Aymeric Blot
email: aymeric.blot@inria.fr

Laetitia Jourdan
email: laetitia.jourdan@univ-lille1.fr

Marie-Éléonore Kessaci
email: me.kessaci@univ-lille1.fr

Automatic Design of Multi-Objective Local Search Algorithms Case Study on a bi-objective Permutation Flowshop Scheduling Problem

Keywords: Metaheuristics, local search, parameter tuning, multi-objective optimisation

Multi-objective local search (MOLS) algorithms are e cient metaheuristics, which improve a set of solutions by using their neighbourhood to iteratively nd be er and be er solutions. MOLS algorithms are versatile algorithms with many available strategies, rst to select the solutions to explore, then to explore them, and nally to update the archive using some of the visited neighbours. In this paper, we propose a new generalisation of MOLS algorithms incorporating new recent ideas and algorithms. To be able to instantiate the many MOLS algorithms of the literature, our generalisation exposes numerous numerical and categorical parameters, raising the possibility of being automatically designed by an automatic algorithm con guration (AAC) mechanism. We investigate the worth of such an automatic design of MOLS algorithms using MO-ParamILS, a multi-objective AAC con gurator, on the permutation owshop scheduling problem, and demonstrate its worth against a traditional manual design.

CCS CONCEPTS

• eory of computation → Design and analysis of algorithms; Randomized local search; •Applied computing → Multi-criterion optimization and decision-making;

quadratic assignment problem [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF], or the permutation owshop scheduling problem (PFSP) [START_REF] Blot | Neutral but a Winner! How Neutrality Helps Multiobjective Local Search Algorithms[END_REF][START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF][START_REF] Liefooghe | On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems[END_REF]. Recently new ideas and new MOLS algorithms have arisen in the literature, which raises the question of the possible advantages of a uni ed MOLS algorithmic structure. is structure would comprise numerous strategies, not only from MOLS algorithms, but also from similar evolutionary algorithms, and should be able to easily include new unknown algorithms. e strength of such a structure is to enable to both instantiate existing algorithms and to design new hybrid algorithms.

e design of new algorithms o en is a long and tedious task. Moreover, as the structure includes more and more possible components and parameters, it becomes increasingly impracticable to exhaustively analyse every possible combination of strategies, thus suggesting the use of an external tool to automatically search for the best con gurations. Automatic algorithm con guration (AAC) has become in the last few years an increasingly e cient and popular preliminary step in the use of metaheuristics. Indeed, algorithms exposing numerous parameters can be automatically con gured in order to improve their performance on given classes of problem instances. e bene t of this automatically design algorithms from a highly parametric structure having already been shown for singleobjective SLS algorithms [START_REF] Marmion | Automatic Design of Hybrid Stochastic Local Search Algorithms[END_REF], we more speci cally question here the automatic design of a multi-objective metaheuristic structure.

In this paper, we rst propose a new highly parametric MOLS generalisation. en, we investigate the performance of an AAC procedure in comparison to an exhaustive analysis of all feasible MOLS con gurations. We use MO-ParamILS [START_REF] Blot | MO-ParamILS: A Multi-Objective Automatic Algorithm Con guration Framework[END_REF], a multi-objective AAC con gurator, in order to account for the fundamental multiobjective nature of MOLS algorithms.

e experiments are conducted on a well-known bi-objective permutation owshop scheduling problem.

is paper is organised as follows. First, Section 2 presents multi-objective local search algorithms, and recent new ideas and algorithms, then details a generalised MOLS structure and enumerates its di erent design points together with their related strategies. Section 3 then lays out the design of the experiments, whose protocol is made explicit in Section 4, and whose results are discussed in Section 5. Finally, Section 6 concludes this paper and draws some perspectives.

parameterisable generalisation of MOLS algorithms able to embed these new strategies.

Multi-Objective Combinatorial Optimisation

Multi-objective combinatorial problems appear when multiple criteria are considered. e Pareto dominance can be used to compare two solutions s 1 and s 2 : s 1 is said to dominate s 2 if and only if s 1 is be er or equal to s 2 according to all criteria, and there is at least one criterion according to which s 1 is strictly be er than s 2 . If neither s 1 dominates s 2 nor s 2 dominates s 1 , both solutions are said incomparable. Various alternatives to the Pareto dominance can also be used, as for example, an aggregation between the criteria or a lexicographic order. Solving a multi-objective combinatorial optimisation problem with the Pareto dominance aims to nd the Pareto optimal set, de ned as the set of feasible solutions not dominated by any other feasible solution. A Pareto set is then simply de ned as a set of solutions in which no solution dominates another.

Metaheuristics are generic methods, o en preferred to exact methods on combinatorial problems, since they allow to quickly nd very good solutions. ey are divided into two categories: the bio-inspired methods, such as evolutionary algorithms, ant colonies and particle swarms optimisation algorithms, and the stochastic local search methods.

Recent Ideas in MOLS

Stochastic local search (SLS) algorithms have been widely used for single-objective optimisation [START_REF] Holger | Stochastic Local Search: Foundations & Applications[END_REF], and their extensions to multiobjective optimisation are known to achieve excellent performance by iteratively improving a Pareto set. Many popular multi-objective local search algorithms (MOLS) are based on the Pareto local search (PLS) [START_REF] Paquete | Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study[END_REF] and its numerous variants, such as the iterated PLS [START_REF] Madalina | Path-guided mutation for stochastic Pareto local search algorithms[END_REF], the stochastic PLS [START_REF] Mȃdȃlina | Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies[END_REF], and the anytime PLS [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF]. e dominancebased multi-objective local search (DMLS) [START_REF] Liefooghe | On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems[END_REF] was proposed to generalise many of the PLS algorithms and some other very similar evolutionary algorithms, such as the Pareto archived evolution strategy (PAES) [START_REF] Knowles | Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy[END_REF].

DMLS algorithms iterate three phases: (i) the selection phase, in which solutions are selected from the archive; (ii) the exploration phase, in which the neighbourhood of the selected solutions are explored and candidate neighbours are extracted; and (iii) the archive phase, in which the current archive is updated with the candidate neighbours. However, this generalisation is not able to include all recent MOLS of the literature (e.g., in [START_REF] Blot | Neutral but a Winner! How Neutrality Helps Multiobjective Local Search Algorithms[END_REF][START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF]) since new ideas fall outside its scope.

ese ideas are reported in the following. In phase (ii) of a DMLS, only the quality of the solution explored is considered while it has been shown that comparing the neighbours to the whole archive o en leads to be er performance [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF]. A reference point should then be added to the exploration strategy. When several solutions are selected, the neighbourhoods are explored one by one. New exploration strategies may appear if we consider the union of the neighbourhood of all solutions as a unique neighbourhood. Likewise, all selected solutions are explored in phase (ii) no ma er what happens. erefore, it could be interesting to add a stopping In most literature MOLS algorithms, including the DMLS generalisation, candidate neighbours necessarily need to be archived before being able to be explored later -the three phases being executed in the same order iteratively. However, archiving may discard some useful neighbours, especially if the exploration strategy enables multiple candidate neighbours to be archived in a single iteration. It has been shown that exploring neighbours that might be immediately discarded can also lead to increasing performance [START_REF] Blot | Neutral but a Winner! How Neutrality Helps Multiobjective Local Search Algorithms[END_REF], i.e., it may be e cient to restart from phase (i) again directly a er phase (ii).

Additionally, in the DMLS structure the acceptance criteria of archiving candidate neighbours is to merge both sets of solutions and accept any non-dominated solutions for inclusion, then use an optional criteria to avoid large archives. erefore, strategies such as only accepting dominating neighbours [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF] as candidate solutions for archiving also fall outside of this scope.

Finally, in all MOLS algorithms, the archive (i.e., the current set of solutions) is a Pareto local set, meaning that no solution of the archive dominates another. erefore, the archive always contain the best solutions found (locally). However, this additional Pareto constraint might sometimes hinder the diversity of solutions in the archive, e.g., when it becomes necessary to bound the size of the archive. In some cases, especially near local optima, nding out new dominating solutions is very di cult and it could be bene cial to temporary relax the Pareto constraint to allow exploring the best dominated solutions that would have been otherwise simply discarded. For this reason, in our generalisation the archive is a simple set of solutions, and not a Pareto local set.

MOLS Structure

Algorithm 1 outlines our generalised MOLS structure where the three phases of the DMLS are kept and completed. Indeed, following the previous section, the exploration phase (ii) and the archive phase (iii) are generalised. In phase (ii), the pick() function selects one or many solutions from the ones selected in phase (i). e refer() function enables to choose the reference point, e.g., the current archive or the current picked solution(s). At last, the use of the update() function and additional stopping conditions in both Algorithm 1 and the explore() function allows to shorten the entire exploration when useful or necessary.

Stochastic local search are exploitation methods, that needs to be diversi ed to perform be er.

e iterated local search (ILS) algorithm [START_REF] Helena R Lourenc ¸o | Iterated local search[END_REF] gives a way to do that for single-objective optimisation by adding a phase to perturb the current solution and so, diversify the search, and another to accept or not the new solution found. We propose in Algorithm 2 a general way to iterate a MOLS, through an extended MOLS algorithm making use of the diversity.

e perturb() function plays the same role as in single-objective optimisation while the combine() and combineBest() functions are needed to manage the archives following the archiving policy.

MOLS Strategies

e role of the strategies corresponding to every unspeci ed subfunctions of Algorithms 1 and 2 are detailed and some example of instantiation are given. e strategies used in the following sections are also speci ed (see Section 4 Table 1).

Selection. e selection phase of Algorithm 1 selects the solutions of the current archive whose neighbourhood will be explored in the following phase of the algorithm. Either all the solutions of the archive (strategy all), or only a subset of solutions may be selected.

e choice of the subset can be done either uniformly at random (strategy rand), or according to indicators, such as their lifetime in the archive (strategies oldest and newest), or their contribution to hyper-volume [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF], crowding or sharing in the archive [START_REF] Kalyanmoy | Multi-objective optimization using evolutionary algorithms[END_REF].

It is also possible, following an activation/desactivation scheme, to ag solutions as to ensure they will not be selected, and thus not explored, for example to avoid exploring again a solution already fully explored, or to speed up the algorithm by avoiding unrequired explorations [START_REF] Moalic | A Fast Local Search Approach for Multiobjective Problems[END_REF]. In that case, the selection phase only consider activated solutions, and the state of a solution is generally handled in the exploration phase (e.g., desactivating explored solutions, or newly found neighbours).

Pick. is function replaces the implicit mechanism of DMLS that iteratively explores the neighbourhood of every selected solutions one by one. One or more solutions are picked among ones selected by the selection function. e union of the neighbourhood of each picked solution will be considered in the exploration function. Let us remark that the DMLS process can be imitated: only one solution is picked without replacement during an iteration.

Reference. e neighbourhood explorations is conditioned by a reference to which is compared the neighbours. is reference point can be either set to the current picked solutions or to the current archive. Candidate neighbours found during the iteration (phase (ii)) can also been used as reference point.

Exploration. is function enables the exploration of the joined neighbourhood of the solutions picked. Explorations strategies are determined according to how much of the neighbourhood they explore, and to which neighbours they select.

ey can either explore the neighbourhood entirely (strategy all), or only partially until their termination criterion is met. For partial exploration strategies, the most popular strategies include stopping a er the rsts dominated neighbours (strategy imp) or a er the rst nondominated neighbours (strategy ndom), returning for both all nondominated neighbours visited.

Update. At the end of every exploration, the sets of selected solutions and candidate neighbours are updated. In the DMLS framework, the picked solutions were removed from the set of selected solutions, and selected neighbours were simply merged into the candidate set. Here, the picked solutions are allowed to remain in the selection set -to be picked again -, and neighbours can be included in the selection set directly before phase (iii).

Combination / Archive. In phase (iii) of Algorithm 1 the current archive is updated with the set of candidate neighbours. is combination can be as simple as merging the two sets of solutions and discarding any dominated solutions, or can include any ltering mechanisms such as in the selection phase. As mentioned earlier, the archive is here a simple set of solutions, with no hard restriction of being a Pareto set at all time.

Termination Criteria. Algorithm 1 can include a natural termination criterion when no solution from the archive can be selected again. Otherwise, common popular termination criteria including time spent by the algorithm, number of iterations, number of iterations without improvement, or number of global evaluation can also be set.

Initialisation. e initial archive from which Algorithm 2 starts is necessarily non empty. It is usually composed either by solutions taken uniformly at random, or by high-quality solutions, o en obtained with a scalarisation-based subsidiary algorithms [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF].

Perturbation. In Algorithm 2, the starting point of every subsidiary local search is determined by applying a perturbation to either the current archive or the best archive, or also by restarting from a new archive. Following single-objective strategies to escape local optima, perturbations are generally based on kicks, where the current solution is replaced by one of its neighbours selected uniformly at randomly, multiple times. Kick-based multi-objective perturbations select a subset of an archive, then apply a kick on each of the selected solutions.

Other examples of possible perturbations strategies include restarting from new solutions obtained by an initialisation strategy, or using a deconstruction/reconstruction mechanism to alter the current solutions.

EXPERIMENTAL DESIGN

In this section, we brie y present automatic algorithm con guration, then describe the case study problem used in the experiments, its objectives, and the multi-objective performance indicators used to compare the di erent con gurations.

Automatic Algorithm Con guration

e goal of automatic algorithm con guration (AAC) is to determine a con guration (i.e., a parameter se ing), optimising a given algorithm over a given class of problem instances. e algorithm performing the AAC procedure is called the con gurator, whereas the algorithm being con gured is called the target algorithm. A AAC procedure is typically performed when the analysis of the con guration space of the target algorithm -all the valid combinations of its parameter values -is too expensive to be carried out manually.

Notorious literature single-objective con gurators include tools such as irace [START_REF] López-Ibá Ñez | e irace package: Iterated racing for automatic algorithm con guration[END_REF], ParamILS [START_REF] Hu Er | ParamILS: An Automatic Algorithm Con guration Framework[END_REF], or SMAC [START_REF] Hu Er | Sequential Model-Based Optimization for General Algorithm Con guration[END_REF].

ey optimise the estimated quality of the target algorithm using a single quality indicator, such as the average running time or quality. Recently, multi-objective con gurators such as SPRINT-race [START_REF] Zhang | SPRINT Multi-Objective Model Racing[END_REF] or MO-ParamILS [START_REF] Blot | MO-ParamILS: A Multi-Objective Automatic Algorithm Con guration Framework[END_REF] have shown the possibility and the bene ts of using multiple performance indicators. It has also been shown that, on multi-objective AAC scenario optimising multiple multi-objective performance indicators of multi-objective target algorithms, using a multi-objective con gurator should be preferred to using a singleobjective con gurator with an aggregation of the performance indicators [START_REF] Aymeric | Automatically Con guring Multi-Objective Local Search Using Multi-Objective Optimisation[END_REF].

Case Study: Bi-objective Permutation

Flowshop Scheduling Problem e permutation owshop scheduling problem (PFSP) involves scheduling a set of N jobs { 1 , . . . , N } on a set of M machines {M 1 , . . . , M M }. Each job i is processed sequentially on each of the M machines, with xed processing times {p i,1 , . . . , p i, M }, and machines can only process one job at a time. e sequencing of jobs is identical on every machine, so that a solution may be represented by a permutation of size N . In the following, we consider the bi-objective PFSP, minimising both the makespan and the owtime of the schedule, two objectives widely investigated in the literature [START_REF] Minella | A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem[END_REF], where makespan is the total completion time of the schedule, and owtime is the sum of the individual completion times of the N jobs.

Classical PFSP neighbourhoods include the exchange neighbourhood, where the positions of two jobs are exchanged, and the insertion neighbourhood, where one job is reinserted at another position in the perturbation. We consider here the union of these two classical neighbourhoods, as this hybrid neighbourhood has been shown to lead to be er performance than considering each neighbourhood independently [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF].

Multi-Objective Automatic Algorithm Con guration

We use two complementary indicators to compare the performance of MOLS algorithms on the tackled bi-objective PFSP: the unary hypervolume [START_REF] Zitzler | Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[END_REF], a volume-based convergence performance indicator, and the ∆ spread [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], a distance-based distribution metric. Both indicators were required to be unary performance indicators as a current constraint of all literature AAC procedures. In the following, we assume that all objective values have been normalised to [0, 1] and are to be minimised, meaning that the nadir is at (1, 1) and the ideal at (0, 0). e unary hypervolume indicator measures the hypervolume of the objective space between the solutions of a given Pareto set and the nadir point. Hypervolume is maximised when the Pareto set is reduced to the ideal point. However, in the following, in order to achieve a con guration scenario where both indicators are to be minimised we will always consider the complement HV between hypervolume and the hypervolume of the ideal point (HV = 1 -hypervolume).

e ∆ spread indicator measures the distance-based distribution of set of solutions in a bi-objective context. Given a Pareto set S, ordered regarding the rst criterion, we de ne

∆ := d f + d l + |S |-1 i=1 |d i -d | d f + d l + (|S | -1) • d ,
where d f and d l are the Euclidean distances between the extreme positions (1, 0) and (0, 1), respectively, and the boundary solutions of S, and d denotes the average over the Euclidean distances d i for i ∈ [1, |S | -1] between adjacent solutions on the ordered set S. is indicator is to be minimised; it takes small values for large Pareto sets with evenly distributed solutions, and values close to 1 for Pareto sets with few or unevenly distributed solutions.

EXPERIMENTAL PROTOCOL

In this section, we specify the sets of instances used in our experiments, together with a description of the considered training and validation PFSP instances, the considered MOLS parameter space, and the exhaustive and AAC approaches.

PFSP Instances

e classical PFSP instances widely used in the literature are the Taillard instances [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF]. eir number of jobs range in N = {20, 50, 100, 200, 500}, while their number of machines range in M = {5, 10, 20}. ere are 10 available Taillard instance for every valid (N , M) combination.

In the following, we consider three types of PFSP instance sets, characterised by their number of jobs: N = 20, 50, and 100 jobs.

For the exhaustive approach and the validation of the AAC approach, we use the Taillard instances, and include 10 instances for each number of machines (M = 5, 10, 20), for a total of 30 instances by instance set. For the training of the AAC approach, we used a

MOLS Con guration Space

e MOLS strategies and parameters considered in our experiments are reported in Table 1.

ese strategies account for a total of 3 × (1

+ 3 × 2) × (1 + 2 × 2 × 2) = 189 valid MOLS con gurations.
As for the initialisation of our MOLS iterative structure (Algorithm 2), we considered three strategies. First, a strategy where 10 initial solutions are generated uniformly at random (strategy rand). en, a strategy where 5 solutions are obtained using NEH, a well known owshop constructive heuristic [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job ow-shop sequencing problem[END_REF], according to 5 uniformly distributed aggregations of the two objectives: one optimising the sole makespan, one optimising the sole owtime, and three optimising a mixture of both. e third strategy combine each of the 5 NEH solutions with the application of a simple iterated greedy (IG) algorithm. We used the IG algorithms and parameter values of Dubois-Lacoste et al. [START_REF] Dubois-Lacoste | A hybrid TP+PLS algorithm for bi-objective ow-shop scheduling problems[END_REF] (i.e., d = 4, 5, 5; T c = 0.4, 0.5, 6; and N LS = ∞, 3, 1 for the pure makespan IG, the pure owtime IG, and the aggregation-based IG, respectively).

e global termination criterion of the MOLS algorithm is set to T run = 0.1 × N × M seconds. Regarding the termination criterion of the inner MOLS (Algorithm 1), it stops when either a total of N × N iterations are reached, or N successive iterations are performed without improvement. We choose to consider then a kick-based perturbation: a single solution is selected uniformly at random from the current archive, kicked 3 times, and the search starts again from the resulting solution.

e quality of a given con guration is obtained by computing the arithmetic means of the hypervolume and the ∆ spread over all the runs the con guration has been run on. ese indicators having already been computed on normalised objectives, no additional normalisation has been performed.

Exhaustive Approach

e baseline of our experiments is the exhaustive analysis of all MOLS algorithm con gurations on all Taillard instances. We performed 30 runs of every valid MOLS con guration for all instances. All con gurations having a termination criterion of T run , 30 runs being performed on every 10 instances of each size, for every of the 189 valid MOLS con gurations, the exhaustive analysis of the three sets of validation instances has taken a total computation time of 189 × T test , with

T test = M ∈ {5,10,20}
T run × 10 × 30 seconds; i.e., approximately 46 days, 115 days, and 230 days for each number N ∈ {20, 50, 100} of jobs, respectively.

Note that the time required by the exhaustive approach increases exponentially with the number of parameters and their individual number of possible parameter values. Here it would have been excessively expensive to consider additional parameters (e.g., more detailed initialisation, exploration or perturbation strategies) or additional parameter values(e.g., more numerical values, or new strategies).

AAC Approach

We choose to use MO-ParamILS [START_REF] Blot | MO-ParamILS: A Multi-Objective Automatic Algorithm Con guration Framework[END_REF], a recent multi-objective AAC con gurator itself based on a MOLS algorithm, as the con gurator for the AAC approach, in order to take advantage of its intrinsic multi-objective nature in order to con gure our multi-objective structure, and to avoid aggregating the hypervolume and the spread into a single performance indicator.

MO-ParamILS protocol uses three phases. First, it learns the best con gurations of the given algorithm over a given training instance set. Because AAC procedures are generally very sensitive to the order in which the instances are considered, and given the stochasticity of ParamILS, this rst step is carried out multiple times, with di erent random seeds and permutations of the training instance set. en, because the quality of the nal congurations of each of these ParamILS runs have been computed using ultimately di erent subsets of the training set and di erent number of algorithm runs, a second phase in necessary in order to compare all nal con gurations fairly. is second phase re-use the same training set of instances, but simply reassess the quality of every nal con guration on a joint subset of instances, to discard any dominated con guration. At last, the quality of every non-dominated con guration is then assessed in a third phase on a second set of instances, disjoint from the training set.

For the training, 30 runs have been performed on each set of training instances, with a total training time per run ofT training = 36 minutes, 1 hour and 30 minutes, and 3 hours for each instance set, respectively. Each MO-ParamILS run was set to start from a single con guration, drawn uniformly at random. en, each nal con guration of the 30 runs was reassessed using a single run on each of the 80 instances of the training set of instances. As there are 18 instances of size M = 5, 10 and 20, and 2 instance for other intermediary number of machines, the total reassess computational time by unique nal training con guration is

T reassess = M ∈ {5,10,20} T run × 18 + 6≤M ≤9 11≤M ≤19
T run × 2 seconds. As for the validation on the Taillard instances, we reused the data of the exhaustive analysis, which would have taken T test seconds by unique nal con guration.

In comparison to the exhaustive approach, the time required by an AAC approach can be more or less arbitrary. Indeed, a great part of the time spent here by MO-ParamILS lies in the validation of the training solutions, whose number is generally small and does not increase, whereas considering a bigger search space only lengthen the training phase of the AAC mechanism, with a rate that can be arbitrarily determined. AAC con gurators can handle search spaces of con gurations many times bigger than the one considered in this paper (e.g., ParamILS and MO-ParamILS optimising the performance of the CPLEX solver within up to 10 48 valid con gurations in Blot et al. [START_REF] Blot | MO-ParamILS: A Multi-Objective Automatic Algorithm Con guration Framework[END_REF]).

EXPERIMENTAL RESULTS

All the experiments have been conducted in parallel on the 24 cores of two (12 × 1.9GHz, 32GB RAM) Intel E5-2609v3 machines.

On the set of 20-job training instances, the 30 MO-ParamILS runs have resulted in 38 unique con gurations, that have thus been reassessed on the full training test. Of these 38 con gurations, a single one was non-dominated on the classical Taillard instances. In total, the training, reassessment and test phases then account for 30×T training +38×T reassess +1×T test ≈ 1 day and 22 hours . On the set of 50-job training instances, the 30 MO-ParamILS runs have resulted in 41 unique con gurations, 5 of them being non-dominated on the validation set. e total time is then approximately 7 day and 5 hours. Finally, on the set of 100-job training instances, the MO-ParamILS runs have resulted in 59 unique con guration, 4 of them being non-dominated on the validation set. e total time is then approximately 15 days and 4 hours. In comparison, the exhaustive approach was much longer and took approximately 46 days, 115 days, and 230 days on the three validation sets, respectively.

Figures 1, 2 and3 show the nal quality of the 189 feasible con gurations described in Table 1 on the three validation sets of Taillard instances , respectively. is nal quality is obtained by computing the arithmetic means of both hypervolume and ∆ spread of the 900 runs performed by every con guration (30 runs on all 30 Taillard instances per validation set). Pluses indicate the nal quality of every con guration as computed by the exhaustive approach. Red triangles show Pareto optimal con gurations, whereas blue circles show the MO-ParamILS nal con gurations. Details of the Pareto optimal con gurations and MO-ParamILS nal con gurations are given in the top and bo om half of Tables 2,3, and 4. We show these con gurations sorted according to their quality in the corresponding validation Taillard instances. Additionally, a check mark () in the P column means that a con guration found by MO-ParamILS is Pareto optimal. Note that we choose to associate the all exploration strategy with the arch reference point, even if it does not use one in practice, as it always explores and selects all (non-dominated) neighbours; however, this is in philosophy equivalent to using directly the current archive as reference point.

On the easier instance set of Taillard instances with N = 20 jobs (Figure 1, Table 2), the feasible MOLS con gurations are well separated into two separate clusters, one almost completely dominating the other. e exhaustive analysis found 5 optimal con gurations, whereas MO-ParamILS resulted in a single, non-optimal, con guration. However, the hypervolume of this con guration is very good, and Figure 1 shows that it is, although non-optimal, very close to the optimal front. 3), the feasible MOLS con gurations are separated into two separate clusters and few con gurations with a good hypervolume and an excellent spread. e exhaustive analysis found 10 optimal con gurations, whereas MO-ParamILS resulted in 5 con gurations. 4 of these 5 con gurations corresponds to the Pareto front of the be er cluster, while the 5th con guration correspond to one of the few con gurations outside the two clusters, and achieved the optimal spread. A part of the optimal Pareto front was not found by MO-ParamILS (see Figure 3 the con gurations with hypervolume ≈ 0.344 and ∆ spread ≈ 0.947); however, the con gurations within being well separated from the other could explain why they were much harder to reach for a neighbourhood-based con gurator such as MO-ParamILS.

On the much more challenging instances of Taillard instances with N = 100 jobs (Figure 3, Table 4), the feasible MOLS con gurations are separated into a single cluster and few other separate con gurations. e exhaustive analysis found 7 optimal con gurations, whereas MO-ParamILS resulted in 4 con gurations. Of these 4 con gurations, the rst is not optimal, but achieved an excellent hypervolume, the next two are optimal, one in the main cluster of solutions and the other being one a the separate con gurations. At In overall, the AAC approach always lead to excellent con gurations, either optimal or dominated by very few other con gurations.

ese con gurations spread well over the real optimal Pareto front for the two sets of bigger instances, with a single con guration in the case of the set of smallest instances that can be explained by the performance similarity of the high-performing con gurations induced by the easier instances.

Regarding the optimal con gurations and the nal MO-ParamILS con gurations, they greatly di er for each set of instances, with some notable similarities. First, the IG initialisation was used on virtually all optimal con gurations, with a single con guration using the NEH initialisation, despite it exposing many parameters (e.g., number of aggregation, running time, parameters of the different inner IG algorithms) being not considered here. ere is no doubt even be er results can be achieved by optimising these additional parameters for each set of instances, and by considering other complex and similarly parametric initialisation mechanisms (e.g., TPLS [START_REF] Dubois-Lacoste | A hybrid TP+PLS algorithm for bi-objective ow-shop scheduling problems[END_REF]). Most of the optimal con gurations use the newest and oldest selection strategies, rather than the classical rand and all strategies found in the literature. As for the explorations strategies, on both sets of 20-job and 50-job instances, be er hypervolume is achieved using the imp strategy while a be er spread is achieved with the ndom strategy. On the set of bigger 100-job instances, a similar conclusion is reached regarding the ndom and the all strategies. At last, a vast majority of the nal con gurations use the current archive as reference point during the exploration, unlike most non-exhaustive exploration strategies of the literature, which use the current solution as reference point. However, we note that on every set of instances, the optimal con guration regarding the hypervolume always use the picked solutions (i.e., here, the current solution) as reference point.

CONCLUSION

In this paper, we presented a method to automatically design MOLS algorithms for combinatorial optimisation problems. First, we proposed a new MOLS generalisation, unifying existing MOLS algorithms with new ideas and designed to easily include new components and strategies. Our structure exposes numerous components, strategies and parameters, that must be tuned for speci c classes of problem instances in order to achieve increased performance. As such, the question of using AAC mechanisms to automatically tune this structure arises naturally. We investigated the performance of automatically designed MOLS algorithms, in comparison to the performance obtained by exhaustively analysing all feasible MOLS con gurations. We used three sets of instances of a well-known bi-objective permutation owshop scheduling problem, and MO-ParamILS, a multi-objective AAC procedure.

Our experiments showed that for the three sets of instances the AAC procedure was able to systematically design e cient MOLS algorithms, matching the performance of optimal con gurations. Moreover, the exhaustive analysis required to constrain the feasible con gurations considered to a small subset of the possible MOLS con gurations. AAC procedures being typically not constrained by the size of the search space, we strongly believe that similar results would be achieved when considering many more feasible con gurations.

Based on our results, we conclude in the strong promises of using an AAC procedure to automatically design MOLS algorithms for given classes of problem instances. Furthermore, we believe that this promise also applies to other types of highly parametric multiobjective metaheuristics. Regarding the MOLS structure itself, we believe that including strategies from other algorithms, such as for example evolutionary algorithms mechanisms, could enable the design of strong hybrid metaheuristics. Finally, the performance of automatically designed (hybrid-)MOLS algorithms should also be investigated on problems where manually designed metaheuristics already perform well (e.g., scheduling problems, routing problems) and compared to the performance of state-of-the art algorithms.

Table 1 :

 1 Investigated parameters leading to 189 con gurations of MOLS

	Phase	Parameter	Parameter values
	Initialisation	initStrat	{rand, neh, ig}
	Selection	selectStrat {all, rand, newest, oldest}
	Selection	selectSize {1, 3}
	Exploration explorStrat {all, imp, ndom}
	Exploration	explorRef	{pick, arch}
	Exploration	explorSize {1, 3}
	di erent, completely disjoint, set of instances, composed by newly
	generated Taillard-like instances. We generated 80 instances for
	each number of jobs (18 di erent instances for M = 5, 10 and 20
	machines, and 2 di erent instances for each intermediate instance
	size).		

Table 2 :

 2 Optimised con gurations -20-job Taillard instances

		0.948				
							Pareto
		0.946					AAC Other
		0.944				
	spread	0.942				
	∆					
		0.94				
		0.938				
		0.385		0.386	0.387		0.388	0.389
				Hypervolume HV
	Figure 1: Exhaustive performance -20-job Taillard instances
		HV	∆	Init	Selection	Exploration	P
	Pareto optimal con gurations		
	0.385337 0.939578 ig oldest 1 imp 1 pick
	0.385424 0.939541 ig newest 3 imp 1 arch
	0.385721 0.938868 ig newest 3 ndom 1 arch
	0.385795 0.937560 ig newest 3 ndom 3 arch
	0.386045 0.937512 ig newest 1 ndom 1 arch
	AAC con gurations			
	0.385338 0.939837 ig	rand	3 imp 3 pick
	On the instance set of Taillard instances with N = 50 jobs (Fig-
	ure 2, Table				

Table 3 :

 3 Optimised con gurations -50-job Taillard instances

		0.965					Pareto AAC
							Other
		0.96				
	∆ spread	0.955				
		0.95				
		0.945				
			0.34	0.345	0.35	0.355	0.36	0.365
					Hypervolume HV
	Figure 2: Exhaustive performance -50-job Taillard instances
	HV	∆	Init	Selection	Exploration	P
	Pareto optimal con gurations		
	0.341332 0.953271 ig oldest 3 imp 3 pick
	0.341530 0.952665 ig	rand	3 imp 3 pick
	0.341728 0.952256 ig	all	-imp 1 arch
	0.342817 0.951881 ig newest 3 ndom 3 pick
	0.342983 0.951602 ig	all	-all -arch
	0.343086 0.951471 ig	rand	1 ndom 1 arch
	0.343305 0.947833 ig newest 3 ndom 3 arch
	0.343443 0.946379 ig newest 3 ndom 1 arch
	0.346891 0.946321 ig oldest 3 ndom 1 arch
	0.347032 0.945645 ig oldest 3 ndom 3 arch
	AAC con gurations			
	0.341565 0.954026 ig oldest 1 imp 3 pick
	0.341728 0.952256 ig	all	-imp 1 arch
	0.341778 0.952433 ig	all	-imp 3 arch
	0.342983 0.951602 ig	all	-all -arch
	0.347032 0.945645 ig oldest 3 ndom 3 arch
	last, the last con gurations achieved a very poor hypervolume, but
	is excellent regarding the ∆ spread.	

Table 4 :

 4 Optimised con gurations-100-job Taillard instances

		0.985					
								Pareto
								AAC
		0.98						Other
	spread	0.975					
	∆	0.97					
		0.965					
			0.3	0.32	0.34	0.36	0.38	0.4	0.42
					Hypervolume HV
	Figure 3:Exhaustive performance-100-job Taillard instances
		HV	∆	Init	Selection	Exploration	P
	Pareto optimal con gurations		
	0.302815 0.968639 ig newest 1 ndom 1 pick
	0.302981 0.968505 ig newest 1 ndom 3 pick
	0.304468 0.967600 ig newest 1 ndom 3 arch
	0.304574 0.967595 ig newest 1 ndom 1 arch
	0.314142 0.967553 ig oldest 3 all -arch
	0.316194 0.963828 ig	all	-all -arch
	0.327318 0.962354 neh	all	-all -arch
	AAC con gurations				
	0.303123 0.973554 neh newest 1 ndom 3 pick
	0.314142 0.967553 ig oldest 3 all -arch
	0.316194 0.963828 ig	all	-all -arch
	0.412647 0.964528 rand	all	-all -arch