contact force
at limb c ∈ {lh, rh, lf, rf}. Fc, only affects the part of the
dynamics equation in {c, 0}:

Hcq̈ + cc = JTc Fc + τc. (7)

Using the reduced Jacobian, the kinematic contact con-
straint at the end-effector c is expressed in acceleration-form
as:

Jcq̈ + J̇cq̇ = 0. (8)

Substituting Eq. (7) in Eq. (8) yields

JcH
−1
c JTc Fc = JcH

−1
c (cc − τc)− J̇cq̇

Λ−1c Fc = −JcH−1c τc + JcH
−1
c c− J̇cq̇

Fc = −ΛcAcτc + dc
Fc = Ccτc + dc.

(9)

The matrix Λc is the operational space inertia matrix at point
c, Cc and dc provide an affine mapping from torque limits
to contact force limits. The H-representation of the torque-
constraint polytope is:

τ c ≤ τc ≤ τ c (10)



(a) (b)

Fig. 1: Torque-limited friction polytopes. Feasible contact
forces at the left foot of HRP-4 under (a) leg torque limits
and (b) both torque limits and friction constraints.

where τc is the vector of selected joint torques for the contact
c (corresponding to the limb at hand, e.g. left-leg joints for
a left-foot contact), τ c and τ c are respectively the lower
and upper torque limits of the actuators. Applying Eq. (9)
yields the V-representation of the torque-limited polytope of
feasible end-effector forces at the contact point, depicted in
Fig.1a. Using the double-description method, we convert it
to H-representation:

Gactuators
c Fc ≤ hactuators

c . (11)

B. Friction constraints

The next actuation limit at contact comes from friction.
Using a linearized friction pyramid, whose H-representation
is given by (see e.g. [10]): −1 0 −µ

1 0 −µ
0 −1 −µ
0 1 −µ

 0EcFc ≤ 0, (12)

where µ is the friction coefficient and 0Ec is the rotation
matrix from the contact frame to the world frame.

Concatenating Eq. (11) and Eq. (12) leads to the H-
representation

GcFc ≤ hc, (13)

of the torque- and friction-constrained actuation polytope
depicted in Fig. 1b.

IV. DISTRIBUTION OF GRAVITY AND LINEAR
MOMENTUM

Our primary idea is to make each limb c ∈ {lh, rh, lf, rf}
of the robot contribute, in post-impact, to a “share” of the
pre-impact linear momentum absorption, summing up all
contributions into the resultant equation of motion:∑

c∈{lh,rh,lf,rf}
Fc = M(s̈− g) . (14)

This can be conceptually interpreted as “splitting” the CoM
into four virtual mass points with state vectors (sc, ṡc), each
going towards one of the limb extremities in contact, and
each with a force Fc applied to it. Hence we are solving

for the system of four differential equations for the state
variables (sc, ṡc):

Fc = M(s̈c − gc) , (15)

where gc is a quantity to be defined below (gravity force
distribution problem) and where the initial condition for
each component is also to be defined below (initial impact
momentum distribution problem). The force Fc is used to
decelerate its respective CoM component until full initial
momentum absorption, while being contrained to lie inside
its respective actuation limit polytope (Section III-A).

Therefore, in the following, we distribute the amount of
gravity and initial linear momentum that each contact will
support. This distribution must satisfy (Eq. (14)). we also
want to make sure that the distribution is optimal with respect
to the actuation constraint polytope at each contact.

Assuming that the linear momentum p after impact is
known, a corresponding force quantity fa that would be
physically consistent with the problem of distribution in the
respective contact force polytopes is searched. The force
being a time-derivative of the linear momentum, we have:

f =
dp

dt
= M

dṡ

dt
. (16)

In the worst case where the robot is completely rigid and
the coefficient of restitution of the impact is zero, the impact
force corresponding to the momentum M ṡ0 is:

f = lim
h→0

M
ṡ0

h
. (17)

Because this form is non-linear in h, we set k = 1/h (hence
k can be seen as a “gain” that maps a linear momentum
quantity to a force quantity). The limit becomes

f = lim
k→∞

kM ṡ0. (18)

Then we define fa as the exact applied force

fa , kM ṡ0 (19)

where k is a parameter that approach infinity. fa corresponds
to the average impact force for impact time 1/k.

Being already a force quantity, the gravity force:

fg = Mg , (20)

can be readily distributed in the polytopes.
We now need to find which contact will better handle fg

and which will better handle fa (as in Fig. 2 where the feet
of the robot are more suitable for compensating the gravity
than the hands). From Eq. (2) we split αi in two variables
αgi and αai corresponding respectively to the percentage of
fg and fa to address to the contact.∑

i

αi =
∑
i

αgi + αai . (21)

This is done for each contact c. Using Eq. (2), (19), (20) and



Fig. 2: Optimized contact force distribution. 2D illustration
of a potential scenario. Dotted arrows fg and fa are forces to
be distributed. Plain arrows show their repartition inside force
polytopes: f fp and f hp have to remain inside their respective
polytope. The dotted vector fa is taken so as to maximize
the linear momentum coming from the CoM velocity ṡ.

(21) we can write the following constraints∑
c

∑
i
αgc,ivc,i = −Mg (22)∑

c

∑
i
αac,ivc,i = −kM ṡ0 (23)∑

i
αgc,i + αac,i ≤ 1 (24)

αgc,i ≥ 0 (25)
αac,i ≥ 0 (26)
k ≥ 0. (27)

Constraints Eq. (22) and Eq. (23) distribute forces consid-
ering the polytope of each contact. Constraint Eq. (24) is
a generalization of Eq. (2). Substituting the equality to an
inequality does not change the definition of the polytope
and relax the constraint. And finally, Eq. (25)-(27) make the
variables consistent with the polytope definition (2) and the
force generated at the CoM definition (19).

To have a good distribution over the feet and the hands
(i.e. to avoid having the robot’s weight supported by one
foot), we design the following cost functions ‖∑i α

g
rf,ivrf,i −

∑
i α

g
lf,ivlf,i‖2

‖∑i α
a
rh,ivrh,i −

∑
i α

a
lh,ivlh,i‖2

−k
(28)

As we want the variable k to approach infinity, a cost
function is set to maximize its value in the problem.

The overall system, with linear constraints Eq. (22)-
(27) and quadratic cost functions Eq. (28) is a Quadratic
Programming (QP) problem. Later on, we call it the Force
Distribution QP (FDQP). Fig. 2 shows a possible repartition
of the forces over two contact points. The FDQP looks
for a solution that compensates the force from gravity and
maximizes the force generated against linear momentum.

Once the solution is found, αgc , αac and k can be computed
using the FDQP output:

−Mgc =
∑
i

αgc,ivc,i , (29)

−kM ṡ0c =
∑
i

αac,ivc,i . (30)

These two latter equations make Eq. (15) fully specified,
with the specification of the constant vector gc and the initial
condition ṡ0.

V. COM TRAJECTORY SOLUTION

We solve the system Eq. (15) using a Linear Model
Predictive Control (LMPC). Let xc = [sTc ṡTc ]T be the
parameter vector. Eq. (15) can be put into matrix form:

ẋc =

[
03 I3
03 03

]
xc +

[
03

13M
−1

]
u+

[
03

gc

]
ẋc = Axc + Buc + Ec.

where ẋc = [ṡTc s̈
T
c ]T . This is a continuous time system with

u = Fc, the control vector, M the total mass of the system
and gc the contact distributed part of the gravity (computed
with Eq. (29)). After discretization with a sampling time T :

ẋk+1
c =

[
I3 I3T
03 I3

]
ẋkc +

[
I3
T 2

2
I3T

]
uk +

[
gc

T 2

2
gcT

]
(31)

The sampling time is not necessarily set to the robot
control loop time. Indeed the greater the MPC’s sampling
time the wider is the horizon of time. Then an interpolation
is done to get the values at each control loop time. By
recursion we can compute a prediction of the behavior
of the simplified system [13]. We only need to know the
initialization parameter of the system.

After N step, we get:

XN
c = Φx0

c + ΨUc + ζc (32)

with

XN
c = [x0T

c x1T
c . . . xN T

c ]T (33)
Uc = [u0T

c u1T
c . . . uN−1Tc ]T (34)

and where Φ, Ψ and ζc are defined as in Eq. (35). Note that
x0
c = [s0T ṡ0Tc ]T where ṡ0c is the CoM distributed velocity

(Eq. (30)) and s0 is the intial position of the CoM (which is
the inital position of all four virtual CoMs).

The objective function of the LMPC is

tdc = (xNc − xtarget
c )Wx(xNc − xtarget

c ) +UTc WUUc

= UT
c QcUc + 2lTc Uc.

(36)

The target xtarget
c = [starget T

c ṡtargetT
c ]T is such that starget

c = s0c
and ṡtarget

c = 0. The weights Wx and WU are chosen so that
the priority is to reach a zero velocity, then maintain the
position and lastly minimize the effort. Briefly, this means
that Wx(3..6)�Wx(0..2) > WU . The force limit constraint
(computed via Eq. (13)) is added to the system constraints.
We then solve the LMPCs corresponding to each contact to
get the vectors Uc and deduce the forces to apply at the
contact points. As the adaptive-QP of the robot allows us to



Φ =


A
A2

...
AN

 , Ψ =


B 0 . . . 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B . . . B

 , ζc =


Ec

AEc +Ec
...∑i=N−1

i=0 AiEc

 (35)

set a trajectory task for the CoM, the forces are converted
into CoM acceleration.

s̈(t) =
1

M

∑
c

Fc(t) + g. (37)

Integrating forward returns ṡ(t) and s(t). s̈(t), ṡ(t) and s(t)
are then sent to the adaptive-QP.

Finally, since the LMPCs are launched again and again and
that it targets a zero velocity about T × Nsteps seconds, the
robot can never reach it completely so a stopping criterion is
necessary. This criterion can simply be based on the current
CoM velocity norm.

Discussion: in Eq. (6), we have split the equation of
motion into a coupling part (first row) and a decoupled,
block-diagonal part (next rows). As shown in [14], the
coupling part corresponds to Newton and Euler equations.
We enforce Newton’s equation when combining LMPC
results via Eq. (37), but chose to ignore Euler’s equation
(on the rate of change of the angular momentum) as a first
approximation. This part will be further surveyed in future
works. For now, we compute force polytopes by assuming
that each limb is decoupled from each the others, and rely
on the cost function of the FDQP to balance solutions and
avoid adding unnecessary angular-momentum variations.

VI. SIMULATIONS

The simulation sets up HRP-4 pushed against a wall, as
depicted in Fig. 2. Here, it is assumed that the pre-impact
phase (treated in [8]) is already done and only the post-
impact phase remains to be controlled. The control loop of
HRP-4 is 5 ms, it is pushed on the back with a force of
300 N for 0.15 s. The wall is 10◦ inclined and we use an
LMPC1 with variables set as Nsteps = 15 and T = 15 ms. The
detection of the impact is done through the distance between
the hands and the wall. As the algorithm computation time is
higher than the control loop time, it launched is an estimated
position of the hand touch the wall. This estimation is done
with a simple Euler integration over 15 ms of the nearest
point of a hand to the wall. To ensure that the adaptive-QP
does not output high torque at the impact time, all tasks are
removed but the minimization of the stiffness and damping
coefficient. As soon as the LMPCs output the first results,
a CoM trajectory task and posture task (with relatively low
weight) is added. With an Intel(R) Core(TM) i7-4900MQ
CPU at 2.8GHz (up to 3.8GHz) with 4 cores and 8 running
threads, the time required to compute the polytopes, the
distribution force QP and the LMPCs is up to 15 ms. To
improve performance, the contact polytopes2 and the LMPCs
are computed in parallel.

The stopping criterion has been set so that it is triggered
when the norm of CoM velocity reached 1 cm.s−1. From

1https://github.com/vsamy/Copra
2The polyhedral library (cddlib) itself is not multi-threadable.
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Fig. 3: FDQP results through time.

there, the weight of the posture task is increased and the
CoM trajectory is updated to a fixed set-point task at the
current CoM position. We then stop the adaptive-QP and
revert to the standard QP whole-body controller.

As the problem is symmetric the FDQP gives arms and
legs the same amount of linear momentum and gravity hence
Fig. 3a to Fig. 5 only display right side contacts/joints.
The linear momentum of the CoM (Fig. 3a) smoothly de-
creases, on each axis, and reaches zero after roughtly 1.5 s.
Notwithstanding the symmetrical properties of the problem,
we can denote a deviation of the linear momentum on the y-
axis. In Fig. 3b, the FDQP choses to compensate the z-axis
of the gravity with only the foot which is coherent since
the maximal forces of the feet are on this axis. It is also
interesting to note that the FDQP may give one or multiple
contacts the ability to go along with the whole-body linear
momentum, rather than against it. This is quite visible on
Fig. 3a on the z-axis where after the impact time, the sum
of the two feet is greater than the robot linear momentum.
Thus the feet alone have to compensate more than needed.
This is due to the fact that the FDQP gives to the hand
linear momentum a sign opposite to the whole-body one.
So, LMPCs attached to the hands are seeing the robot going
upward while the feet sees the robot going downward with

https://github.com/vsamy/Copra
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Fig. 4: Stiffness coefficient output of the adaptive-QP for
several joints
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Fig. 5: Damping coefficient output of the adaptive-QP for
several joints

higher velocity.
The adaptive-QP is able to find the stiffness (Fig. 4) and

damping (Fig. 5) coefficient for arms and legs. At impact
time, the damping coefficient dominates the stiffness one
since the error term is almost zero whereas velocity is high.
It is very clear that the hip joint is making most of the effort
to fulfill the tasks. From common sense, the elbow joint
should have particapated more since it is the one that can
directly damp the linear momentum but it is not. This can
be explained by the fact that the hip motor has a torque limit
3.5 times superior to the elbow’s one. Around t = 3 s, the
knee joint takes over and is mainly set so that it maintains
the height of the CoM and compensates gravity.

VII. CONCLUSION AND FUTURE WORK

We have presented an approach that allows a humanoid
robot to actively control its compliance after falling and

impacting its environment with its arms and/or legs. Parallel
model predictive controllers are run at each of the four
contacting limbs, the joint action of which is to absorb the
undesired linear momentum accumulated during fall. These
predictive controllers are instantiated by a force distribution
quadratic-program (FDQP) that optimally distributes the
initial momentum and gravity force across contacting limbs.
Despite relying on reduced dynamic models, all predictive
controllers are constrained by contact polytopes that encode
both friction and joint torque limitations.

The approach was validated in full-body simulations with
a model of the HRP-4 humanoid robot in falling scenarios.
The simulation showed corroborating results making the
linear momentum vanish after few seconds, in an active
compliance way.

With our previous work [7] [8], we have now a complete
framework for fall handling from pre-impact posture adop-
tion, to impact-time motor PD-gains automatic adaptation,
and with the present work, post-impact active compliance
with MPC to optimally absorb the impact and bring the robot
to a safe rest.
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