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Abstract. This paper focuses on the denoising of chrominance channels
of color images. We propose a variational framework involving TV reg-
ularization that modifies the chrominance channel while preserving the
input luminance of the image. The main issue of such a problem is to en-
sure that the denoised chrominance together with the original luminance
belong to the RGB space after color format conversion. Standard meth-
ods of the literature simply truncate the converted RGB values, which
lead to a change of hue in the denoised image. In order to tackle this issue,
a “RGB compatible” chrominance range is defined on each pixel with re-
spect to the input luminance. An algorithm to compute the orthogonal
projection onto such a set is then introduced. Next, we propose to extend
the CLEAR debiasing technique to avoid the loss of colourfulness pro-
duced by TV regularization. The benefits of our approach with respect
to state-of-the-art methods are illustrated on several experiments.

Keywords: Colorization, denoising, color editing, color assignment

1 Introduction

The representation of color images in perceptual color spaces rather than in
RGB has been successfully considered in color image and video editing tasks
such as colorization [17], contrast enhancement [5], color transfer [16] or JPEG
compression [2]. There exists many color decompositions (HSV, YCBCR, YUV,
Lab, Lαβ...) that contain channels representing information such as luminance,
chrominance, saturation and hue... In the following, we will consider the YUV
color space, where Y denotes the luminance channel and U and V the chromi-
nance ones that represent the color information of the image. Indeed, the YUV
space being linear, the description of the chrominance range will be easier than
for non-linear space, such as Lab. Color editing then consists in modifying one
or several of these channels in function of the tackled application. In the image
colorization problem, the original gray-scale image is considered as luminance
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and chrominance channel are created from examples or information given by the
users. In the case of contrast enhancement, the luminance channel is modified,
while the chrominance is preserved.

In this paper, we will take a point of view closer to the colorization prob-
lem, since we will only edit the chrominance, while preserving the luminance.
The problem of chrominance denoising arises when restoring JPEG compressed
images.

RGB range. In the colorization approaches of the literature, as well as for
JPEG restoration techniques, the range of the chrominance is a problem which
is rarely solved or considered. The range is defined, for a particular luminance
value, as the set of the chrominance values such that the corresponding RGB
colors are in the cube [0, 255]3.

For instance, the iterative methods of [9] or [11] use PDE schemes on the
chrominance channels, but the RGB range may be violated. Such approaches
generally project the produced colors into [0, 255]3, leading to a modification of
the luminance. The problem of editing color while maintaining the range has been
raised in [7,10,12]. These methods consider the problem into the 3-dimensional
RGB space or use a specific parametrization of the RGB space. Editing color
while maintaining the luminance channel is nevertheless a 2-dimensional prob-
lem that should be solved in the chrominance space. The two main issues for
working in the chrominance space are the definition of the range for a particular
luminance value and the orthogonal projection onto this set.

This range has been characterized has a convex set within the RGB color
space in [12]. For colorization purposes, the authors of [12] proposed an oblique
projection to maintain the RGB range while keeping the hue of the color ex-
amples. However, the use of an oblique projection into the optimization process
does not ensure to compute a global optimum of the defined functional. In this
paper, we work directly onto the chrominance values and the orthogonal projec-
tion on its range is designed, leading to an algorithm minimizing the proposed
model.

TV regularization and loss of contrast. In order to avoid visual arte-
facts on the edited images, many approaches have considered the use of spatial
regularization. Total Variation has therefore been extended to color images in
RGB space [8] and luminance/chrominance ones for colorization [13] or JPEG
image decompression or restoration [1]. In this paper, we consider the coupled
TV regularization [13] designed to inpaint or to denoise chrominance channels.
The results obtained with this method are efficient but they suffer from the well
known bias of the Rudin, Osher and Fatemi (ROF) model [14]. In the case of
gray-scale images this bias is revealed as a loss of contrast. In the case of the
luminance-chrominance model of [13], the loss of contrast is visible as a loss of
colorfulness of the result (see, e.g., Figure 1).

An automatic debiasing strategy has been recently proposed with the CLEAR
method [6] in order to deal with the loss of contrast of the original ROF model.
Debiasing approaches are based on Bregman distance [3] or on the projection
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(a) Original image. (b) Regularization of [13]. (c) Proposed model.

Fig. 1. The classical ROF model [14] produces a loss of contrast which is seen as a loss
of colourfulness in the case of color images. The processed image (b) is drabber than
the original one. The aim of this paper is to avoid this counter-effect.

onto a linear space of unbiased solutions [6], but they are not designed to handle
additional hard constraint such as the preservation of the luminance.

Outline and contributions. In this paper, we propose an algorithm to
solve the color denoising problem with fixed luminance, while taking into account
the range of admissible chrominance and debiasing the original result.

To this aim, we first characterize in Section 2 the acceptable convex set of
chrominance values and design an algorithm to compute an orthogonal projec-
tion onto this set. We then present in Section 3, the chrominance denoising model
related to the colorization one of [13].

Next, we propose in Section 4 to use the debiasing CLEAR method [6] to
get rid of the loss of colourfulness issue. As the CLEAR has been designed for
unconstrained problems, we extend this technique to our constrained luminance
denoising problem. The benefits of this debiasing strategy are finally demon-
strated in the experimental Section 5.

2 Range of Chrominance

The natural problem arising when editing a color while keeping its luminance
or intensity constant, is the preservation of the RGB standard range of the
produced image. Most of the methods of the literature work directly in the RGB
space [7, 10, 12], since it is easier to maintain the standard range. Nevertheless,
working in the RGB space needs to process 3 channels, while 2 chrominance
channels are sufficient to edit a color image while maintaining the luminance.

2.1 Description of the range

In this section, we geometrically describe the set of chrominance values which
correspond to a particular luminance level, and which are contained in the RGB
standard range. Let us denote by T (y, u, v) the invertible linear operator map-
ping YUV colors onto RGB ones.

Proposition 1. Let y be a value of luminance between 0 and 255. The set of
chrominance values (u, v) that satisfy T (y, u, v) ∈ [0, 255]3 is a convex polygon.
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Remark 1. For a given luminance, the chrominance values out of this polygon
can be transformed into the RGB space, but they are out of the bounds. A
truncation of the coordinates is usually done, but it generally changes both the
luminance and the hue of the result.

R

G

B
b = (0,0,0)

Plane of colors with the 
same luminance.

w

(a) Set of the RGB colors with
a fixed luminance.

U

V

Y =180

(b) Corresponding colors in
the YUV space.

Fig. 2. The set of the RGB colors with a particular luminance is a convex polygon.
The map from RGB to YUV being affine, the set of the corresponding chrominances
is also a convex polygon.

Proof (of Proposition 1). The intuition of the proof is given in Figure 2. The set
of the colors in the RGB cube whose luminance is equal to a particular value y
is a convex polygon (see, e.g., [12]). Indeed, the set of colors with a particular
luminance is an affine plane in R3 and the intersection of the RGB cube with it
is a polygon. The transformation of the RGB values into the YUV space being
affine, the set of corresponding colors is thus also a convex polygon included in
the set Y = y. �

2.2 Orthogonal projection onto the convex range

Pixel-wise, the valid chrominances are contained in a convex polygon that has, at
most, 6 edges. The numerical computation of the vertex coordinates is postponed
to Appendix A. When the vertices are computed, and denoted by P1, P2, etc,
the orthogonal projection onto the polygon is computed as follows.

The algorithm first checks if the corresponding RGB value is between 0 and
255. If so, the point is its own orthogonal projection. If not, the orthogonal pro-
jection is onto one of the edges. So, it is computed for each edges and the closest
one is retained as the solution. The algorithm is summarized in Algorithm 1 and
illustrated in Figure 3.
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Algorithm 1 Algorithm computing projection PR.

Require: X: chrominance vector; Y luminance value.
1: if RGB(Y,X) 6∈ [0, 255]3 then
2: for i = 1 : n do
3: j ← i+ 1 mod n

4: α←
〈−−→
PiPj |

−−→
PiX

〉
/
(
‖
−−→
PiPj‖2

)
5: if α > 1 then
6: Xi,j ← Pj

7: else if α < 0 then
8: Xi,j ← Pi

9: else
10: Xi,j ← Pi + α

−−→
PiPj

11: end if
12: end for
13: X ← argminXi,j

‖X −Xi,j‖2
14: end if

In the constraint : 
nothing to do. 

Orthogonal projection 
onto the closest edge.

Orthogonal projection 
onto the closest vertex.

P
1

P
3

P
2

P
4

Fig. 3. To compute the orthogonal projection, different cases can appear. If the YUV
color respects the constraint, the projection is the identity. Otherwise, the orthogonal
projection onto the closest edge or vertex should be done.

3 Luminance-Chrominance TV-L2 Model

In the following we focus on a variational model to denoise the chrominance
channels of an image while keeping the luminance unchanged. Similarly to the
colorization model of [13], we want to find the minimizer x̂(y) of the denoising
functional:

x̂(y) = argminx=(U,V ) TVC(x) + λ‖x− y‖2 + χR(x), (1)

with

TVC(x) =

∫
Ω

√
γ‖∇Y ‖2 + ‖∇U‖2 + ‖∇V ‖2. (2)

The first term is a coupled total variation which enforces the chrominance chan-
nels to have a contour at the same location as the luminance one. The fidelity
data term is a classical L2 norm between chrominance channels of the unknown
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x and the data y. In this paper, we consider that the chrominance values live
onto the convex polygon denoted by R and described in the previous section.
This last assumption ensures that the final solution lies onto the RGB cube,
avoiding final truncation that leads to modification of the luminance channel.
Model (1) is convex and can be turned into a saddle-point problem of the form:

min
x∈R2

max
z∈R6

λ

2
‖x− y‖2 + 〈∇x|z1,...,4〉+ 〈γ∇Y |z5,...,6〉 − χB(0,1)(z). (3)

The primal-dual algorithm [4] used to compute such saddle-point is recalled in
Algorithm 2, where PR is the orthogonal projection described in Algorithm 1
and PB is defined as follows:

PB (z) =
(z1,...,4, z5,6 − σ∇Y )

max
(
1, ‖z1,...,4, z5,6 − σ∇Y ‖2

) . (4)

Algorithm 2 Minimization of (3).

1: x0 = y
2: z0 ← ∇x
3: for n ≥ 0 do
4: zn+1 ← PB (zn + σ∇xn)

5: xn+1 ← PR

(
xn + τ

(
div(zn+1) + λy

)
1 + τλ

)
6: xn+1 ← 2xn+1 − xn
7: end for
8: set x̂(y) = xn+1 and ẑ = zn+1.

The results produced by Algorithm 2 are promising but with a low data
parameter λ, the results are drab, as illustrated in Figure 1(b).

4 Constrained TV-L2 Debiasing Algorithm

In this section we present a debiased algorithm for correcting the loss of colour-
fulness of the solution given by the optimum of (1).

4.1 The CLEAR method [6].

The CLEAR method [6] can be applied for debiasing estimators x̂(y) obtained
as :

x̂(y) ∈ argminx∈Rp F (x, y) +G(x), (5)

where F is a convex data fidelity term with respect to data y and G is a convex
regularizer. For G being the Total Variation regularization, the estimator x̂(y) is
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generally computed by an iterative algorithm, and it presents a loss of contrast
with respect to the data y. In the aim of debiasing this estimator, the CLEAR
method refits the data y with respect to some structural information contained
in the biased estimator x̂. This information is encoded by the Jacobian of the
biased estimator with respect to the data y:

Jx̂(y)d = lim
ε→0

x̂(y + εd)− x̂(y)

ε
. (6)

For instance, when G is the anisotropic TV regularization, the Jacobian contains
the information of the support of the solution x̂, on which a projection of the
data can be done to estimate.

In the general case, the CLEAR method relies on the refitting estimator
Rx̂(y) of the data y from the biased estimation x̂(y):

Rx̂(y) ∈ argminh∈H ‖h(y)− y‖22 (7)

where H is defined as the set of maps h : Rn → Rp satisfying, ∀y ∈ Rn :

h(y) = x̂(y) + ρJx̂(y)(y − x̂(y)), with ρ ∈ R. (8)

A closed formula for ρ can be given:

ρ =


〈
Jx̂(y)(δ)|δ

〉
‖Jx̂(y)(δ)‖22

if Jx̂(y)(δ) 6= 0

1 otherwise.

, (9)

where δ = y− x̂(y). In practice, the global value ρ allows to recover most of the
bias in the whole image domain.

An algorithm is then proposed in [6] to compute the numerical value of
Jx̂(y)(y − x̂(y)). The process is based on the differentiation of the algorithm
providing x̂(y).

It is important to notice that the CLEAR method applies well for estima-
tors obtained from the resolution of unconstrained minimization problems of
the form (5). Nevertheless, it is not adapted to our denoising problem (1) that
contains an additional constraint χR(x) as CLEAR may violate the constraint.

4.2 Direct Extension of CLEAR to constrained problems.

Extending the CLEAR method to the constrained Model (1) requires to take
the constraint into account in the axioms of the refitting model (7). The main
difference with the original model is the addition of the constraint χR(x). We can
first notice that the refitting axioms h(y) = Ay+b for some A ∈ Rp×n, b ∈ Rp and
Jh(y) = ρJx̂(y) for some ρ ∈ R are in line with the introduction of the constraint.
In particular, the definition of the Jacobian Jx̂ in Equation (6) remains valid
with the constraint, since x̂(y) and x̂(y + εd) are still in the closed convex R.
The computation of the ρ parameter in Equation (9) may nevertheless produce,
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from Equation (8), an estimation out of the constraint, that has to be post-
processed. This points out the main difference between the constrained and the
unconstrained debiased estimator.

In [6], the value of ρ is computed from the minimization of a map from R to
R defined as follows :

ρ 7→ ‖
(
Id − ρJx̂(y)

)
(x̂(y)− y) ‖22. (10)

In the case of the constrained problem, the function to be minimized is written
as :

ρ 7→ ‖x̂(y) + ρJx̂(y) (y − x̂(y))− y‖22 + χR(x̂(y) + ρJx̂(y) (y − x̂(y))). (11)

Let us denote by ρ the value defined in Equation (9). In the case when the
constraint is fulfilled, i.e., when x̂(y)+ρJx̂(y) (y − x̂(y)) ∈ R, then, the minimum
of (11) is reached with ρ.

If not, let us study the function (11). This function is convex. Moreover, the
value ρ = 0 is in the domain of the functional because x̂(y) ∈ R. The idea
is to find the maximum value of ρ such that x̂(y) + ρJx̂(y)δ ∈ R. In our case,
since R is a convex polygon, this computation can be done with a Ray-Tracing
algorithm [15]. To this aim, we can parametrize the segment [x̂(y), x̂(y)+ρJx̂(y)δ]:

ρ̃ = max
t∈[0,1]

tρ such that x̂(y) + tρJx̂(y) (y − x̂(y)) ∈ R. (12)

Equation (12) can thus be directly solved by the maximum value t such that
x̂(y) + tρJx̂(y) (y − x̂(y)) intersects the border of R.

Direct debiasing process. Let us summarize the refitting algorithm designed
for model (1). The first step consists in computing a solution of (1) with Al-
gorithm 2. This iterative algorithm provides at convergence a first biased solu-
tion x̂(y) and its dual variable ẑ. Once this solution has been computed, the
differentiated algorithm, presented in Algorithm 3, is applied in the direction
δ = y− x̂(y). This algorithm requires the definition of the operator Πẑ(z̃) which
is the linearisation of the projection PB around ẑ, and reads [6]:

Πẑ (z̃) =

 z̃ if ‖ẑ‖ < 1
1

‖ẑ‖

(
z̃ − 〈ẑ|z̃〉
‖ẑ‖2

ẑ

)
otherwise.

(13)

Finally, the Ray-Tracing is applied to obtain ρ̃ and get the debiased solution
as x̂(y) + ρ̃Jx̂(y)(y − x̂(y)).

Unfortunately, this direct approach does not lead to interesting results on
practical cases. Indeed, if in one particular pixel the solution x̂(y) is saturated,
and if the debiased solution is out of R, then ρ̃ = 0 is the unique global ρ
satisfying x̂(y) + ρJx̂(y) (y − x̂(y)) ∈ R. Thus, in practical cases, the debiased
solution is equal to the biased one.
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Algorithm 3 Differentiation of Algorithm 2 for computing Jx̂(y)δ from (x̂(y), ẑ)

1: x̃0 = δ, x̃
0

= δ
2: z̃0 ← ∇x̃
3: for n ≥ 0 do
4: z̃n+1 ← Πẑ

(
z̃n + σ∇x̃n

)
5: x̃n+1 ←

x̃n + τ
(
div(z̃n+1) + λδ

)
1 + τλ

6: x̃
n+1 ← 2x̃n+1 − x̃n

7: end for
8: Jx̂(y)δ = x̃n+1.

We also considered the differentiation of the projection PR, but it does not
lead to better results since it does not guaranty that x̂(y)+ρJx̂(y) (y − x̂(y)) ∈ R.

Having a global ρ is thus too restrictive for our constrained problem. In the
next section, we propose a model with an adaptive ρ parameter to tackle this
saturated values issue.

4.3 Adaptive Debiasing Model for Constrained Problems.

We first notice that for a pixel ω such that x̂(y)ω + ρJx̂(y),ω (yω − x̂(y)ω) fulfils
the constraint, ρ is the best value to refit the model according to the hypothesis
of model (7). Here, Jx̂(y),ω denotes the value of Jx̂(y) in pixel ω.

On the other hand, if for a pixel ω, the value of x̂(y)ω and Jx̂(y),ω (yω − x̂(y)ω)
are such that x̂(y)ω + ρJx̂(y),ω (yω − x̂(y)ω) /∈ R, the ρ value has to be adapted.
Thus, let us define for a pixel ω the adapted ρ̃ω as follows:

ρ̃ω = max
tω∈[0,1]

tωρ such that x̂(y)ω + tωρJx̂(y),ω (yω − x̂(y)ω) ∈ R. (14)

The constrained refitting model is then defined pixel-wise as:

RRx̂ (y) = x̂(y)ω + ρ̃ωJx̂(y),ω (yω − x̂(y)ω) (15)

This definition ensures that the debiased estimation is in the constraint.
Moreover, if the debiasing method of [6] produces an estimation in the con-
straint, this solution is retained. Notice however that the CLEAR hypothesis
Jh(y) = ρJx̂(y) for some ρ ∈ R in model (7) is not fulfilled anymore. In numer-
ical experiments, for most pixels, the values of ρ̃ω computed with our method
are the same as with Model (7).

As illustrated by Figure 4, such local debiasing strategy realizes an oblique
projection onto R.

Computation of the Oblique Projection. We now describe how to compute
the oblique projection when the constraint is the chrominance set for a particular
value of luminance (see, e.g., Section 2). To simplify the notation, we consider



X

x (y)
x (y)+ρ J

x (y)
(y - x (y))

x (y)+ρ J
x (y)

(y - x (y))~
^

^

^ ^
^

^
^

Fig. 4. The refitting of the method of [6] may be out of the constraint. An oblique
projection onto this constraint is able to respect most of hypotheses of the Model (7)
while fulfilling the constraint.

Initial image Noisy image TVL2 on UV Biased model (1) Model (15)

Fig. 5. Results of chrominance channels with a TVL2 model on chromonance, with
the biased method and with the unbiased method. The debiasing algorithm produces
more colorfull results.

the problem for a single pixel ω and set x := x̂(y)ω, y := Jx̂(y),ω (yω − x̂(y)ω)
and ρ ∈ R computed by the algorithm of [6].

For x + ρ y /∈ R, we want to compute the maximum value of t ∈ [0, 1] such
that x + tρ y ∈ R. We know that x ∈ R, thus if x + ρ y /∈ R, the segment
[x, x+ ρ y] cross one edge of the polygon.

Let us consider this problem by testing it into the RGB space. Indeed, the
edges in the chrominance space correspond to edges in the RGB one, and the
intersections between them correspond to intersections in the RGB space. In
RGB, the problem of finding the intersection between an edge and the polygon
is reduced to computing the intersection between the edge and the cube faces
because the edges of the polygon are included in the cube by construction (see,
e.g., Figure 2(a)).
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Initial image Noisy image TVL2 on UV Biased model (1) Model (15)

Fig. 6. The advantage of the coupled total variation (1) on the TVL2 model has been
shown in [13]. In this work, it is refined in a better colorfulness-preserving model.

Let us denote by TY (x) the transformation of the chrominance values x =
(U, V ) to the RGB space with the luminance value Y . From the expression of
the standard transformation from RGB to YUV, we have TY (x) = Y (1, 1, 1)t +
L(U, V ) with L a linear function. We have the following equalities:

TY (x+ ρy) = Y (1, 1, 1)t + L(x+ ρy)

= Y (1, 1, 1)t + L(x) + ρL(y)

= TY (x) + ρTY (y)− ρY (1, 1, 1)t. (16)

We want to compute ρ̃ such that TY (x+ ρ̃y) is at the boundary of the RGB
cube. To this aim, we compute the 6 different values ρ̃vc with c ∈ {R,G,B} and
v ∈ {0, 255} corresponding to the cases where the 3 coordinates of TY (x + ρ̃y)
are equals to 0 or 255. For instance, if the first coordinate R of TY (x + ρ̃y) is
equal to 255, we have:

TY (x+ ρ̃255R y)R = 255 (17)

TY (x)1 + ρ̃255R TY (y)R − ρ̃255R Y = 255. (18)

so that

ρ̃255R =
255− TY (x)R
TY (y)R − Y

. (19)

For each of the six values ρ̃vc computed as in Equation (19), we can com-

pute tvc =
ρ̃vc
ρ . The values tvc that are between 0 and 1 correspond to an inter-

section of the segment [x, x + ρy] with the boundaries of R. We finally take
t∗ = mintvc∈[0;1] t

v
c and the result of Equation (14) is given by t∗ρ.
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5 Numerical Results

In our experimental setting, the luminance channels of the initial image is pre-
served, while the chrominance channels are perturbed by a Gaussian noise with a
standard deviation equal to 30. Let us notice that the values of the noisy images
can be out of range, but our method is able to consider such issue.

Figure 5 shows comparisons between the minimization of the total variation
on UV chrominance channels, the original chrominance denoising model (1) and
its debiasing version (15). In general, the naive total variation on UV channels
not preserve colors. It produces halo effects as well as a loss of colourfulness. In
the first line, we can see that the red cloth of the Madonna is drab with Model (1),
in comparison with the original image due to the bias, whereas the debiasing
approach preserves the red color. Further results are presented in Figure 6. In
the first line, we can see in the center of the image that the flower becomes drab
with model (1), whereas it recovers its colourfulness with the debiasing one (see
zoom on the second line). In the Sphinx image, the color of the sand recovers its
colourfulness after debiasing.

The PSNR is a quantitative indicator to measure the quality of a denoised
image. In Table 1, the PSNR of the different techniques proposed in Figures 5
and 6 are presented. These values show that the debiasing technique proposed in
Section 4.3 produces images with a better PSNR, which quantitatively confirms
the visual impression of Figure 5.

Table 1. Comparison of PSNR for techniques presented in Figures 5 and 6. This
quantitative comparison highlights the quality of the results provided by the debiasing.

Image TV on UV Model (1) Model (15)

Madonna 30.45 32.37 33.08
Ferrari 22.50 26.05 27.23

Purple flowers 20.88 23.29 24.81
Sphinx 26.36 32.95 33.51

6 Conclusion.

In this paper, we presented a model to denoise the chrominance channels of
color images. The original model being biased, it produces a loss of colourfulness.
By extending the CLEAR method of [6] to constrained denoising problems, we
have proposed a new debiasing strategy. The denoising results obtained with our
framework are promising, which is a relevant preliminary step for the application
to JPEG restoration.
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A Computation of the Chrominance Range

In this section, we describe the numerical computation of the vertices of the
polygon defined as the chrominance values of all the RGB colors which have a
particular luminance values (see, e.g., Figure 2). To this aim, the RGB coordi-
nates of the vertices are computed and then cast into the YUV space. In the
following the Algorithm which computes these RGB coordinates is described.

The computation of the vertices in the RGB space consists in intersecting
the edges of the RGB cube ([0, 255]3) and the affine plane of the RGB colors
with a particular luminance. The equation of this plane, for a luminance value
equal to y is given by:

PY (y) := {(R,G,B) such that 0.299R+ 0.587G+ 0.114B = y}. (20)

The cube having 12 edges, the resolution of 12 systems of linear equations
in 3 dimension is required. This system is composed of Equation (20) and two
additional equations describing the line in which the considered edge is included.

As an example, let us consider the intersection of the plane PY (150) of colors
with a luminance equal to 150 with the edge [(0, 0, 255), (0, 255, 255)]. This edge
is included into the line described by the equations R = 0 and B = 255. The
intersection of this line with the plane PY (150) implies the resolution of:150 = 0.299R+ 0.587G+ 0.114B

R = 0
B = 255.

(21)

The solution of this system is given by RGB = (0, 206, 255). This vector being
into the cube [0, 255]3, the solution is a vertex of the desired polygon. When the
vector is not into the cube, the solution is not a vertex of the polygon.

After computation of the vertices, the algorithm has to sort them in an order
such that they represent a convex polygon. For instance, in R2, (0, 0), (1, 0), (1, 1),
(0, 1), (0, 0) is a convex polygon, whereas (0, 0), (1, 0), (0, 1), (1, 1), (0, 0) is not.

To tackle this issue, we remark that, given a particular vertex, the next one
is a vertex with a common coordinate in RGB space because the polygon is
defined as the intersection of a plane and the RGB cube. To avoid problem of
equal points, we consider as the next vertex, the one with the most common

Algorithm 4 Algorithm sorting points in the order of a convex polygon.

Require: P1, . . . , Pn n vertices onto the edges of the RGB cube.
1: for i = 1 : n− 1 do
2: for k = i+ 1 : n do
3: δk ← number of common coordinates between Pi and Pk.
4: end for
5: k∗ ← argmaxk δk
6: Exchange Pi+1 and Pk∗

7: end for
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coordinates. Thus, given P1, . . . , Pn n vertices onto the edges of the RGB cube,
Algorithm 4 sorts them to produce a convex polygon.
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