
HAL Id: hal-01569593
https://hal.science/hal-01569593v1

Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxed Subgraph Execution Model for the Throughput
Evaluation of IBSDF Graphs

Hamza Deroui, Karol Desnos, Jean-François Nezan, Alix Munier-Kordon

To cite this version:
Hamza Deroui, Karol Desnos, Jean-François Nezan, Alix Munier-Kordon. Relaxed Subgraph Execu-
tion Model for the Throughput Evaluation of IBSDF Graphs. International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Jul 2017, SAMOS, Greece.
�10.1109/SAMOS.2017.8344630�. �hal-01569593�

https://hal.science/hal-01569593v1
https://hal.archives-ouvertes.fr

Relaxed Subgraph Execution Model for the
Throughput Evaluation of IBSDF Graphs

Hamza Deroui, Karol Desnos and Jean-François Nezan
IETR, INSA Rennes

CNRS UMR 6164, UEB
Rennes, France

Email: hderoui, kdesnos, jnezan@insa-rennes.fr

Alix Munier-Kordon
Sorbonne Universites

UPMC, UMR 7606, LIP6
Paris, France

Email: alix.munier@lip6.fr

Abstract—The Interface-Based Synchronous Dataflow (IBSDF)
Model of Computation (MoC) is a hierarchical extension of
the well-known Synchronous Dataflow (SDF) MoC. The IBSDF
model extends the semantics of the SDF model by introducing a
graph composition mechanism based on hierarchical interfaces.
The IBSDF model introduces also execution rules to ease the
analysis of the IBSDF graph such as evaluating the throughput;
an essential key performance to evaluate when designing Digital
Signal Processing (DSP) systems. However, respecting the execu-
tion rules may slow down the execution of IBSDF graphs, and so
stop the applications to reach their maximum throughput. This
article presents first how to speed-up the execution of an IBSDF
graph by relaxing the execution rules. Second, a new method
to compute the throughput of IBSDF graphs under a relaxed
execution. Finally, a performance comparison between the pro-
posed method and basic methods that rely on a transformation
of the IBSDF graph to an equivalent non-hierarchical graph of
potentially exponential size. The proposed method outperforms
basic methods and makes it possible to evaluate the maximum
throughput of large IBSDF graphs in less than 2 seconds.

I. INTRODUCTION

Multiprocessor Systems-on-Chips (MPSoCs) are chips es-
pecially designed to support the specifications of complex
applications in terms of computing power, power consumption,
size and per-unit cost. The programming of MPSoCs is more
and more complex due to the increasing number of Processing
Elementss (PEs) and their heterogeneity.

The use of dataflow graphs gains popularity for the de-
sign and the programming of MPSoC [1]–[3]. Synchronous
Dataflow (SDF) [4] is the first and the most studied dataflow
model to describe applications in this context. SDF graph
G = 〈A,F 〉 decomposes an application into a set of actors A
interconnected by a set of First-In First-Out queues (FIFOs)
F to exchange data tokens. An actor is a computational
entity, whose internal behavior is described using a traditional
programming language, called host code. Each actor consumes
(resp. produces) a fixed number of data-tokens on its input
FIFOs (resp. output FIFOs) at each execution.

The popularity of SDF graphs is due to their decidability,
which enables the use of compile-time analyses to verify key
properties of applications, such as consistency, schedulability
and throughput [5], [6]. The Interface-Based Synchronous
Dataflow (IBSDF) Models of Computation (MoCs) [7] extends
the SDF MoCs with a hierarchy mechanism that enables the

specification of the internal behaviour of actors with a SDF
subgraph instead of host code. The hierarchy mechanism of
IBSDF graph is based on interfaces that insulate each subgraph
from its upper graph in term of schedulability. Additionally to
interfaces, the IBSDF model define execution rules to ease the
analysis of the graph.

In the design of real-time signal processing applications, the
throughput is one of the required properties to be evaluated
as early as possible by the developer. Very fast evaluation
of this property is mandatory for real-time feedback to the
developer during the application development, for the map-
ping/scheduling of the application on MPSoCs, and for the
MPSoC Design Space Exploration (DSE) i.e. the research of
the best hardware for a specific application.

A basic method to compute the throughput of an IBSDF
graph is to transfomr it to a non hierarchical graph (flattening
the hierarchy) and use [8] and [9] methods for SDF graphs.
[10] shows that this transformation results in a exponential
large graph for which basic methods fail to compute the
throughput. In [10] a method named Schedule-Replace (SR)
was introduced to compute the IBSDF graph throughput with-
out flattening its hierarchy. The SR method takes advantage
of the execution rules and outperforms basic methods.

However, respecting the execution rules may slow down
the execution of the IBSDF graph and stop the application to
reach its maximum throughput. In this paper we show how to
speed up the execution of the IBSDF graph by relaxing the
execution rules without affecting the applications computation.
By relaxing the execution rules, SR technique is not suited to
compute the IBSDF graph throughput. Hence, we introduce a
new method named Evaluate-Schedule-Replace (ESR) based
on SR technique to compute the IBSDF graph throughput
under a relaxed execution.

Section II presents basic definition of SDF properties and
how to evaluate its throughput. The IBSDF model is presented
in section III. In section IV, we present how to flatten the
hierarchy of an IBSDF graph and use basic methods to
compute its throughput. Section V presents the advantages of
the Schedule-Replace technique. Section VI presents a relaxed
execution for IBSDF graphs. Section VII introduce our new
method. A performance comparison of the presented methods
is presented in section VIII. Section IX concludes the paper.

II. SYNCHRONOUS DATAFLOW (SDF) GRAPH

A. Consistency and liveness

An SDF graph is an oriented graph G(A,F). The vertices
A, called actors, model the computations of the application.
The edges F model the FIFOs that allow actors to exchange
data tokens. The SDF graph G can be used in all steps of
the MPSoC programming. The first step before computing the
throughput of the application is to verify the consistency and
the liveness of the SDF graph i.e. checking if the application is
deadlock free. An SDF graph G is said to be consistent when
it can be executed without causing an infinite accumulation of
data tokens in a bounded memory storage. In [4], the consis-
tency is checked by solving the matrix equation Γ ∗ RV = 0
where the topology matrix Γ(G) represents the consumption
and production rates of the actors. RV is the Repetition Vector
(RV). The elements of RV represent the number of executions
needed for each actor to restore the initial marking, that is to
say the same number of data tokens in the FIFOs before the
first execution of the application. An SDF graph G is said to
be live when each actor a ∈ A can be executed RV (a) times
(a graph iteration) without a lack of data tokens caused by
an insufficient initial marking. In Figure 1, the graph ABCD
composed by the four actors A, B, C, and D represents a
consistent SDF graph with an RV = [1 2 2 2] and an initial
marking [1, 0, 0, 0, 1] for which the graph is live.

B. Throughput evaluation

There are many methods to compute the throughput of SDF
graphs, which can be found in [6], [8], [9], [11], [12]. Most
of these methods are based on two techniques: simulating a
schedule, and analysing the graph structure. In this paper we
are interested in the two methods [8] and [9] based on the As
Soon As Possible (ASAP) schedule and the Periodic schedule.

1) ASAP Schedule [8]: Is the most used schedule. It
consists in executing actors as soon as there is enough data
tokens on their input FIFOs. The ASAP schedule results in
a transient phase followed by a periodic phase in which the
application reaches its maximum throughput. Computing the
throughput with [8] method consists of simulating an ASAP
schedule of the SDF graph until it reaches a periodic phase.
Next, computing the throughput as :

Th(G) =
Nb of graph iterations in one period

The duration of one period

2) Periodic Schedule [9]: It consists in defining a periodic
execution for each actor. Hence, the starting time Sσ〈a,t〉 of all
executions t of an actor a ∈ A are defined by the starting time
of the first execution Sσ〈a,0〉 and the execution period wσa of a,
such that:

∀t ∈ N∗, Sσ〈a,t〉 = Sσ〈a,0〉 + (t− 1) · ωσa

An optimal periodic schedule σ∗ is defined based on the
structure of the SDF graph. Then, the throughput is computed
as Thσ

∗
(G) = 1/maxa∈A{ωσ

∗

a }. This method is suitable for
large SDF graphs than the ASAP based method.

2

1
2

1

1

1

1

1 1B
1

x1

A

D

C x2
x1

x2 x2

x1

1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

Topgraph

Subgraph

Fig. 1: Example of IBSDF graph in which actor C is described by
an SDF subgraph of 4 actors.

III. INTERFACE-BASED SDF (IBSDF) GRAPH

A. The interface-based hierarchy
The IBSDF MoC [7] is a hierarchical extension of the SDF

MoC. In the IBSDF graph, the internal behaviour of actors
can be specified either with host code, as it is usually done in
SDF graphs, or with IBSDF subgraphs. As presented in [7], for
each input (resp. output) port of a hierarchical actor, an input
(resp. output) interface is added in the associated subgraph.
The purpose of interfaces is to transmit data tokens to and
from a subgraph and to insulate levels of hierarchy in terms
of consistency and schedulability analysis. To achieve this
purpose, input interfaces will duplicate a data token from the
upper level of hierarchy if the subgraph requires several data
tokens to complete an iteration. Similarly, output interfaces
receiving more data tokens than necessary will only transmit to
the upper level of hierarchy the number of data tokens defined
by the hierarchical actor. In order to consume all data tokens
available on the input interfaces and to produce the number of
data tokens required by the output interfaces, subactors may
be executed n times their minimum repetition factor.

Figure 1 shows an example of IBSDF graph in which the
actor C is a hierarchical actor described by an SDF subgraph
of 4 actors. Executing one iteration of the subgraph results in
consuming and producing 2 data tokens on its interfaces. In
consequence, input interfaces In1 and In2 duplicate 2 times
the data tokens received from their parent actor C. To respect
the production rate of the actor C, the output interface Out1
will transmit only one data token even if it receives 2 from
the actor G at each iteration of the subgraph.

B. Execution rules for IBSDF graphs
The data tokens duplication/ignorance behaviour of the

interfaces guarantees an IBSDF graph composition that is
entirely consistent if each SDF graph in the hierarchy is
consistent. Additionally, [7] defines three execution rules to
ease the liveness evaluation and the schedulability of the
IBSDF graph. These execution rules are as follows:
• Rule 1: A subgraph can start its execution only when

enough data tokens are available on all input FIFOs of its
parent actor.

• Rule 2: Output interfaces can transmit data tokens in the
output FIFOs of their parent actor only when the subgraph
finishes its iteration.

• Rule 3: A subgraph executes only one iteration at a time
for each firing of its parent actor.

With the execution rules described above, a hierarchical
actor behaves like a regular actor consuming and producing
data tokens. Hence, each subgraph can be evaluated and
scheduled independently from the hierarchy. Furthermore, if
each subgraph in the hierarchy is live, it is sufficient for
proving the liveness of the entire IBSDF graph.

IV. THROUGHPUT EVALUATION BY FLATTENING

This section presents a basic method to compute the
throughput of an IBSDF graph using SDF graphs methods.
The method consists in transforming the IBSDF graph to a
non hierarchical graph.

A. srSDF / HSDF conversion

The Single-Rate Synchronous Dataflow (srSDF) graph is a
conversion of the SDF graph, which exposes all the parallelism
of an application by duplicating RV (a) times each actor
a ∈ A. The Homogeneous SDF (HSDF) graph is a simplified
srSDF graph in which all the consumption and production rates
are set to 1. An algorithm for converting an SDF graph to a
srSDF / HSDF graph is described in [6]. Figure 2a shows the
equivalent srSDF graph of the SDF graph ABCD of Figure 1.

B. Flattening the IBSDF graph hierarchy

Transforming an IBSDF graph into an equivalent non hi-
erarchical graph (i.e flattening the hierarchy) is a preliminary
step to evaluate the IBSDF graph throughput with state-of-
the-art methods of SDF graphs. The transformation consists in
converting the IBSDF graph to an equivalent flat srSDF graph.
To obtain the equivalent flat srSDF graph, the two following
steps are repeated for each level of the hierarchy beginning by
the top level up to the bottom one:
• Step 1: Convert the SDF topgraph to a srSDF graph.
• Step 2: Replace each instance of a hierarchical actor by

the equivalent srSDF graph of its SDF subgraph.
During the srSDF conversion of the subgraphs, extra actors

Start and End, and extra edges are added to ensure the
compliance with the three execution rules of the IBSDF graph.
The Start actor enforces Rule 1 by imposing a precedence
relationship between all input interfaces of the subgraph on
one side, and all subgraph actors on the other side. The End
actor enforces Rule 2 by imposing a precedence relationship
between all subgraph actors on one side, and all output
interfaces of the subgraph on the other side. Rule 3 is enforced
by adding precedence relationships between the Start and the
End actor. Figure 2b shows the resulted srSDF subgraph of
figure 1 after adding the extra actors and the extra edges.

Figure 3a shows the equivalent flat srSDF graph of the
IBSDF graph of figure 1. The flat srSDF graph is obtained by
first, converting the topgraph to a srSDF graph (fig 2a). Next,
by replacing C1 and C2, the two instances of actor C, by its
srSDF subgraph with extra actors and extra edges (fig. 2b).
The flat srSDF graph contains 23 actors and 50 edges.

A1

B1

B2

D1

D2

C1

C2

x1

x1
1

1

1

1
1

1
1

1

1
1

1 1

1
1

1

1

1 1

1

1

(a) The srSDF graph version of
the IBSDF topgraph of Fig. 1.

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

(b) The srSDF subgraph with extra
actors and extra edges.

Fig. 2: srSDF graph version of the topgraph and subgraph of fig. 1.

C. Throughput evaluation by a basic method

A basic method to evaluate the IBSDF graph throughput
is to compute the maximum throughput of its equivalent flat
srSDF graph using ASAP schedule [8] and periodic schedule
[9] based methods for SDF graphs.

1) ASAP (Flat srSDF) [8]: It consists in simulating the
ASAP schedule of the equivalent flat srSDF graph until
it reaches the periodic phase. Figure 3b shows the ASAP
schedule of the equivalent flat srSDF graph in figure 3a. One
iteration of the flat srSDF graph takes 7 times unit. Hence, the
IBSDF graph throughput is 1/7 iteration per times unit.

2) Periodic (Flat srSDF) [9]: In the case of srSDF graphs,
all the actors have the same execution period denoted K when
applying a periodic schedule. Hence, the throughput is equal
to 1/K. The value of K is computed as the value of the
Maximum Cost-to-Time Ratio (MCR) cycle [13] of the HSDF
graph version of the srSDF graph. For the flat srSDF graph in
figure 3a, the MCR value of its HSDF graph is 7/1; the value
of the cycle {A1, B1, D1, In2, Start, G1.1, H1.1, E1.1, F1.1,
End, Out1}. Thus, K = 7 and so the IBSDF graph throughput
equals to 1/K = 1/7 iteration per times unit.

V. SCHEDULE-REPLACE (SR) TECHNIQUE

Computing the IBSDF graph throughput with the basic
methods [8] and [9] requires to flatten the hierarchy. [10]
shows that the flattening process results in an exponentially
large flat srSDF graph. Which makes the throughput compu-
tation a hard task for the basic methods. [10] introduced a
Schedule-Replace (SR) technique that takes advantage of the
interface-based hierarchy and the execution rules to compute
the IBSDF graph throughput without flattening its hierarchy.

The Schedule-Replace (SR) technique consists of first,
scheduling an iteration of a subgraph to measure its duration.
Next, replacing the hierarchical parent actor by a regular
actor with the same duration of its subgraph. This process
is repeated through the hierarchy in a bottom-up approach to
abstract the complete execution of the IBSDF graph in its
topgraph. Then, computing only the topgraph throughput is
equivalent to evaluate the throughput of the IBSDF graph.

The Schedule-Replace (SR) [10] technique do not require
any complex srSDF conversion and so outperforms the basic
methods [8] and [9] that rely on flattening the hierarchy.

E2.1

F2.1 G2.1

H2.1

In
 2

.1

O
u

t
2.

1

In
 2

.2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

A1

B1

B2

D1

D2

x1

1

1 1

1

1

1

1 1

1 1

1 1

1 1

1

1

x1

1

1

1

1

E1.1

F1.1 G1.1

H1.1

In
 1

.1

O
u

t
1.

1

In
 1

.2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

(a) The equivalent flat srSDF graph of the IBSDF
graph of Figure 1, with extra edges.

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10

 Transient Phase Periodic Phase

 Time

A1B1

D1

G1.1

H1.1

E1.1

F1.1

A1 B2

B1

D1

D2

G2.1

H2.1

E2.1

F2.1

G1.1

H1.1

E1.1

F1.1

A1 B2

B1

D1

D2

G2.1

H2.1

E2.1

F2.1

G1.1

H1.1

E1.1

F1.1

Max nb PEs = 2
1 Period

(b) ASAP schedule of the equivalent flat srSDF graph of figure 3a.

Fig. 3: ASAP schedule of the IBSDF graph of figure 1, respecting the execution rules.

1

1

A1

B1

B2

D1

D2

x1

1

1 1

1

1

1

1 1

1 1

1 1

1 1

1

1
E1.1

F1.1 G1.1

H1.1

In
 1

.1

O
u

t
1.

1

In
 1

.2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

F2.1

E2.1 H2.1

G2.1

In
 2

.2

O
u

t
2.

1

In
 2

.1

2 2 2 2

2

2

2 2 2 2

2

2

2 2

x2

x1

1

1

1

1

(a) The equivalent Relaxed srSDF graph of the
IBSDF graph of Figure 1, without extra edges.

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10

 Transient
Phase

 Periodic Phase

 Time

Max nb PEs = 41 Period

B1

G1.1

G2.1

H1.1

H2.1

D1

A1

E1.1

B1

B2

F1.1

D1

E2.1

D2

G1.1

F2.1

H1.1

G2.1

A1

E1.1

H2.1

B1

B2

F1.1

D1

E2.1

D2

G1.1

F2.1

H1.1

G2.1

A1

E1.1

H2.1

B1

B2

F1.1

D1

E2.1

D2

G1.1

F2.1

H1.1

G2.1

A1

E1.1

H2.1

B1

B2

F1.1

D1

E2.1

D2

G1.1

F2.1

H1.1

G2.1

A1

E1.1

H2.1

B1

B2

F1.1

D1

E2.1

D2

G1.1

F2.1

(b) ASAP schedule of the equivalent relaxed srSDF graph of figure 4a.

Fig. 4: ASAP schedule of the IBSDF graph of figure 1 under a relaxed execution.

VI. RELAXED EXECUTION FOR IBSDF GRAPHS

Th execution rules allows to ease the analysis of the IBSDF
graph, especially the liveness evaluation. However, they may
slow down the execution of the IBSDF graph by constraining
the execution of subgraph actors. Hence, the execution rules
may stop the application to reach its maximum throughput.

Otherwise, the execution rules can be relaxed once the
consistency and the liveness of the IBSDF graph are verified.
By relaxing the execution rules, each subgraph actor is free
to execute as soon as there is enough data tokens on its
input FIFOs including input and output interfaces. In this way,
applications can reach their maximum throughput.

The execution rules are relaxed by deleting the extra actors
and the extra edges from the subgraphs. Figure 4a shows the
equivalent relaxed srSDF of the IBSDF graph of figure 1.
Figure 4b shows the ASAP schedule of the relaxed srSDF
graph. As this two figures show, subgraph actors G1.1 and
G2.1 are free to execute at t0 because Rule 1 is relaxed.
Similarly by relaxing Rule 2, the output interfaces Out1.1 and
Out2.1 are free to transmit data tokens immediately after the
execution of G1.1 and G2.1. And so, actor A1 can be executed
right after that at t1. Relaxing Rule 1 allows the input interface
In2.1 to transmit immediately the data tokens received from

actor B2 to the subgraph actor E2.1. The input interface
In2.1 does not need to wait until the input interface In2.2
receives data tokens from actor D2. Thus as the schedule
shows, subgraph actor E2.1 and actor D2 begin to execute
simultaneously after the execution of actor B2 at t2.

When the relaxed srSDF graph reaches its periodic phase, a
graph iteration takes a period of 4 times unit (fig 4b). Which
means the throughput of the IBSDF graph is 1/4 iterations
per times unit. Comparing to the previous execution (fig. 3b),
relaxing the execution rules speeds up the application by a
factor of 7/4 = 1.75 without changing the application design.

Relaxing the execution rules allows to fully exploit the
parallelism of the application and use more PEs if needed.
Comparing the two schedules of figures 3b and 4b, the relaxed
execution allows to use up to 4 PEs in parallel instead of 2.

Since subgraph interfaces can start to execute separately
at different times, hierarchical actors cannot be replaced by
regular actors. As consequences, the SR technique [10] is
not suited to compute the throughput of relaxed executions.
And so, only basic methods [8] and [9] can compute the
maximum throughput. In the next section we introduce a new
method named Evaluate-Schedule-Replace (ESR) to evaluate
the throughput of IBSDF graphs under a relaxed execution.

21

2

1 1

1

11

1

1

x1

D

B C
x1x2

x2

x1
A

x2
1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

x1

(a) Execute the IBSDF subgraph
until it stops.

1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

2

1

2

1
1

1

11

1

1

x1

D

B C

x1x2

x2

x1
A

x2

x1*2

(b) Move the transmitted data to-
kens to the upper graph.

Fig. 5: Synchronize the execution of the IBSDF subgraph of figure. 1

VII. EVALUATE-SCHEDULE-REPLACE (ESR) TECHNIQUE

A. methods algorithm

As an alternative to basic methods [8] and [9], we developed
a new method named Evaluate-Schedule-Replace (ESR) to
compute the IBSDF grah throughput under a relaxed execu-
tion. The new method is based on the Schedule-Replace (SR)
technique [10] and consists of the following steps:
• Phase 1 Synchronize the IBSDF subgraphs execution
• Phase 2 Starting from the bottom level of the hierarchy

up to the topgraph, for each level:
1) Construct a replacement graph for each hierarchical

actor in the current graph
2) Convert the current graph to a srSDF graph and

Replace each instance of hierarchical actors by their
replacement graph

• Phase 3 Compute the topgraph throughput with [9]
Similarly to SR technique, the ESR method analyse the IB-

SDF graph level by level to compute its throughput. However,
the new method replaces a hierarchical actor by a small graph
modelling the different start time of its subgraph interfaces.

Algorithm 1 shows an implementation of the ESR method.
The first phase is mandatory to analyse independently the
subgraphs. It consists of moving up the data tokens that are
ready to be transmitted from the subgraphs to their upper
graphs. Starting from the bottom level of the hierarchy up
to the topgraph, each subgraph is executed until it stops. Each
time an output interface is executed, the data tokens to transmit
are moved from the subgraph to its upper graph. A temporary
empty self-loop edge is added to actors without input edges
and to input interfaces for preventing an infinite execution of
subgraphs during this phase. At the end of phase 1, the current
state of the subgraphs is saved as the new initial marking.
In the IBSDF graph, each instance of a hierarchical actor is
described by an instance of its subgraph. Therefor each data
token moved from a subgraph to an upper level is multiplied
by the repetition factor of the hierarchical actor parent of the
subgraph. Figure 5 shows the synchronization of the IBSDF
subgraph of figure 1. Figure 5b represent the final state of the
IBSDF graph which will be used for the throughput evaluation.

Algorithm 1 Evaluate-Schedule-Replace (ESR) Pseudocode

ListReplacementGraphs = new LIST(Actor,Graph)
. Evaluate an IBSDF graph

function EVALUATE(IBSDF)
SYNCHRONIZESUBGRAPHS(IBSDF)
for all actors a ∈ IBSDF.TopGraph do

if a is hierarchical actor then
PROCEED(a)

end if
end for
srSDF = CONVERTTOSRSDF(IBSDF.TopGraph)
for all actors a ∈ srSDF do

if a is hierarchical actor then
REPLACE(a, ListReplacementGraphs)

end if
end for
throughput = COMPUTETHROUGHPUT(srSDF)
return throughput

end function
. Proceed a hierarchical actor

procedure PROCEED(H)
for all actors a ∈ H .SubGraph do

if a is hierarchical actor then
PROCEED(a)

end if
end for
srSDF = CONVERTTOSRSDF(H .SubGraph)
for all actors a ∈ srSDF do

if a is hierarchical actor then
REPLACE(a, ListReplacementGraphs)

end if
end for
HSDF = CONVERTTOHSDF(srSDF)
K = COMPUTEMCR(HSDF)
DAG = CONVERTTODAG(HSDF)
schedule = ASAP&ALAPSCHEDULE(DAG)
replacementGraph = CONSTRUCTGRAPH(schedule,K)
ListReplacementGraphs.add(H ,replacementGraph)

end procedure

The second phase represents the core algorithm of the
ESR method. It consists of evaluating the maximum execution
behaviour of a subgraph, based on its structure. Modelling it
by a relaxed subgraph execution model that abstracts the sub-
graph structure and shows only the execution time difference
between its input and output interfaces. Finally, replacing the
hierarchical parent actor of the subgraph by by its relaxed
subgraph execution model. This process is repeated for each
level starting from the bottom level up to the topgraph. At the
end of Phase 2 the topgraph abstracts the complete hierarchy
of the IBSDF graph. Phase 3 computes the throughput of the
topgraph to determine the IBSDF graph throughput.

In the following, we presents how to construct the equivalent
relaxed subgraph execution model of a subgraph.

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

1 1 1 1

1

1

1 1 1 1

1

1
1 1

x1

MCR = 4/1

(a) Compute the MCR of the
HSDF subgraph

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

1 1

1

1

1 1 1 1

1

1
1 1

(b) Convert the HSDF sub-
graph to a DAG

1 Iteration L = 4

1 2 3 4 50

E

F

G

H

 Time

In
 1

In
 2

O
u

t
1

(c) ASAP Schedule

1 2 3 4 50

E

F

G

H

 Time

In
 1

In
 2

O
u

t
1

1 Iteration L = 4

(d) ALAP Schedule

Fig. 6: Schedule the subgraph using ASAP + ALAP schedule to identify the execution start time of its interfaces.

Final Schedule
1 2 30

E

F

G

 Timeline

In
 1

In
 2

O
u

t
1

trans=1t
trans=1t

T0 trans T1 trans T2

In
 1

In
 2

1

1

1 1 1 1

1

1

1 1 1 1

1

1

Timeline

dur= 0

dur= 0

dur= 0

dur= 1 dur= 0 dur= 1

dur= 0

dur= dur(G)= 1

Period

dur= numer(K) - last t
dur = 4-2 = 2

 x denom(K) = x1

1

11

1

O
u

t
1

 Equivalent graph

Fig. 7: Construct the time line, connect the interfaces and add the execution
period constrain to models the subgraph execution.

A1

C1 Out 1

C2 Out 1

x2

1

1

x1

B1

D1

x1

1

1

1 1

1
1

1

1 C
1

In
 1

C
1

In
 2

1

T0 trans T1 trans T2

Period
x1

1 1 1 1

1

1

1 1 1 1

1

1

1

1 1

1

1 1

dur= 0

dur= 0

dur= 1 dur= 0 dur= 1

dur= 0

dur= 1

dur =2

B1

D1

1

1

1 1

1
1

1

1

C
2

In
 1

C
2

In
 2

1

T0 trans T1 trans T2

Period
x1

1 1 1 1

1

1

1 1 1 1

1

1

1

1 1

1

1 1

dur= 0

dur= 0

dur= 1 dur= 0 dur= 1

dur= 0

dur= 1

dur =2

dur= 1

dur= 1

dur= 1

dur= 1

dur= 1

dur= 0

dur= 0

Fig. 8: Replace each instance of the hierarchical actor C by
its subgraph execution model.

B. Relaxed subgraph execution model

Despite the precedence relationship of a hierarchical actor,
the subgraph cannot exceed the maximum relaxed execution
defined by its own structure. The purpose of the relaxed
subgraph execution model is to abstract the subgraph structure
by representing only the maximum throughput of the subgraph
and the execution time difference between its interfaces.
Which is all required for the throughput evaluation.

The construction of an equivalent relaxed subgraph execu-
tion model consists of the following steps:

1) Convert the subgraph to a srSDF graph and compute the
minimum execution period of its actors using [9]

2) Schedule the srSDF subgraph using ASAP followed by
As Late As Possible (ALAP) schedule

3) Construct the equivalent execution model using the sched-
ule and the minimum execution period obtained in the
previous steps

Step 1 consists of computing the the minimum execution
period K of the srSDF subgraph using the periodic schedule
[9]. The K value represents the maximum throughput 1/K
and the minimum period to respect between two successive
executions of subgraph actors. Figure 6a shows the MCR of
the HSDF subgraph which defines the value of k = 4.

Step 2 consists of scheduling the subgraph by an ASAP
followed by ALAP schedule to define the minimum time dif-

ference between its interfaces execution. The ASAP schedule
allows to define the minimum time that output interfaces take
to transmit data tokens when the subgraph starts an iteration.
Scheduling the subgraph with ALAP schedule allows to define
the maximum delay for input interfaces to execute without
affecting the execution of output interfaces. To use existent
algorithm of ASAP and ALAP schedules, the HSDF subgraph
of step 1 is converted to a Directed Acyclic Graph (DAG). The
DAG version of the HSDF subgraph is obtained simply by
removing all FIFOs that contain initial marking (see fig. 6b).
Figures 6c and 6d show the ASAP and ALAP schedule of the
IBSDF subgraph of figure 1. The final schedule highlight only
the execution of the interfaces, which is all required in step 3.

Step 3 constructs the subgraph execution model by repre-
senting the final schedule with an equivalent srSDF graph.
The start time of each interface is represented by an actor
(TimeLineActor) with a null duration. The time difference
between two consecutive executions of interfaces in the time
line is represented by an actor (TransitionActor) with the
duration equals to that time difference. Each interface is
connected to the associated actor of its execution start time.
For time dependency, the execution start time of the source
actor of output interfaces is considered instead of their start
time. Similarly, output interface take the execution duration
of their source actor. A final actor, named PeriodActor, is
added to model the minimum execution period of the subgraph

actors by creating a cycle with the TimelineActors. The du-
ration of the PeriodActor is computed as numerator(K)−∑
dur(TransitionActor). And by adding denominator(K)

data tokens to the cycle created by the PeriodActor, its
MCR value represents the exact maximum throughput of the
subgraph. Figure 7 shows the relaxed subgraph execution
model of the IBSDF subgraph of figure 1. The three interfaces
in1, in2 and out1 are connected respectively to the time line
actors T0, T1 and T2. Figure 8 shows the resulted srSDF
graph of ESR method. It is obtained by replacing the instances
of hierarchical actor C in the srSDF topgraph (fig. 2a) by the
relaxed subgraph execution model of its subgraph (fig. 7).

C. Special case of IBSDF graphs

For a particular case of IBSDF graphs, the ESR method may
failed to compute the maximum throughput. Specially when
the initial marking of the graph removes the data dependence
between output and input interfaces in a subgraph iteration. For
instance the initial marking of the IBSDF graph in figure 9a,
allows to execute 5 times the output interface out1 without
the need of executing the input interface in1. That makes the
output interface out1 independent from the input interface in1
in terms of data tokens for 5 subgraph iterations.

Figure 9b shows the equivalent relaxed srSDF graph of the
IBSDF graph of figure 9a. The MCR of the relaxed srSDF
graph is the value of the cycle (A,B,D, in2, F,G, out1) and
so the throughput is 1/MCR = 5/5 = 1. Using ESR method,
the throughput is 1/3 computed as 1 over the MCR value of its
resulted srSDF graph (fig. 9c) which is the value of the cycle
(A,B, in1, T1, out1). The throughput computed with the ESR
method represents 33.3% of the maximum throughput.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section we compare the performance of the new
method ESR with the flat srSDF conversion based methods [8]
and [9], and with SR technique. The numerical experiments
consists of measuring the running time for each method to
compute the throughput including the srSDF conversion when
relevant. The maximum throughput value computed by basic
methods [8] and [9] is used to compare the quality of SR
and ESR techniques. Experimental results are summarized in
Table II. The difference of the throughput value between the
two techniques ESR and SR shows how much the execution of
IBSDF graphs can speed up by ignoring the execution rules.

For the sake of comparison, we have used the same sets
of IBSDF graphs that were used in [10] as a benchmark
to compare the performance of ESR technique with [8] and
[9] methods. The graph set is composed of two categories
of IBSDF graphs. The first category is a set of real DSP
applications modeled as IBSDF graphs, available in [14]. The
second category is a set of synthetics IBSDF graphs generated
randomly using a generator of IBSDF graphs based on Turbine
tool [15]. Table I shows the characteristics of the graphs.

The Algorithm 1 implementation of ESR method is avail-
able in the open-source Preesm framework [1] as well as

the SR method. The ASAP based method [8] used is the
open source implementation of SDF 3 [16]. For the Periodic
Schedule [9], we used a mathematical model to compute the
optimal period solved with the mathematical programming
solver Gurobi [17]. All methods were tested on one core of an
Intel i5-6300 processor clocked at 2.40 GHz, and with 8GB
of RAM.

B. Results

As table I shows, the size of the resulted srSDF graph
of SR and ESR methods remains small comparing to both
flat and relaxed srSDF graph. In fact, it was not possible to
convert the last two synthetics graphs with the available RAM.
Since [8] and [9] methods rely on the flattening, they failed to
compute the throughput of the last two graphs (see table II).
Besides, both methods SR and ESR computes successfully the
throughput of all graphs as shown in table II.

For small graphs, [8] and [9] are faster than SR and ESR
techniques. But, the execution time of both methods [8] and
[9] increases exponentially as the number of levels and the
size of the srSDF graph grow. The results confirm that SR
and ESR techniques are suitable for larger graphs than [8]
and [9] methods. Furthermore, the ESR method is more likely
to compute the maximum throughput than SR technique.

For the last two graphs we are not able to evaluate the
optimallity of the throughput since [8] and [9] methods have
failed. But, the throughput difference between the two methods
ESR and SR shows how much the execution of an IBSDF
graph can speed up by relaxing the execution rules. In fact,
the throughput of the last graph, computed by SR method,
represents less than 1% of the one computed by ESR method.

IX. CONCLUSION

We have introduced a relaxed execution for the IBSDF
graph by ignoring its execution rules. The relaxed execu-
tion allows applications to reach their maximum throughput.
We have presented a new method named Evaluate-Schedule-
Replace (ESR) to evaluate the throughput of IBSDF graph
under relaxed execution. The new method is based on the
Schedule-Replace (SR) technique and takes advantage of
the interface-based hierarchy to compute the IBSDF graph
throughput without flattening its hierarchy. Experiments show
that, the new method is suitable for large IBSDF graphs
comparing to basic methods that require the relaxed srSDF
graph. Additionally, the ESR method allows to compute the
maximum throughput of IBSDF graphs in less than 2 seconds.
A future work is to study special cases of IBSDF graphs for
new specific methods.

REFERENCES

[1] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“Preesm: A dataflow-based rapid prototyping framework for simplifying
multicore dsp programming,” in Embedded Design in Education and
Research Conference (EDERC), Sept 2014, pp. 36–40.

[2] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, A hierarchical mul-
tiprocessor scheduling framework for synchronous dataflow graphs.
Electronics Research Laboratory, College of Engineering, University of
California, 1995.

1

1
1

1

1

1

1

1 1B
1

x1

A

D

C
x1

x1

x1 x1

x5

E F
11

1

1

1

O
u

t
1

In
 1

1

1

1

1

x5

1

1 x1

x1x1

In 2

1

1

1

G1

x1

(a) IBSDF graph with two levels of hier-
archy. Each actor is executed once.

O
u

t
1

In
 1

1

1

In 2

1

1

1

1

1

1

1

1

1 1B
1

x1

A

D

x5

11

1
1
1

x5

1

FE

G

x1

1

1 1

dur=1 dur=1

dur=1

dur=1

dur=1

dur=0
dur=0

dur=0dur=1

(b) The equivalent relaxed srSDF graph
without the extra-edges.

O
u

t 1

In 2
11 1

1

1

1

1

1

1 B 1

x1
A

D

x5
1

1

1
T0 Trans T1

Period

In 1

x6

1 1 1 1 1

1

11

1

1

1

dur=1 dur=1

dur=0

dur=0

dur=1

dur=2

dur=0

dur=1

dur=1

dur=0

(c) The resulting srSDF graph of the ESR
method.

Fig. 9: A Particular case of IBSDF graph for which the ESR method fails to compute the maximum throughput

TABLE I: Graphs description

IBSDF graph
Conversion of IBSDF to srSDF graph Resulted srSDF graph of the methods

Flat srSDF graph Relaxed srSDF graph Schedule-Replace [10] ESR

Name Levels Actors Actors FIFOs Actors FIFOs Actors FIFOs Actors FIFOs

Crypto 2 10 34 85 34 49 10 17 30 37
Large FFT 2 10 267 1300 267 777 4 5 8 8
LTE 4 18 250 641 272 337 3 4 7 7
Stereo Matching 2 41 1604 5829 1606 3143 39 63 56 78

Graph 1 3 15 503 1654 513 816 15 26 23 32
Graph 2 5 20 17727 80976 17730 56703 12 30 24 42
Graph 3 6 24 84440 338391 87440 196019 12 35 22 45
Graph 4 5 150 653289 3253811 654566 2034980 90 196 95 201
Graph 5 8 240 39 E10 - 39 E10 - 150 441 174 465
Graph 6 10 100 31 E15 - 31 E15 - 50 124 68 142

TABLE II: Performance comparison between basic methods [8] and [9], SR technique [10], and the Evaluate-Schedule-Replace method.

IBSDF graph ASAP [8] (Relaxed srSDF) Periodic [9] (Relaxed srSDF) Schedule-Replace [10] Evaluate-Schedule-Replace

Name % of Opt. Throughput Exec.Time % of Opt. Throughput Exec.Time % of Opt. Throughput Exec.Time % of Opt. Throughput Exec.Time

Crypto 100% 1.25 E-03 1 ms 100% 1.25 E-03 6 ms 100% 1.25 E-03 38 ms 100% 1.25 E-03 45 ms
Large FFT 100% 1.25 E-03 44 ms 100% 1.25 E-03 33 ms 100% 1.25 E-03 36 ms 100% 1.25 E-03 74 ms
LTE 100% 7.69 E-04 152 ms 100% 7.69 E-04 20 ms 100% 7.69 E-04 32 ms 100% 7.69 E-04 58 ms
Stereo Matching 100% 2.76 E-05 4320 ms 100% 2.76 E-05 80 ms 99.18% 2.74 E-05 37 ms 100% 2.76 E-05 130 ms

Graph 1 100% 2.50 E-02 11984 ms 100% 2.50 E-02 30 ms 34.48% 8.62 E-03 34 ms 100% 2.50 E-02 59 ms
Graph 2 - >1h 100% 1.73 E-03 1190 ms 55.05% 9.52 E-04 34 ms 100% 1.73 E-03 70 ms
Graph 3 - >1h 100% 1.98 E-03 2319 ms 20.70% 4.10 E-04 34 ms 100% 1.98 E-03 90 ms
Graph 4 - >1h 100% 9.80 E-04 55407 ms 12.49% 1.22 E-04 61 ms 100% 9.80 E-04 306 ms
Graph 5 - - - - ?? 6.76 E-05 61 ms ?? 7.35 E-04 560 ms
Graph 6 - - - - ?? 4.58 E-13 72 ms ?? 3.42 E-06 1930 ms

[3] M. A. Aguilar, R. Leupers, G. Ascheid, and L. G. Murillo, “Automatic
parallelization and accelerator offloading for embedded applications on
heterogeneous mpsocs,” in Design Automation Conference, jun 2016.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept 1987.

[5] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[6] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 2nd ed. CRC Press, Inc., 2009.

[7] J. Piat, S. Bhattacharyya, and M. Raulet, “Interface-based hierarchy for
synchronous data-flow graphs,” in IEEE Workshop on Signal Processing
Systems. SiPS, 2009, pp. 145–150.

[8] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi, “Throughput analysis of synchronous
data flow graphs,” in Sixth International Conference on Application of
Concurrency to System Design. ACSD, 2006, pp. 25–36.

[9] A. Benabid-Najjar, C. Hanen, O. Marchetti, and A. Munier-Kordon,
“Periodic schedules for bounded timed weighted event graphs,” IEEE
Transactions on Automatic Control, vol. 57, no. 5, pp. 1222–1232, 2012.

[10] H. Deroui, K. Desnos, J.-F. Nezan, and A. Munier-Kordon, “Throughput
evaluation of dsp applications based on hierarchical dataflow models,”

in Proceedings of the 50th International Symposium on Circuits and
Systems. ISCAS, 2017.

[11] R. de Groote, J. Kuper, H. Broersma, and G. J. M. Smit, “Max-plus
algebraic throughput analysis of synchronous dataflow graphs,” in 2012
38th Euromicro Conference on Software Engineering and Advanced
Applications, Sept 2012, pp. 29–38.

[12] B. Bodin, A. Munier-Kordon, and B. de Dinechin, “K-periodic schedules
for evaluating the maximum throughput of a synchronous dataflow
graph,” in 2012 International Conference on Embedded Computer
Systems (SAMOS), pp. 152–159.

[13] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio
and mean algorithms,” ACM Trans. Des. Autom. Electron. Syst., vol. 9,
no. 4, pp. 385–418, Oct. 2004.

[14] “Preesm.” [Online]. Available: http://preesm.sourceforge.net/website/
[15] B. Bodin, Y. Lesparre, J.-M. Delosme, and A. Munier-Kordon, “Fast

and efficient dataflow graph generation,” in Proceedings of the 17th
International Workshop on Software and Compilers for Embedded
Systems, ser. SCOPES ’14. ACM, 2014, pp. 40–49.

[16] S. Stuijk, M. Geilen, and T. Basten, “SDFˆ3: SDF for free,” in Sixth
International Conference on Application of Concurrency to System
Design. ACSD, 2006, pp. 276–278.

[17] “Gurobi Optimization.” [Online]. Available: http://www.gurobi.com/

