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Introduction

I Vibratory response of periodically-forced mechanical
systems undergoing unilateral contact condition is
addressed

I Complementarity contact condition reformulated as root
set of Lipschitz continuous function

I Galerkin methods implemented to seek periodic
solutions

I semismooth Newton method to solve the resulting
nonsmooth equations performed

I Frequency-Energy Plots show nonlinear resonances

Linear modal analysis

I Governing equation for linear mass-spring oscillators

M Ru.t/C Ku.t/ D 0; 8t (1)

where u.t/ is the displacement
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Figure 1: Two-DOF mass-spring oscillator

I Solutions are harmonic

u.t/ D Nuei!t (2)

where ! is the vibratory frequency
I For the two-dof system, non-trivial solutions with

k1 D k2 D 1 D m1 D m2 D 1 are !n1 D 0:618 and
!n2 D 1:618 which are called natural frequencies. This
information can be shown in a Frequency-Energy Plot
(FEP) as backbone curves, see Fig. 2
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Figure 2: FEP of systems (1) ( ) and (3) ( )

I Backbone curves predict the resonance of periodically
forced systems with light damping

M RuC D PuC Ku D f cos.�t/ (3)

The energy of vibration is defined as the average
energy over one period

Unilateral contact: semismooth formulation

I Nonlinearity arises when non-penetrable wall presents

r.u; �/ WD M RuC Ku �G>� D 0 (4)

where u is the displacement vector and �, the contact
force
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Figure 3: A two-DOF oscillator under contact

I A complementarity contact condition is added to (4) to
completely describe the nonlinear system

Gu � g � 0; � � 0; .Gu � g/� D 0 (5)
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Figure 4: Multi-valued unilateral contact constitutive law

I Satisfying conditions (5) is equivalent to finding the
root-set of the Lipschitz continuous function

s.u; �/ WD �Cmaxf0; c.Gu�g/��g D 0; 8c > 0 (6)

as plotted in Figure 5
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Figure 5: Complementarity conditions as the root-set of a two-
dimensional Lipschitz continuous function
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Galerkin method

I Periodic solutions to (4) and (6) are approximated
through a Galerkin method in time. Solution is
expanded as a truncated series

u.t/ �
MX

mD1

�m.t/um and �.t/ �
MX

mD1

�m.t/�m (7)

where �m.t/ are T -periodic shape functions; um and �m
are the unknown coefficients to be found

I Galerkin projection creates a set of semismooth
nonlinear equations in the unknown coefficients um
and �mZ T

0
�k.t/ r

� MX
mD1

�m.t/um;

MX
mD1

�m.t/�m

�
dt D 0Z T

0
�k.t/ s

� MX
mD1

�m.t/um;

MX
mD1

�m.t/�m

�
dt D 0

(8)

for all k D 1; : : : ;M

Semismooth Newton method

I Lipschitz continuous equation (8) written in vector form
f.x/ D 0 where x denotes the vector of unknown
coefficients can be solved using the semismooth
Newton method

xkC1 D xk �G�1.xk/f.xk/ (9)

where G.x/ 2 @f.x/. @f.x/ denotes the sub-differential
of f in literature [1, 2]

Nonlinear modal analysis

I Displacement validates the accuracy of HBM
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Figure 6: Periodic displacement of the system in Fig. 3 excited at
� D 0:618, using HBM ( ) and event-driven ( ) [3]

Nonlinear modal analysis (Cont’d)

I Main and sub-harmonic resonances are found (see
Fig 7)
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Figure 7: Resonance curves of the system in Fig. 3 solved using
HBM ( ) and event-driven method (� � � ). Backbone curves ( )

I Bifurcation diagram exhibits chaos (typical property of
periodically-forced impact-systems)
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Figure 8: Bifurcation diagram of the system in Fig. 3 solved using
event-driven method (� � � )

Conclusion

I Methodology applicable to multi-DOF systems
I Vibratory resonances and sub-harmonic resonances
I Galerkin method combined to numerical continuation in

order to find solution branches (either autonomous or
periodically forced)

I Reduced-order models by exploiting the local contact
nonlinearity

I Stability analysis can be done based on the
approximate periodic solutions

I Slow convergence but robust numerical algorithm
I Residual penetration can be controlled by the number

of shape functions


