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 In high water cut systems, the risk of hydrate blockage is high because of high rate of hydrate formation, proportional to the high gas/water interface generated by 
bubbles. The high rate of gas transfer results in a high risk of quick plug formation. AA-LDHI at low dosage (0.01%) is not sufficient to prevent their deposition, and 
plugging occurs rapidly. Also, specific risk in the separator was identified because hydrates can accumulate.  
 In low water cut systems, gas hydrates form sooner but the plugging can be prevented by using the AA-LDHI. With pure water, without salt, the plugging is 
prevented even at low AA-LDHI dosage (0,01%). In salty systems, the plugging is prevented by using a higher quantity of AA-LDHI, up to 0.5%. 
 Future work will be modelling of gas hydrate formation, agglomeration, deposition and plugging combined with flow pattern.  

- Offshore systems operate at low temperature and high pressure which favor conditions for gas hydrate formation and 
agglomeration.  
 

- Gas hydrate is a serious issue in flow assurance; it may cause many troubles, especially, plugging in oil and gas 
pipelines.  

- Science: understand the mechanisms of methane hydrate crystallization, agglomeration together with slurry transport and 
deposition in oil and gas pipelines at low and high water cut with a gas-lift. 

 
- Industry: understand the properties and role of commercial additives (anti-agglomerants- AA-LDHIs) in dispersing hydrate 

particles to prevent plugging in offshore pipelines.  

Experimental procedure and apparatus 
- Emulsions formed by water (with and without salt) and oil (Kerdane®) are charged into the flow loop with and without 

anti- agglomerants (AA-LDHIs). 
- The system is cooled down until 4-5oC and pressurized up to 75 bar by the injection of methane for gas hydrate formation, 

agglomeration and deposition study. 
- Flowrate: 30-150L/h; water volume fraction (30-80-90-100%); dosage of AA-LDHI: 0; 0.01; 0.05; 0.1 and 0.5 %;   salt: 0 and 

30g per liter of water.  
- Probes used: Particle Video Microscope (PVM), Focus Beam Reflectance Measurement (FBRM), pressure drop, flowrate 

and density measurement. 

Figure 4 – Typical experiment at low water cut (30%WC+NaCl 
without AA-LDHI). In order to enhance hydrate formation, 
three gas injections were made at 14, 95 and 121 min. During 
the gas injection, the flow was stopped and restarted once the 
injection was finished. 

Figure 5 – Typical experiment at high water cut (90%WC+NaCl without 
AA-LDHI). In order to promote hydrate formation, the gas injections 
were made between 16.5 and 18.5 min. During the gas injection the 
flow was stopped and restarted once the injection was finished. 
 

Figure 6 – PVM images of gas hydrate formation for different mixtures: (a) 90%WC without AA-LDHI; (b) 90%WC+NaCl without 
AA-LDHI; (c) 90%WC with 0.01% AA-LDHI; (d) 80%WC without AA-LDHI; (e) 30%WC without AA-LDHI; (f) 30%WC+NaCl with 
0.01% AA-LDHI.  
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Figure 7 – Conceptual mechanism for hydrate formation, agglomeration, deposition and plugging  
in the gas-lift riser and separator without AA-LDHI: (a, b) at high water cut; (c, d) at low water cut.  
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Figure 3 – Archimède flowloop: photos and schemas [1-2-3]. 

Figure 1 – Subsea pipelines [4]. 
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Figure 2 – Topological model of crystallization under flow [1]. 

- The previous work 
(Melchuna 2016, [1]) 
allowed to construct a 
preliminary model of 
understanding of the 
crystallization under 
flow.  


