Introduction

» Vibratory response of periodically-forced mechanical
systems undergoing unilateral contact condition is
addressed

» Complementarity contact condition reformulated as root
set of Lipschitz continuous function

» Galerkin methods implemented to seek periodic
solutions

» semismooth Newton method to solve the resulting
nonsmooth equations performed

» Frequency-Energy Plots show nonlinear resonances

Linear modal analysis

» Governing equation for linear mass-spring oscillators
Mu(f) + Ku(t) =0, Vi (1)
where u(t) is the displacement
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Figure 1: Two-DOF mass-spring oscillator

» Solutions are harmonic
u(t) = te'! (2)
where w is the vibratory frequency
» For the two-dof system, non-trivial solutions with
k1 =k2=1 = mi=mo =1 are wpq = 0.618 and
wne = 1.618 which are called natural frequencies. This

information can be shown in a Frequency-Energy Plot
(FEP) as backbone curves, see Fig. 2
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Figure 2: FEP of systems (1) (--) and (3) (-)

» Backbone curves predict the resonance of periodically
forced systems with light damping

Mu + Du + Ku = fcos(Q21) (3)

The energy of vibration is defined as the average
energy over one period

Yulin Shi (yulin.shi@mail.mcgill.ca) & Mathias Legrand (mathias.legrand@mcgill.ca)
Structural Dynamics and Vibration Laboratory, McGill University, Montreal, Canada

Unilateral contact: semismooth formulation

» Nonlinearity arises when non-penetrable wall presents
r(u, ) =Mi+Ku—-G'A =0 (4)
where u is the displacement vector and A, the contact
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Figure 3: A two-DOF oscillator under contact

» A complementarity contact condition is added to (4) to
completely describe the nonlinear system

Gu—-g<0 A<0, (Gu—gAr=0 (D)
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Figure 4: Multi-valued unilateral contact constitutive law

» Satisfying conditions (5) is equivalent to finding the
root-set of the Lipschitz continuous function
s(u,A) := A+max{0, c(Gu—g)—A} = 0,

as plotted in Figure 5

Ve > 0 (6)

Figure 5: Complementarity conditions as the root-set of a two-

dimensional Lipschitz continuous function
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Galerkin method

» Periodic solutions to (4) and (6) are approximated
through a Galerkin method in time. Solution is
expanded as a truncated series
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where ¢,(t) are T-periodic shape functions; u,, and A
are the unknown coefficients to be found

» Galerkin projection creates a set of semismooth
nonlinear equations in the unknown coefficients u,,
and A,
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Semismooth Newton method

» Lipschitz continuous equation (8) written in vector form
f(x) = 0 where x denotes the vector of unknown
coefficients can be solved using the semismooth
Newton method

xk—|—1 _ xk . G—1 (Xk)f(xk) (9)

where G(x) € df(x). df(x) denotes the sub-differential
of f in literature [1, 2]

Nonlinear modal analysis

» Displacement validates the accuracy of HBM
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Figure 6: Periodic displacement of the system in Fig. 3 excited at
Q2 = 0.618, using HBM (—) and event-driven (—) [3]

SEMISMOOTH NEWTON SOLVER FOR PERIODICALLY-FORCED SOLUTIONS TO UNILATERAL CONTACT FORMULATIONS

Nonlinear modal analysis (Cont'd)

» Main and sub-harmonic resonances are found (see
Fig 7)
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Figure 7: Resonance curves of the system in Fig. 3 solved using
HBM (—) and event-driven method (- - - ). Backbone curves (--)

» Bifurcation diagram exhibits chaos (typical property of
periodically-forced impact-systems)
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Figure 8: Bifurcation diagram of the system in Fig. 3 solved using
event-driven method (- -)

Conclusion

» Methodology applicable to multi-DOF systems

Vibratory resonances and sub-harmonic resonances

Galerkin method combined to numerical continuation in

order to find solution branches (either autonomous or

periodically forced)

» Reduced-order models by exploiting the local contact
nonlinearity

» Stability analysis can be done based on the

approximate periodic solutions

Slow convergence but robust numerical algorithm

Residual penetration can be controlled by the number

of shape functions
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