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From the reachable space of the heat equation

to Hilbert spaces of holomorphic functions

Andreas Hartmann∗, Karim Kellay†, Marius Tucsnak‡

July 27, 2017

Abstract

This work considers systems described by the heat equation on the interval [0, π] with
L2 boundary controls and it studies the reachable space at some instant τ > 0. The
main results assert that this space is generally sandwiched between two Hilbert spaces of
holomorphic functions defined on a square in the complex plane and which has [0, π] as one
of the diagonals. More precisely, in the case Dirichlet boundary controls acting at both
ends we prove that the reachable space contains the Smirnov space and it is contained in
the Bergman space associated to the above mentioned square. The methodology, quite
different of the one employed in previous literature, is a direct one. We first represent the
input-to-state map as an integral operator whose kernel is a sum of Gaussians and then
we study the range of this operator by combining the theory of Riesz bases for Smirnov
spaces in polygons and the theory developed by Aikawa, Hayashi and Saitoh on the range
of integral transforms, in particular those associated with the heat kernel.

1 Introduction

We consider the system

∂w

∂t
(t, x) =

∂2w

∂x2
(t, x) t > 0, x ∈ (0, π),

w(t, 0) = u0(t), w (t, π) = uπ(t) t ∈ [0,∞),

w(0, x) = 0 x ∈ (0, π) ,

(1.1)

which models the heat propagation in a rod of length π, controlled by prescribing the temper-
ature at both ends. It is well known (see, for instance, [9, Proposition 10.7.3]) that for every
u0, uπ ∈ L2[0,∞) the problem (1.1) admits a unique solution w ∈ C([0,∞),W−1,2(0, π)).
(Recall that W−1,2(0, π) is the dual of the usual Sobolev space W 1,2(0, π) with respect to
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the pivot space L2[0, π].) Moreover, according to the same reference, the input-to-state maps
(Φτ )τ>0 defined by

Φτ

[
u0
uπ

]
= w(τ, ·) (τ > 0, u0, uπ ∈ L2[0, τ ]), (1.2)

lie, for every τ > 0, in L(L2([0, τ ];U),W−1,2(0, π)). In control theoretic terms, this means
that (1.1) defines a well-posed control system, with state space X = W−1,2(0, π) and input
space U = C2. A classical important question in the study of control systems consists in the
characterization of their reachable space at instant τ , which is the space of states which can be
attained at instant τ when the input is freely moving in L2([0, τ ];U). In our case this space
is the range of Φτ , denoted RanΦτ , where Φτ has been defined in (1.2). As far as we know,
the first results on this space for the boundary controlled heat equation have been given in
the classical paper of Fattorini and Russell [4], where it is shown that the functions which
can be extended to holomorphic ones in a horizontal strip containing [0, π] and which vanish,
together with all their derivatives of even order, at x = 0 and x = π, belong to RanΦτ . This
result implies, in particular, that RanΦτ ⊃ RanTτ , where T is the semigroup generated by
the 1D Dirichlet Laplacian in W−1,2(0, π), which means that the system determined by (1.1)
is null-controllable in any time τ > 0. As remarked in Seidman [8] this means, in particular,
that RanΦτ is invariant with respect to τ > 0.

The first significant improvement of Fattorini’s and Russell’s result on this reachable space
has been reported only in 2016, in the work by Martin, Rosier and Rouchon [7], where it has
been shown that any function which can be extended to a function holomorphic in a certain
disk in C containing the segment [0, π] lies in the reachable space. This result has been further
improved in Dardé and Ervedoza [2], where it has been shown that any function which can
be extended to one which is holomorphic in a neighbourhood of the square D defined by

D = {s = x+ iy ∈ C | |y| < x and |y| < π − x}, (1.3)

lies in the reachable space.
On the other hand, it is not difficult to check (see, for instance, [7, Theorem 1]) that if

ψ ∈ RanΦτ then ψ can be extended to a function holomorphic in D, so that the assertion in
[2] looks almost sharp. The aim of our work is to show that this result can be significantly
improved, by showing that RanΦτ can be sandwiched between two Hilbert spaces of analytic
functions defined on D. The methodology we employ, completely different of those used in [7]
or [2], is based on explicit series form representations of the solutions of (1.1), combined with
results on Bergman and Smirnov spaces on D. For the sake of completeness, we recall the
definitions of the above mentioned spaces. First, given an open set Ω ⊂ C, the Bergman space
A2(Ω) consists of all functions holomorphic in Ω with

∫
Ω |f(x + iy)|2 dx dy < ∞. Endowed

with the norm induced from L2(Ω), A2(Ω) is clearly a Hilbert space. We will also use weighted
Bergman spaces. Let ω be a positive measurable function on Ω, then A2(Ω, ω) is the space
of holomorphic functions for which

∫
Ω |f(x + iy)|2ω(x + iy) dx dy < ∞. The Smirnov space

on a simply connected domain Ω can be defined provided that there is a conformal map φ
from the unit disk D to Ω. If Γr is the image under φ of the circle |z| = r, then f ∈ E2(Ω)
if and only if supr<1

∫
Γr

|f(z)|2|d z| < ∞. The curves Γr can be replaced by any sequence of
rectifiable Jordan curves surrounding eventually every compact subdomain of Ω (see Duren
[3]). If Ω is a Smirnov domain (in particular a polygon like D, see [5, Ch.VII,Thm. 4.6])
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then, according to [3, p. 184]) we have that f ∈ E2(Ω) iff f ∈ L2(∂Ω) with∫
∂Ω
ζnf(ζ) dζ = 0 (n ∈ N).

In this case, the norm in E2(Ω) is given by

∥f∥2E2(Ω) =

∫
∂Ω

|f(ζ)|2 |dζ|.

With the above definitions, the result in [7], asserting that RanΦτ ⊂ Hol (D) (the space
formed by the functions holomorphic on D), can be strengthened to

Proposition 1.1. For every τ > 0 we have RanΦτ ⊂ A2(D).

Our main result improves the existing lower bounds of the reachable space and states as
follows:

Theorem 1.2. For every τ > 0 we have RanΦτ ⊃ E2(D).

Remark 1.3. It turns out that the inclusion in Theorem 1.2 is strict (see Proposition 4.3
below). We do not have a similar result for the inclusion in Proposition 1.1. In view of the
methodology used below, we conjecture that we have RanΦτ = A2(D).

The paper is organized as follows. In the next section we prove Proposition 1.1 using a
series representation, based on the 1D heat equation kernel, of the input-to-state map. As it
turns out below, the domain of holomorphy and the behavior of the sum of this series near the
boundary of the holomorphy domain are determined by a dominating term, which is treated
using a result by Aikawa, Hayashi and Saitoh on Laplace-type transforms having their range
in Bergman spaces. In Section 3, following work by Levin-Lyubarskii, we introduce a Riesz
basis of exponentials in the Smirnov space E2(D) which allows us to decompose functions in
E2(D) into a sum of two functions in Bergman spaces associated with two infinite sectors. In
Section 4 this allows us, in particular, to decompose functions in the Smirnov space E2(D)
into a dominating term for which we use again Aikawa, Hayashi and Saitoh, and remainder
terms which are “small” in appropriate weighted Bergman spaces on infinite sectors. Using
a matrix type argument, this allows us to prove Theorem 1.2. In the last section we discuss
the adaptations of our methods and results to some other boundary conditions and controls.

2 Proof of Proposition 1.1

Using the decomposition of the solution w of (1.1) in the standard Fourier basis (sin(nx))n>1

of L2[0, π], it is not difficult to check that the input to state maps (Φτ )τ>0 defined in (1.2)
write

(Φτu)(x) =
∑
n>1

n

[∫ τ

0
en

2(σ−τ)u0(σ) dσ

]
sin(nx)

+
∑
n>1

n(−1)n+1

[∫ τ

0
en

2(σ−τ)uπ(σ) dσ

]
sin(nx) (τ > 0, x ∈ (0, π)),
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where the above series converges in W−1,2(0, π), uniformly with respect to σ ∈ [0, τ ]. From
the last formula it follows that

(Φτu)(x) =

∫ τ

0

∂K0

∂x
(τ − σ, x)u0(σ) dσ +

∫ τ

0

∂Kπ

∂x
(τ − σ, x)uπ(σ) dσ (x ∈ [0, π]),

(2.4)
where

K0(σ, x) = −
∑
n>1

e−n2σ cos(nx)

= −1

2

∑
n>1

e−n2σ
(
einx + e−inx

)
= −1

2

∑
n∈Z

e−n2σeinx (σ > 0, x ∈ (0, π)). (2.5)

Kπ(σ, x) = −K0(σ, π − x) (σ > 0, x ∈ (0, π)). (2.6)

We note that for σ > 0 we can extend K0(σ, ·) and Kπ(σ, ·) to functions in L2
loc(R) of period

2π. Formulas (2.5) and (2.6) have been widely used, often combined with duality arguments,
to study the controllability properties of the system (1.1). However, it seems that this way of
writing the kernels K0 and Kπ is not very useful to prove reachability results beyond those
classically obtained in [7]. We thus use an alternative form of K0 and Kπ, in terms of the
heat kernel on the real line. For the sake of completeness, we derive below these formulae
using the Poisson summation formula. Alternatively, these expressions of K0 and Kπ could be
obtained using the classical method of images, which allows deriving fundamental solutions of
linear partial differential equations on a segment with appropriate boundary conditions from
the corresponding fundamental solution for the same PDE on the whole line.

Proposition 2.1. We have

K0(σ, x) = −1

2

√
π

σ

∑
m∈Z

e−
(x+2mπ)2

4σ (σ > 0, x ∈ R), (2.7)

Kπ(σ, x) =
1

2

√
π

σ

∑
m∈Z

e−
(x+(2m−1)π)2

4σ (σ > 0, x ∈ R), (2.8)

where the above series converge in L2[0, π].

Proof. We first remind the formula of the Fourier transform of a Gaussian, given by

Ĝα =

√
π

α
G 1

4α
(α > 0), (2.9)

where
Gα(y) = e−αy2 (y ∈ R).

For a > 0, γ0 = 2π
a and f ∈ S(R), we also remind the Poisson summation formula in the

form ∑
m∈Z

f(x+ma) =
1

a

∑
k∈Z

f̂(kγ0)e
ikγ0x (x ∈ R). (2.10)

We first apply (2.10) with f(y) = e−
y2

4σ and a = 2π, so that γ0 = 1. Since, according to (2.9),
we have

f̂(ξ) =
√
2πσ e−σξ2 (ξ ∈ R),
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we obtain √
π√
σ

∑
m∈Z

e−
(x+2mπ)2

4σ =
∑
n∈Z

e−σn2
einx (x ∈ R).

The above formula and (2.5) imply (2.7).
Finally, (2.8) follows from (2.7) and the fact that Kπ(σ, x) = −K0(σ, π − x).

Our strategy to study RanΦτ is to identify in each of the formulae for K0 and Kπ in (2.7)
and (2.8) a principal term which corresponds, roughly speaking, to a boundary controlled heat
equation on a half-line, and to show that the remaining terms can be seen as perturbations.
To determine the range of the operators corresponding to the principal parts we use in an
essential manner the following result from Aikawa, Hayashi and Saitoh [1].

Theorem 2.2. Let
∆ = {s ∈ C | − π

4
< arg s <

π

4
}.

For s ∈ ∆, τ > 0 and f ∈ L2[0, τ ] we set

(Pτf)(s) =

∫ τ

0

se
− s2

4(τ−σ)

2
√
π(τ − σ)

3
2

f(σ)
√
σ dσ. (2.11)

Then Pτ defines an isometric isomorphism from L2[0, τ ] onto A2(∆, ω0), where

ω0(s) =
e

Res2

2τ

τ
(s ∈ ∆). (2.12)

A simple change of variables gives the following consequence of the above theorem.

Corollary 2.3. With the notation in Theorem 2.2, let

∆̃ = π −∆.

For s ∈ ∆̃, τ > 0 and f ∈ L2[0, τ ] we set

(Qτf)(s) =

∫ τ

0

(π − s)e
− (π−s)2

4(τ−σ)

2
√
π(τ − σ)

3
2

f(σ)
√
σ dσ. (2.13)

Then Qτ defines an isometric isomorphism from L2[0, τ ] onto A2(∆̃, ωπ), where

ωπ(s) =
e

Re(π−s)2

2τ

τ
(s ∈ π −∆). (2.14)

Remark 2.4. The operators Pτ ans Qτ defined above are closely related to the derivative
with respect to x of the terms corresponding to m = 0 in the definition (2.7) of K0 and in
the definition (2.8) of Kπ, respectively. Alternatively, these operators can be connected to the
heat equation on a half-line. More precisely, setting

wl(t, x) = (Ptf)(x) (t > 0, x > 0),
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we have that 

∂wl

∂t
(t, x) =

∂2wl

∂x2
(t, x) (t > 0, x > 0),

wl(t, 0) =
√
tf(t), t ∈ [0,∞),

wl(0, x) = 0 x > 0,

.

Similarly, setting
wr(t, x) = (Qtf)(x) (t > 0, x 6 π),

we have that 

∂wr

∂t
(t, x) =

∂2wr

∂x2
(t, x) (t > 0, x 6 π),

wr(t, π) =
√
tf(t), t ∈ [0,∞),

wr(0, x) = 0 x > 0,

.

The presence of the factor
√
t in the boundary conditions above (and consequently in the

definition of Pτ and Qτ ) is important in order to use the results in [1], where this factor
allows using the explicit form of the reproducing kernel of A2(∆).

We next give a simple lemma to be used in the proof of Theorem 1.1.

Lemma 2.5. Let τ > 0 and u ∈ L2[0, τ ] and denote

φτ (s) =

∫ τ

0

e
− s2

4(τ−σ)

(τ − σ)3/2
su(σ) dσ (s ∈ D).

Then φτ ∈ A2(D) and there exists a positive constant Cτ such that

∥φτ∥A2(D) 6 Cτ∥u∥L2[0,τ ] (u ∈ L2[0, τ ]).

Proof. We first write φτ = φτ,1 + φτ,2, where

φτ,1(s) =

∫ τ
2

0

e
− s2

4(τ−σ)

(τ − σ)3/2
su(σ) dσ (s ∈ D),

φτ,2(s) =

∫ τ

τ
2

e
− s2

4(τ−σ)

(τ − σ)3/2
su(σ) dσ (s ∈ D).

It is easy to check that

∥φτ,1∥A2(D) 6 C̃τ∥u∥L2[0,τ ] (u ∈ L2[0, τ ]),

for some positive constant C̃τ . We thus only have to estimate the norm of φτ,2 in A2(D). To
this aim we define the following function on [0, τ ] by

ũ(t) :=


0 if t ∈ [0, τ/2],

u(t)√
t

if t ∈ [τ/2, τ ].
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Using Theorem 2.2, we get

∥φτ,2∥2A2(D) = 4π∥Pτ ũ∥2A2(D)

6 4πτ∥Pτ ũ∥2A2(∆, ω0)

= 4πτ∥ũ∥2L2[0,τ ]

= 4πτ

∫ τ

τ/2

|u(σ)|2

σ
dσ

6 8π∥u∥2L2[0,τ ].

We are now in a position to give the main proof in this section.

Proof of Proposition 1.1. Let

K̃0(σ, s) = −1

2

√
π

σ

∑
m∈Z∗

e−
(s+2mπ)2

4σ (σ > 0, s ∈ D), (2.15)

and

K̃π(σ, s) =
1

2

√
π

σ

∑
m∈Z∗

e−
(s+(2m−1)π)2

4σ (σ > 0, s ∈ D). (2.16)

Let

ψ̃(x) =

∫ τ

0

∂K̃0

∂x
(τ − σ, x)u0(σ) dσ +

∫ τ

0

∂K̃π

∂x
(σ, x)uπ(σ) dσ (x ∈ [0, π]). (2.17)

By Lemma 2.5 it suffices to prove that ψ̃ can be extended to a function holomorphic in A2(D).
To this aim, we note that there exists a, b > 0 such that for every k ∈ Z \ {−1, 0} we have

∣∣(s+ kπ)e
− (s+kπ)2

4(τ−σ)
∣∣2 6 ak2e

−bk2

(τ−σ) (s ∈ D).

It follows that for every s ∈ D and for every k ∈ Z \ {−1, 0} we have

∫ τ

0

∣∣∣(s+ kπ)e
− (s+kπ)2

4(τ−σ)

∣∣∣2
(τ − σ)3

dσ 6 a

∫ τ

0

k2e
−bk2

t

t3
dt =

a

b2k2

∫ ∞

bk2

τ

ue−u du 6 C

(
1

τ
+ 1

)
e−

bk2

τ .

The fact that ψ̃ is in A2(D) follows by combining the last estimate with the use of the
Cauchy-Schwarz inequality in (2.17). This achieves the proof.

3 A decomposition result in E2(D)

The aim of this section is to show that functions in E2(D) can be decomposed into a sum of two
functions each of which being in a weighted Bergman space defined on an unbounded sector.
An important ingredient in deriving this decomposition is a Riesz basis of exponentials in the
Smirnov class E2(D), which is constructed using results from B. J. Levin and J. I. Ljubarskĭı
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w1

w2

w3

w4

Figure 1: Square

——————————————

[6]. To apply some of these results it is more convenient to replace D by a square containing
the origin. Denote

D̃ = −π
2
+D. (3.1)

To apply results from [6] we need some notation. Let

w1 =
π

2
i, w2 = −π

2
, w3 = −π

2
i, w4 =

π

2
, (3.2)

be the vertices of the square D̃ (see Figure 1).
For j ∈ {2, 3, 4} we denote by lj the edge joining wj−1 and wj , whereas l1 is the edge

joining w4 to w1. We also denote by θj the angle formed by the exterior normal to lj with
the positive sense of the Ox axis, so that

θ1 =
π

4
, θ2 =

3π

4
, θ3 =

5π

4
, θ4 =

7π

4
. (3.3)

We also define (see Figure 2) the sectors

Γj = {λ ∈ C | arg λ ∈ (θj , θj+1)}.

Consider the angular support function of D̃ defined by H(λ) = Re(wjλ) for λ ∈ Γj . We
thus have

H(λ) =
1

2


πImλ for λ ∈ Γ1,

−πReλ for λ ∈ Γ2,

−πImλ for λ ∈ Γ3,

πReλ for λ ∈ Γ4.

(3.4)

For j ∈ {1, 2, 3, 4} and K > 0 we set

Πj(K) =
{
λ ∈ C | Re(λe−iθj ) > 0,

∣∣∣Im(λe−iθj )
∣∣∣ < K

}
.
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Figure 2: Gamma

——————————————

Finally, for every K > 0 we introduce

D̃K = ∪4
j=1Πj(K).

The above notation has been used in [6] to introduce a class of functions playing an important
role in the construction of Riesz bases of exponentials in Smirnov spaces defined on general
convex polygons containing the origin. For the sake of simplicity, we recall below some
definitions and results from [6] when the polygon is chosen to be the above defined square D̃.

Definition 3.1. The class of functions SD̃ is formed by the functions S which are holomorphic

on D̃, of exponential type and

1. The function S has a sequence (λk)k∈Z of simple zeros and there exists K > 0 such that
all these zeros lie in D̃K ;

2. infj ̸=k |λj − λk| = 2δ > 0;

3. There exist c, C > 0 such that

0 < c < |S(λ)|e−H(λ) < C (λ ̸∈ D̃K).

Theorem 3.2. With the notation in Definition 3.1, the family
(
eλkze−H(λk)

)
k∈Z is a Riesz

basis in E2(D̃).

With the change of variable behind (3.1) in mind, we obtain the following consequence of
Theorem 3.2:

Corollary 3.3. With the above notation, the family
(
gλ
)
λ∈Λ defined by

gλ(s) = eλse−
λπ
2 e−H(λ) (λ ∈ Λ, s ∈ C), (3.5)

is a Riesz basis in E2(D).
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With the indicator function of D̃ given by (3.4), as asserted in [6], a function S satisfying
the conditions in Definition 3.1 is

S(λ) =
4∑

j=1

ewjλ (λ ∈ C), (3.6)

where wj are defined in (3.2). More precisely, we have

S(λ) = e
π
2
λ + e−

π
2
λ + ei

π
2
λ + e−iπ

2
λ

= 2 cos
(π
2
λ
)
+ 2 cos

(
i
π

2
λ
)

= 4 cos

(
π(1 + i)λ

4

)
cos

(
π(1− i)λ

4

)
(λ ∈ C).

The zeros of S form the set Λ defined by

Λ = {(2k + 1)(1± i) : k ∈ Z}. (3.7)

We next use the Riesz basis constructed above to show that functions in E2(D) can be written
as sum of two functions, each of which is in a Bergman space defined on an infinite sector.
To this aim, let

∆ =
{
s ∈ C | − π

4
< arg s <

π

4

}
. (3.8)

Lemma 3.4. Let Λ be the sequence introduced in (3.7) and let the polynomial function p be
defined by

p(s) = s+ 2πi (s ∈ C). (3.9)

Let φ ∈ E2(D) with φ =
∑

λ∈Λ aλgλ. Denote

φ1 =
∑
λ∈Λ

Reλ<0

aλgλ and φ2 =
∑
λ∈Λ

Reλ>0

aλgλ.

Then φ1/p ∈ A2(∆) et φ2/p ∈ A2(π −∆).

Proof. We first note that using (3.4) it follows that

|e−
(2k+1)(1±i)π

2 e−H((2k+1)(1±i))| = 1 (k 6 −1). (3.10)

Moreover, for every k 6 −1 and x+ iy ∈ ∆ we have

|e(2k+1)(1+i)(x+iy)| = e(2k+1)(x−y), |e(2k+1)(1−i)(x+iy)| = e(2k+1)(x+y),

so that
|eλ(x+iy)| 6 e(Reλ)(x−|y|) (x+ iy ∈ ∆, λ ∈ Λ, Reλ < 0). (3.11)

We also note that there exists c > 0 such that

|p(x+ iy)|2 > 1

2
(x2 + c) (x+ iy ∈ ∆). (3.12)

Indeed |p(x+ iy)|2 − 1
2x

2 = 1
2x

2 + (y + 2π)2 is vanishing only in the point (0,−2π), which is
far away from ∆∪ (π−∆), so that on this set it is bounded from below by a strictly positive
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constant. Combining (3.12) and (3.11) it follows that for every λ, µ ∈ Λ with Reλ < 0 and
Reµ < 0 we have:∣∣∣ ⟨gλ

p
,
gµ
p

⟩
A2(∆)

∣∣∣ 6
∫
∆

∣∣eλs∣∣ |eµs|
|p(s)|2

dx dy

6
∫
∆

e(x−|y|)(Reλ+Reµ)

|p(x+ iy)|2
dx dy

6 4

∫ +∞

0

ex(Reλ+Reµ)

x2 + c

(∫ x

0
ey(−Reλ−Reµ) dy

)
dx

=
4

−Reλ− Reµ

∫ +∞

0

ex(Reλ+Reµ)
(
ex(−Reλ−Reµ) − 1

)
x2 + c

dx

6 4

−Reλ− Reµ

∫ +∞

0

dx

x2 + c

6 C
1

(|Reλ|+ |Reµ|)
,

for a suitable constant C. Using Hilbert’s inequality it follows that∥∥∥∥φ1

p

∥∥∥∥2
A2(∆)

=
∑
λ,µ∈Λ

Reλ<0Reµ<0

aλaµ

⟨
gλ
p
,
gµ
p

⟩
A2(∆)

6 C

2

∑
λ,µ∈Λ

Reλ<0Reµ<0

|aλ||aµ|
|Reλ|+ |Reµ|

6 Cπ

2

∑
λ∈Λ

Reλ<0

|aλ|2,

which shows that φ1/p ∈ A2(∆).
To prove that φ2/p ∈ A2(π −∆), let λ ∈ Λ, with Reλ > 0 and remark that

gλ(π − s) = g−λ(s) (s ∈ ∆).

Denoting q(s) := p(π − s), we have

|q(x+ iy)|2 = |p(π − s)|2 = (π − x)2 + (y − 2π)2 > 1

10
(x2 + d) (x+ iy ∈ ∆),

for a suitably chosen d > 0. Indeed, arguing similarly as above we have

|π − s+ 2π|2 − 1

10
x2 =

9

10

(
x− 10

9
π

)2

+ (y − 2π)2 − 1

9
π2 (x+ iy ∈ ∆).

The right-hand side of the above equality vanishes on an ellipse which stays strictly away from
∆ and hence it admits a strictly positive minimum there. Consequently, for every λ, µ ∈ Λ,

11



with Reλ, Reµ > 0 we have∣∣∣ ⟨gλ
p
,
gµ
p

⟩
A2(π−∆)

∣∣∣ =
∣∣∣ ⟨g−λ

q
,
g−µ

q

⟩
A2(∆)

∣∣∣
6

∫
∆

e(x−|y|)(−Reλ−Reµ)

|q(x+ iy)|2
dx dy

6 20

∫ +∞

0

ex(−Reλ−Reµ)

x2 + d

(∫ x

0
ey(Reλ+Reµ) dy

)
dx

6 C

Reλ+Reµ
,

where C is a constant possibly different from the preceding case. Using, as above, Hilbert’s
inequality, we conclude that φ2/p ∈ A2(π −∆), which ends the proof.

At this point we recall, given an open set Ω ⊂ C, the classical notation H∞(Ω), which
stands for the space of bounded analytic functions in Ω.

Lemma 3.5. Let η > 0 and let p be defined by (3.9). Then there exists f ∈ Hol(∆∪ (π−∆))
satisfying the following conditions

(i)
p(s)eηs

2

f(s)
∈ H∞(∆),

(ii)
p(s)eη(π−s)2

f(s)
∈ H∞(π −∆).

Proof. We first note that if suffices to construct a function g such that

(i’)
1

g(s)
∈ H∞(∆)

(ii’)
e−2πηs

g(s)
∈ H∞(π −∆)

Indeed, assuming the existence of g with the above properties, we see that f(s) = eηs
2
g(s)p(s)

satisfies the requirements in the conclusion of the lemma.
We show below that the function g defined by

g(s) =
cosh(cs)

r(s)
(s ∈ ∆ ∪ (π −∆)),

where c > 2πη and r is an appropriately chosen polynomial, satisfies the above conditions.
More precisely, let r be defined by

r(s) =
∏
µ∈I

(s− µ) (s ∈ C),

where

I =

{
− i
c
(n+

1

2
)π)

}
n∈Z

∩ [−iπ, iπ].

12



Note that I is the set formed by the roots of cosh(cs) on the segment [−iπ, iπ]. Clearly,
g ∈ Hol(∆ ∪ (π −∆)) and 1/g ∈ Hol(∆ ∪ (π −∆)).

We still have to show that g satisfies conditions (i’) and (ii’) above. To this aim, it clearly
suffices to show that

|g(s)| > Const e2πη|x|, s = x+ iy ∈ ∆ ∪ (π −∆). (3.13)

To check the above estimate, let s = x+ iy ∈ ∆ ∪ (π −∆), with |x| > 1
c . Then

| cosh(cs)|2 = 1

22
∣∣ec(x+iy) + e−c(x+iy)

∣∣2 = 1

4

(
e2cx + e−2cx + 2 cos(2y)

)
> 1

4
(e2c|x| − 2),

It follows that there exists C > 0 such that

| cosh(cs)| > Cec|x| (s = x+ iy ∈ ∆ ∪ (π −∆), |x| > 1

c
).

Denoting by N the degree of r we have

|r(s)| 6 Const |s|N 6 Const (1 + |x|)N , s ∈ ∆ ∪ (π −∆).

Hence, recalling that c > 2πη, we obtain, for s = x+ iy ∈ ∆ ∪ (π −∆) with |x| > 1
c , that

|g(s)| = | cosh(cs)|
|r(s)|

> Const
ec|x|

1 + |x|N
> Const e2πη|x|.

For s = x+ iy ∈ ∆∪ (π −∆) with |x| 6 1
c , g is non-vanishing, so that, using compactness, it

is bounded from below by a strictly positive constant.
We have thus proved (3.13) which, as explained above, implies the conclusion of the

lemma.

Corollary 3.6. With the notation in Lemma 3.4, let τ > 0 and φ ∈ E2(D). Then there
exists φ1 ∈ A2(∆, ω0), φ2 ∈ A2(π −∆, ωπ), where the weights ω0 and ωπ are those defined in
(2.12) and (2.14), respectively, such that

φ(s) = φ1(s) + φ2(s) (s ∈ D).

Proof. Let η = 1
4τ and let f be the corresponding function constructed in Lemma 3.5. This

implies that the mappings s 7→ p(s)es
2

f(s)
and s 7→ p(s)e(π−s)2

f(s)
, with p defined in (3.9), are

in H∞(∆) and H∞(π − ∆), respectively. The function s 7→ f(s)φ(s) clearly lies in E2(D).
According to Lemma 3.4 we have fφ = φ1,0 +φ2,0, with

φ1,0

p ∈ A2(∆) and
φ2,0

p ∈ A2(π−∆).
Setting ψk = φk,0/p, we thus get

f(s)φ(s)

p(s)
= ψ1(s) + ψ2(s) (s ∈ D),

with ψ1 ∈ A2(∆), ψ2 ∈ A2(π −∆). Define φ1, φ2 by

φ1(s) =
p(s)

f(s)
ψ1(s) (s ∈ ∆), (3.14)

13



φ2(s) =
p(s)

f(s)
ψ2(s) (s ∈ π −∆). (3.15)

We clearly have φ = φ1 + φ2 in D. Moreover, using Lemma 3.5 (recall that we have chosen
η = 1/4τ), we have that the map

s 7→ φ1(s)e
s2/4τ =

p(s)es
2/(4τ)

f(s)
ψ1(s)

lies in A2(∆). Similarly, the map

s 7→ φ2(s)e
(π−s)2/4τ =

P (s)e(π−s)2/(4τ)

f(s)
ψ1(s)

lies in A2(π −∆), which concludes the proof.

4 Proof of the main result

Let K̃0 and K̃π be the functions introduced in (2.15) and (2.16), respectively. We decompose
these functions as

K̃0(σ, s) = A(σ, s) +B(σ, s), and K̃π(σ, s) = C(σ, s) +D(σ, s),

where

A(σ, s) = −1

2

√
π

σ

∑
m>1

e−
(s+2mπ)2

4σ and C(σ, s) =
1

2

√
π

σ

∑
m>1

e−
(s+(2m−1)π)2

4σ

B(σ, s) = −1

2

√
π

σ

∑
m6−1

e−
(s+2mπ)2

4σ and D(σ, s) =
1

2

√
π

σ

∑
m6−1

e−
(s+(2m−1)π)2

4σ .

Denote

RA,τu(s) =

∫ τ

0

∂A

∂s
(τ − σ, s)

√
σu(σ)dσ,

and similarly RB,τ , RC,τ and RD,τ .

Lemma 4.1. Let ω0 and ωπ be the weights defined in (2.12) and (2.14), respectively. There
exists an absolute constant C1 > 0 such that for every u ∈ L2[0, τ ] we have

1. RA,τu ∈ A2(∆, ω0) and∥∥∥RA,τu
∥∥∥
A2(∆,ω0)

6 C1

√
τ(1 + τ)3

e−π2/τ

1− e−π2/τ
∥u∥L2[0,τ ] (τ > 0).

2. RB,τu ∈ A2(π −∆, ωπ) and∥∥∥RB,τu
∥∥∥
A2(π−∆,ωπ)

6 C1

√
τ(1 + τ)3

e−π2/4τ

1− e−π2/2τ
∥u∥L2[0,τ ] (τ > 0).

3. RC,τu ∈ A2(∆, ω0) and∥∥∥RC,τu
∥∥∥
A2(∆,ω0)

6 C1

√
τ(1 + τ)3

e−π2/4τ

1− e−π2/2τ
∥u∥L2[0,τ ] (τ > 0).
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4. RD,τu ∈ A2(π −∆, ωπ) and∥∥∥RD,τu
∥∥∥
A2(π−∆,ωπ)

6 C1

√
τ(1 + τ)3

e−π2/τ

1− e−π2/τ
∥u∥L2[0,τ ] (τ > 0).

Proof. Let

ρm(s, τ) =



∫ τ

0

√
π

4(τ − σ)3/2
(s+mπ)e

− (s+mπ)2

4(τ−σ)
√
σu(σ) dσ m > 1, s ∈ ∆,

∫ τ

0

√
π

4(τ − σ)3/2
(s+mπ)e

− (s+mπ)2

4(τ−σ)
√
σu(σ) dσ m 6 −1, s ∈ π −∆.

By the triangular and the Cauchy-Schwarz inequality we see that for m > 1 we have

∥ρm(·, τ)∥2A2(∆,ω0)

=
1

τ

∫∫
∆
e

x2−y2

2τ

∣∣∣∣∫ τ

0

√
π

4(τ − σ)3/2
(s+mπ)e

− (s+mπ)2

4(τ−σ)
√
σu(σ) dσ

∣∣∣∣2 dx dy

6
π∥u∥2L2(0,τ)

16

∫∫
∆

(
|x+mπ|2 + y2

)
e

x2−y2

2τ

∫ τ

0

e
− (x+mπ)2−y2

2(τ−σ)

(τ − σ)3
dσ dx dy

=
π∥u∥2L2(0,τ)

16

∫∫
∆

(
|x+mπ|2 + y2

)
e

x2−y2

2τ

∫ τ

0

e−
(x+mπ)2−y2

2σ

σ3
dσ dx dy. (4.1)

Set α = (x+mπ)2−y2

2 . Recalling that m > 1 we see that

α =
(x+mπ)2 − y2

2
=
x2 − y2 + 2mπx+m2π2

2
> π2

2
m2 > 1.

This, together with the change of variables u = α/σ and an integration by parts, yields

∫ τ

0

e−
(x+mπ)2−y2

2σ

σ3
dσ dx dy =

1

α2

∫ ∞

α/τ
ue−u du =

e−α/τ

α2
(1 + α/τ)

6 e−α/τ

α
(1 + 1/τ).

Using (4.1), the above estimate implies that

∥ρm(·, τ)∥2A2(∆,ω0)
=

1

τ

∫∫
∆
e

x2−y2

2τ |ρm(x+ iy, τ)|2 dx dy

6 π

16
∥u∥2L2[0,τ ]

(
1 +

1

τ

)∫∫
∆
e

x2−y2

2τ
(x+mπ)2 + y2

(x+mπ)2 − y2
e−

x2+2mπx+m2π2−y2

2τ dx dy.

Since |y| 6 x for s = x+ iy ∈ ∆ we have

(x+mπ)2 + y2

(x+mπ)2 − y2
= 1 +

2y2

(x+mπ)2 − y2
6 1 +

2x2

m2π2
6 1 + x2 (m > 1, x+ iy ∈ ∆).
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The last two estimates imply that for every m > 1 we have

∥ρm(·, τ)∥2A2(∆,ω0)
6 π

16
∥u∥2L2[0,τ ]

(
1 +

1

τ

)∫∫
∆
e

x2−y2

2τ (1 + x2)e−
x2+2mπx+m2π2−y2

2τ dx dy

=
π

16
∥u∥2L2[0,τ ]

(
1 +

1

τ

)
e−m2π2/2τ

∫
x>0

∫
|y|6x

(1 + x2)e−mπx/τ dy dx

6 π

16
∥u∥2L2[0,τ ]

(
1 +

1

τ

)
e−m2π2/2τ

∫
x>0

2x(1 + x2)e−mπx/τ dx.

By the change of variables u = x/τ the last integral in the above formula can be estimated
by ∫

x>0
2x(1 + x2)e−mπx/τ dx =

∫
u>0

2uτ(1 + u2τ2)e−mπuτ du 6 Cτ2(1 + τ2),

where, in view of the crude estimate m > 1, the constant C is independent on τ > 0 and on
m > 1. Consequently,

∥ρm(·, τ)∥A2(∆,ω0)
6 C1∥u∥L2[0,τ ]

√
τ(1 + τ)3 e−m2 π2

4τ (m > 1, τ > 0), (4.2)

where C1 =
√
Cπ
4 . We are now in a position to prove estimates 1 and 3. To this aim, remark

that

RA,τu(s) =
∑
m>1

ρ2m(s, τ), RC,τu(s) =
∑
m>1

ρ2m−1(s, τ) (τ > 0, s ∈ ∆).

Using (4.2) and making the rough estimate e−m2π2/4τ 6 e−mπ2/4τ , we obtain

∥RA,τu∥A2(∆,ω0)
6 C1∥u∥L2[0,τ ]

√
τ(1 + τ)3

∑
m≥1

e−(2m)2π2/4τ

6 C1∥u∥L2[0,τ ]

√
τ(1 + τ)3

∑
m≥1

e−mπ2/τ

= C1∥u∥L2[0,τ ]

√
τ(1 + τ)3

e−π2/τ

1− e−π2/τ
,

which implies 1. Similarly, for every τ > 0 we have

∥RC,τu∥A2(∆,ω0)
6 C1∥u∥L2[0,τ ]

√
τ(1 + τ)3

∑
m≥1

e−(2m−1)2π2/4τ

6 C1∥u∥L2[0,τ ]

√
τ(1 + τ)3 eπ

2/4τ
∑
m>1

e−
mπ2

2τ

= C1∥u∥L2[0,τ ]

√
τ(1 + τ)3

e−
π2

4τ

1− e−π2/2τ
.

To prove assertions 2 and 4 in the lemma, it suffices to remark that, using the change of
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variables s = π − s̃, s̃ ∈ π −∆, for every m 6 −2 we have

∥ρm(·, τ)∥2A2(π−∆,ωπ)

=
1

τ

∫∫
π−∆

∣∣∣∣e(π−s̃)2/4τ

∫ τ

0

√
π

4(τ − σ)3/2
(s̃+mπ)e

− (s̃+mπ)2

4(τ−σ)
√
σu(σ) dσ

∣∣∣∣2 dx dy

=
1

τ

∫∫
∆

∣∣∣∣es2/4τ ∫ τ

0

√
π

4(τ − σ)3/2
(π − s+mπ)e

− (π−s+mπ)2

4(τ−σ)
√
σu(σ) dσ

∣∣∣∣2 dx dy

=
1

τ

∫∫
∆

∣∣∣∣es2/4τ ∫ τ

0

√
π

4(τ − σ)3/2
(s+ (|m| − 1)π)e

− (s+(|m|−1)π)2

4(τ−σ)
√
σu(σ) dσ

∣∣∣∣2 dx dy

=
∥∥ρ|m|−1(·, τ)

∥∥2
A2(∆,ω0)

.

Consequently the estimates on RB,τ and RD,τ follow exactly as those of RC,τ and RA,τ ,
respectively.

We are now in a position to prove the main result of the paper.

Proof of Theorem 1.2. For every τ > 0 we introduce the operator

Mτ :=

[
Pτ +RA,τ RC,τ

RB,τ Qτ +RD,τ

]
, (4.3)

where Pτ and Qτ have been introduced in (2.11) and (2.13), respectively, whereas RA,τ , RB,τ ,
RC,τ and RD,τ have been defined at the beginning of this section. According to Lemma 4.1,
we have

Mτ ∈ L
(
(L2([0, π]))2, A2(∆, ω0)×A2(π −∆, ωπ)

)
(τ > 0).

According to Theorem 2.2 and Corollary 2.3 we have that the operator[
Pτ 0
0 Qτ

]
∈ L

(
(L2([0, π]))2, A2(∆, ω0)×A2(π −∆, ωπ)

)
(τ > 0),

is invertible and∥∥∥∥[Pτ 0
0 Qτ

]∥∥∥∥
L((L2([0,π]))2,A2(∆,ω0)×A2(π−∆,ωπ))

= 1 (τ > 0).

On the other hand, using Lemma 4.1 we have that

lim
τ→0+

∥∥∥∥[RA,τ RC,τ

RB,τ RD,τ

]∥∥∥∥
L((L2([0,π]))2,A2(∆,ω0)×A2(π−∆,ωπ))

= 0 .

The last two norm estimates and (4.3) imply that there exists τ∗ > 0 such that Mτ is
invertible, at least for every τ ∈ (0, 2τ∗).

Let now φ ∈ E2(D). By Corollary 3.6 (with τ = τ∗), there exists a decomposition

φ(s) = φ1(s) + φ2(s) (s ∈ D), (4.4)

where φ1 and φ2 are in the weighted Bergman spaces A2(∆, ω∗
0) and A(π−∆, ω∗

π), where ω
∗
0

and ω∗
π are defined by (2.12) and (2.14) with τ = τ∗, respectively. Since Mτ∗ is invertible

there exist v0, vπ in L2([0, τ∗]) such that Mτ∗

[
v0
vπ

]
=

[
φ1

φ2

]
. Setting

u0(σ) =
√
σv0(σ), uπ(σ) =

√
σvπ(σ) (σ ∈ [0, τ∗]),
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and comparing the formulae (2.4), (2.7) and (2.8) for Φτ with the definitions of the operators
Pτ , Qτ , RA,τ , RB,τ , RC,τ and RD,τ we see that for every s ∈ D(
Φτ∗

[
u0
uτ

])
(s) = [(Pτ +RA,τ )(v0)](s) + [RC,τ (vπ)](s)︸ ︷︷ ︸

φ1(s)

+ [RB,τ (v0)](s) + [(Qτ +RD,τ )(vπ)](s)︸ ︷︷ ︸
φ2(s)

,

which, together with (4.4), shows that RanΦτ∗ ⊃ E2(D). The conclusion follows using the
fact, already mentioned in the Introduction, that RanΦτ is independent of τ > 0.

Remark 4.2. Note that the sum of remainder terms defines a function which is holomorphic
in a neighborhood of D, so that the direct perturbation argument above could be replaced by
an application of the main result in [2].

We finish this section with a counter-example showing that there are functions in the
range of Φτ which are not in the Smirnov space E2(D). Looking to the proof of Theorem
1.2, we readily see that it is sufficient to construct a function which decomposes into a sum of
two functions in the corresponding weighted Bergman spaces and which is not in the Smirnov
space.

Proposition 4.3. Let 1/2 < α < 1. Then

φ(s) =
e−

s2

4τ

sα(1 + s)2
+

e−
(π−s)2

4τ

(2π − s)2
∈ RanΦτ \ E2(D).

Proof. Let us show that φ /∈ E2(D). Since 1/(2π − s)2, 1/(1 + s)2, e−
s2

4τ and e−
(π−s)2

4τ are
holomorphic and non-vanishing on a neighborhood of D, it suffices to prove that ψ(s) =
1/sα /∈ E2(D). Since α > 1/2, we have∫

∂D

|dζ|
|ζ|2α

≍
∫ 1

0

dx

x2α
= ∞,

we conclude ψ /∈ L2(∂D) and therefore ψ /∈ E2(D). As a result φ /∈ E2(D).

Let us now show that φ ∈ RanΦτ . We have

φ(s) =
e−

s2

4τ

sα(1 + s)2
+

e−
(π−s)2

4τ

(2π − s)2
= e−

s2

4τ φ1(s) + e−
(π−s)2

4τ φ2(s), s ∈ D.

By Corollary 3.6 , It is enough to show that φ1 ∈ A2(∆) and φ2 ∈ A2(π−∆). Note that with
the change of variables s = x+ iy = π − s̃, s̃ ∈ π −∆, we get

∥φ2∥2A2(π−∆) =

∫
∆

dx dy

|π + x+ iy|4
=

∫ ∞

0

∫
|y|6x

dx dy

((x+ π)2 + y2)2
6

∫ ∞

0

2x

(x+ π)4
dx <∞,

which shows φ2 ∈ A2(π −∆). Now, since 2α− 1 < 1 , we get

∥φ1∥2A2(∆) =

∫
∆

dx dy

|x+ iy|2α|1 + x+ iy|4
=

∫ ∞

0

∫
|y|6x

dx dy

(x2 + y2)α((x+ 1)2 + y2)2

6
∫ ∞

0

2x

x2α(x+ 1)4
dx <∞,

and φ1 ∈ A2(∆).
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5 Other boundary conditions

In this section we discuss the adaptations of the results and methods above to the case of
controls which act at only one end of the segment [0, π] and/or are exerted via Neumann
boundary condition instead of the Dirichlet ones.

We first consider a particular case of the system (1.1), obtained by taking uπ = 0, i.e.,

∂w

∂t
(t, x) =

∂2w

∂x2
(t, x) t > 0, x ∈ (0, π),

w(t, 0) = u0(t), w (t, π) = 0 t ∈ [0,∞),

w(0, x) = 0 x ∈ (0, π) .

(5.5)

As previously, given τ > 0, we are interested in the range of the input to state map Φ0
τ defined

by
Φ0
τu0 = w(τ, ·) (u0 ∈ L2[0, τ ]). (5.6)

With the notation and results in Section 2, we clearly have that

(Φ0
τu0)(x) =

(
Φτ

[
u0
0

])
(x)

=

∫ τ

0

∂K0

∂x
(τ − σ, x)u0(σ) dσ (τ > 0, x ∈ [0, π], u0 ∈ L2[0, τ ]).

where Φτ and K0 have been defined in (1.2) and (2.7), respectively. Using the 2π periodicity
of K0 and a parity argument, it is easily seen that, at least if u0 is smooth and u0(0) = 0, the
function x 7→ (Φ0

τu0)(x) can be extended to a smooth function ψτ , defined on [0, 2π] by

ψτ (x) =
1

2

∫ τ

0

(
∂K0

∂x
(τ − σ, x)− ∂K0

∂x
(τ − σ, 2π − x)

)
u0(σ) dσ

(τ > 0, x ∈ [0, 2π], u0 ∈ L2[0, τ ]).

The above formula, combined with slight variations of Proposition 1.1 and of Theorem 1.2
yields:

Proposition 5.1. Let τ > 0 and let Φ0
τ be the operator defined in (5.6). Denote

G = {s = x+ iy ∈ C | |y| < x and |y| < 2π − x}, (5.7)

Ã2(G) = {ψ ∈ A2(G) | ψ(s) + ψ(2π − s) = 0 for all s ∈ G},

Ẽ2(G) = {ψ ∈ E2(G) | ψ(s) + ψ(2π − s) = 0 for all s ∈ G}.

Then
Ẽ2(G) ⊂ RanΦ0

τ ⊂ Ã2(G).

The reachable space for the 1D heat equation with Neumann boundary controls at both
ends can be easily obtained from the reachable space for the Dirichlet boundary control at
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both ends. Indeed, consider the system, with state trajectory θ and control functions u0, uπ,
described by the equations

∂θ

∂t
(t, x) =

∂2θ

∂x2
(t, x) t > 0, x ∈ (0, π),

∂θ
∂x(t, 0) = u0(t),

∂θ
∂x(t, π) = uπ(t) t ∈ [0,∞),

θ(0, x) = 0 x ∈ (0, π) .

(5.8)

It is easy to check that, given τ > 0 and u0, uπ ∈ L2[0, τ ], a function θ ∈ C
(
[0, τ ];L2[0, π]

)
satisfies (5.8) iff w :=

∂θ

∂x
satisfies (1.1). Combining this fact with Proposition 1.1 and

Theorem 1.2 we obtain :

Proposition 5.2. Let D be the set defined in (1.3), let τ > 0 and let ΦNN
τ ∈ L(L2[0, τ ];L2[0, π])

be the input-yo-state map of (5.8), defined by

ΦNN
τ

[
u0
uπ

]
= θ(τ, ·) (u0, uπ ∈ L2[0, τ ]).

Then
E2,1(D) ⊂ RanΦNN

τ ⊂W 2,1(D) ∩Hol(D),

where E2,1(D) is the Smirnov-Sobolev space defined by

E2,1(D) = {f ∈ Hol(D) | f ′ ∈ E2(D)}, (5.9)

and W 2,1(D) is the usual Sobolev space.

The space W 2,1(D) ∩Hol(D) is also known as the Dirichlet space.

Finally, we consider the case in which the Dirichlet boundary control at x = 0 is replaced
by a Neumann one, whereas the boundary condition at x = π is a Dirichlet homogeneous
one. More precisely, we consider the system

∂w

∂t
(t, x) =

∂2w

∂x2
(t, x) t > 0, x ∈ (0, π),

∂w
∂x (t, 0) = u0(t), w(t, π) = 0 t ∈ [0,∞),

w(0, x) = 0 x ∈ (0, π) .

(5.10)

This time we are interested in the range of the input to state map ΦN
τ defined by

ΦN
τ u0 = w(τ, ·) (u0 ∈ L2[0, τ ]).

After calculations which can be performed similarly to the Dirichlet boundary control case
we are led to determine the range of the operator

(ΦN
τ u0)(x) =

∫ τ

0
KN (τ − σ, x)u0(σ) dσ (τ > 0, x ∈ [0, π]), (5.11)
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where G has been defined in (5.7), and

KN (σ, s) =

√
π

2
√
2σ

[∑
m∈Z

e−
(s−4mπ)2

4σ −
∑
m∈Z

e−
(s−(4m−2)π)2

4σ

]
(σ > 0, s ∈ G). (5.12)

Note that, unlike in the case of Dirichlet boundary control, the heat kernel is not derivated
with respect to x in the definition of the operator we are aiming to discuss the range. There-
fore, we expect this range to contain more regular functions. Indeed, using slight variations
of the methods developed above it can be proved that:

Proposition 5.3. Let τ > 0 and let ΦN
τ be the operator defined in (5.11). Using the notation

in Proposition 5.1, we introduce the spaces

˜̃A2(G) = {ψ ∈ Hol(G) | ψ′ ∈ Ã2(G)},

˜̃E2(G) = {ψ ∈ Hol(G) | ψ′ ∈ Ẽ2(G)}.

Then
˜̃E2(G) ⊂ RanΦN

τ ⊂ ˜̃A2(G).
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