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Abstract.

Kinetics and thermodynamics are largely discon-
nected in current theories because Arrhenius activation
energies (Ea) have strictly no influence on equilibrium
distributions. A first step towards the incorporation of
rate theories in thermodynamics was the identification
of the pre-exponential term of the Arrhenius equation
as an entropic quantity. The second step examined here
is the possible contribution of Ea in equilibrium land-
scapes. Interestingly, this possibility exists if envisioning
the energetic exponential term of rates constants as the
probability that the energy of the reactant is sufficient
for the transition. Under this assumption, the ener-
getic exponent of the equilibrium constant Kji takes the

form
(

1− Hi

Hj

)(
1 + Ea(i→j)

Hi

)
where H are the mean

enthalpies of the reactants. This alternative treatment
solves several inconsistencies, predicts that activation en-
ergies decrease with temperature, integrates activation
energies in the detailed balance and modifies equilibrium
relationships in heterogeneous systems, while letting un-
changed the Maxwell-Boltzmann distribution. These
probabilistic rate constants are then reintroduced in dy-
namic systems to provide them with the two distinct
facets of time: the time step and the time arrow.

Keywords: Kinetics; equilibrium; heat capacity; en-
thalpy; entropy; Gibbs free energy.

Notes to readers: The unitless statistical entropy usually
written H will be renamed here S to avoid confusion with
enthalpy. The letter C will be used for heat capacity but
not for concentration.

1 Introduction

Rate constants are the drivers of all dynamic systems
and are widely used in physical chemistry and model-
ing studies. By the energetic restrictions they impose
on chemical transitions, rate constants prevent our orga-
nized world from falling directly into its state of weaker
free energy and maximal entropy (which might look like
something like a mud puddle). Yet the profound nature

of these constants remains obscure and the main focus
of this study is to clarify their energetic component. Af-
ter multiple attempts of description, its most common
expression remains the exponential factor of Arrhenius
[1, 2]. In its classical version (without tunneling effects),
the empirical Arrhenius equation

k = A e
− Ea

kBT (1)

where kB is the Boltzmann constant and T is the temper-
ature, includes a so-called preexponential factor A, con-
taining the elementary vibrational frequency and config-
urational restrictions, and a unitless exponential function
containing an energetic barrier called activation energy
Ea. In the present paper, the exponential factor will be
reformulated as the probability to reach a threshold en-
ergy. This simple hypothesis will lead to major changes
in thermodynamic relationships.

Figure 1. Representation of the energetic barrier according

to the Arrhenius principle. The barrier is supposed to restrict

reaction kinetics but to have no influence on equilibrium ra-

tios. E‡ is a fixed energy threshold necessary for crossing the

barrier in both directions and H are the mean enthalpies of

reaction of the particles.

Using the notations of Fig.1, the Arrhenius approach
reads

kij = Aij e
−(E‡−Hi)/kBT (2a)
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and for the reverse reaction

kji = Aji e
−(E‡−Hj)/kBT (2b)

Note that the activation energy Ea of Eq.(1) corresponds
to the difference E‡−H, related to ∆G‡ in the activated
complex theory of Eyring [3]. In equilibrium the forward
and reverse fluxes equalize such that

ni kij = nj kji (2c)

giving

(
ni
nj

)
eq

= Kji =
kji
kij

=
Aji

Aij
e(E‡−Hi−E‡+Hj)/kBT

=
Aji

Aij
e−(Hi−Hj)/kBT =

Aji

Aij
e−∆H/kBT

(2d)

E‡ disappears. The equilibrium ratio is independent
of the energetic barrier and depends only on the differ-
ence of energy between the reactants. Despite their suc-
cess, these traditional relationships can be naively ques-
tioned.

2 Few concerns and alternative
proposal

2.1 On the universality of kBT as a mean
energy

1/kBT is introduced in statistical mechanics as a con-
stant called β corresponding to a Lagrangian multiplier
or a distribution parameter, and finally connected to
temperature by analogy with classical thermodynamics.
kBT is concretely useful to adimension the exponent of
the Arrhenius exponential and is usually interpreted as
the mean particle energy. This interpretation holds in
the kinetic theory of ideal gases but is much less clear for
complex chemical systems in which the mean reactional
energies are precisely different for each type of particle.

2.2 Insensitivity of dynamic equilibria to
activation energies

The accepted conclusion that the presence and the height
of energetic barriers do not participate to equilibrium ra-
tios between the reactants, can appear not completely
intuitive because one could expect that increasing the
height of the barrier amplifies the differential capacity of
the reactants to jump over, including in equilibrium. In
potential energy landscapes, the montains regulate the
populations but their crests are uninhabited unstable
states. By contrast in the transition state theory, the
activated complexes reside on the crests but their energy
level do not participate to the distributions.

2.3 A non-probabilistic exponential law

The exponential term of the Arrhenius law has cer-
tain apparences of a probability, but as explained in
the following section, as it stands it can not correspond
to the exponential distribution. The purpose of the
present study is precisely to examine the theoretical con-
sequences of the hypothesis that it is a probability of
sufficient energy for the transition. This simple hypoth-
esis leads to the novel formulas

P (sufficient energy) = e−
E‡
H = e−(1+

Ea
H ) (3a)

which gives the equilibrium relationship

ln

(
ni
nj

)
eq

= ln
Aji

Aij
+

(
1− Hi

Hj

)
E‡

Hi

= ln
Aji

Aij
+

(
1− Hi

Hj

)(
1 +

Ea

Hi

) (3b)

whose structure is completely different from the usual
result

ln

(
ni
nj

)
eq

= ln
Aji

Aij
+
Hj −Hi

kBT
=
Gj −Gi

kBT
(4)

In Eq.(4), the pre-exponential terms disappear from
the latter form containing the Gibbs free energies G.
This modification results from the identification of the
pre-exponential factor as an entropic parameter, which
can then be integrated in the Gibbs free energies. This
pertinent operation can also be applied to Eq.(3b). The
pre-exponential factor can be defined as A = τ−1Ω−1

where τ−1 is the universal thermal frequency (discussed
later), giving their time−1 unit to the rate constants, and
Ω−1 is the reciprocal of the number of possible configura-
tions of the reactant, one of which allowing the reaction
to proceed, as simply illustrated in Fig.2. As a conse-
quence, ln(Aji/Aij) can be identified, after cancellation
of the identical frequencies, as the difference of unitless
entropies

ln
Aji

Aij
= ln

Ωij

Ωji
= Sij − Sji

Note the inversion of the suffixes between the ratios
of A and Ω. Eq.(3b) contrasts with Eq.(4) in that it
introduces a role for activation energies in equilibrium
distributions. Large Ea do not inverse but accentuate
the extent of the ratios determined in both cases by the
relative energy levels.

2



Figure 2. Randomly moving pens and caps simply illustrate

the concept of reactional entropy. The set of their equiprob-

able relative arrangements (which would be much larger in

3D) is noted Ω, out of which only one, of probability 1/Ω,

allows the assembly of the caps and the pens, as shown at

the bottom right. Even when conveniently arranged, the pen

and the cap can stably associate only if the energy of their

collision is sufficient. This second condition is quantified from

0 to 1 in the energetic term of rate constants defined here.

3 A new probabilistic interpreta-
tion of the exponential factor

3.1 The exponential distribution

The exponential component of the Arrhenius law and of
the Boltzmann distribution, can be simultaneously de-
rived from the exponential distribution. The probability
that a particle from an homogeneous population with
an average number of energy quanta per particle 〈E〉,
reaches a fixed threshold number E‡, is

P (E > E‡) = e−
E‡
〈E〉 (5)

Since E‡ is a temperature-independent threshold and
〈E〉 is temperature dependent, temperature remains at
the denominator of the exponent, but the most impor-
tant difference with current rate equations is the absence
of kBT . kBT is generally considered as the mean sin-
gle particle energy, acceptable as a mean kinetic energy
for purely kinetic gases, but not for all heterogeneous
systems containing different kinds of energies. An other
problem even more critical with the Arrhenius equation
of Eq.(1), is that in absence of energetic barrier (Ea = 0),
the exponential is equal to 1, suggesting that reactions
are no longer energetically restricted but only affected
by the pre-exponential factor. In other words, the mean
particle energy kBT would be fully sufficient for all the

transitions. This result is clearly inconsistent with the
view of kBT as a mean energy because of a basic princi-
ple: the average particle energy in a homogeneous pop-
ulation is no way reached by all the particles. Indeed,
even when Ea = 0, that is to say when the barrier corre-
sponds to the mean particle energy, not all the particles
have a sufficient energy. In contrast in the present inter-
pretation, Ea = 0 (equivalent to E‡ = H in Fig.1 and to
E‡ = 〈E〉) predicts a probability of 1/e (0.37).

3.2 The rule for particle interconversion

The present approach also fundamentally differs from the
classical one in equilibrium. The relative populations of
interconvertible species are determined not only by the
difference of their mean energies, but also by the barri-
ers. Interconversion between particles of different nature
i and j is possible when either a particle i or a particle
j, has accumulated a minimal number of energy quanta,
denoted below by E‡i,j , which is the same for the con-
versions i → j and j → i. For a particle of type i,
the probability of this accumulation is simply given by

the exponential distribution P (Xi > E‡i,j) = e−E
‡
i,j/〈Ei〉

[4]. As the same holds for the particles of type j, when
〈Ei〉 > 〈Ej〉, the particles of type i would switch more
probably than the reverse. As a consequence, the system
spontaneously evolves until the reciprocal fluxes equalize.
The number of particles in the sub-populations i and j
necessarily adjust such that

ni Aij e
−E‡i,j/〈Ei〉 = nj Aji e

−E‡i,j/〈Ej〉 (6a)

or (
ni

nj

)
eq

=
Aji

Aij

e
E‡i,j

(
1

〈Ei〉
− 1

〈Ej〉

)
(6b)

Returning to the correspondence between the unitless
pre-exponential term and entropy, this equation takes the
elegant form

ln

(
ni
nj

)
eq

=

Entropic term︷ ︸︸ ︷
Sij − Sji +

Energetic term︷ ︸︸ ︷
E‡i,j

(
1

〈Ei〉
− 1

〈Ej〉

)
(7)

Eq.(7) can be written with the activation energy of

Arrhenius Ea(i→j) = E‡i,j − 〈Ei〉 as follows

ln

(
ni
nj

)
eq

= Sij − Sji +

(
1− 〈Ei〉
〈Ej〉

) E‡i,j
〈Ei〉

= Sij − Sji +

(
1− 〈Ei〉
〈Ej〉

)(
1 +

Ea
〈Ei〉

) (8)
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4 Reconnection of the energetic
parameter of rate constants to
Boltzmann’s energy distribu-
tion

4.1 Starting from the geometric distri-
bution

One of the main virtues of present proposal is it capacity
to unify kinetic and thermodynamic rules under the same
law, emerging from a simple discrete treatment. Mix E
white balls and N black balls, E and N being positive
integers, into a large bag and draw them at random. The
number of balls E between two balls N written E is sup-
posed to correspond to the number of energy quanta in
a particle, whose mean number is naturally 〈E〉 = E/N .
Simple probabilities say

P (E > E‡) =

(
E

E +N

)E‡
=

(
〈E〉

1 + 〈E〉

)E‡
(9a)

For E‡ and 〈E〉 large and of the same order of magnitude,
this discrete geometric distribution can be approximated
as the continuous exponential distribution.

P (E > E‡) = e−
E‡
〈E〉 (9b)

If we no longer reason in term of threshold but of
exact value, we have

P (E = E‡) =

(
E

E +N

)E‡ (
N

E +N

)
=

(
〈E〉

1 + 〈E〉

)E‡
1

1 + 〈E〉

(10a)

switching once again to the continuous distribution,

P (E = E‡) ∼ e−
E‡
〈E〉

(
1 + e−

1
〈E〉

)
=

e−E
‡/〈E〉∑∞

j=1 e−j/〈E〉

(10b)

which is, when taking 〈E〉 = kBT , exactly the Boltz-
mann probability law where the denominator can be un-
derstood as the sum of all possible microstates, called
the partition function. It was considered by Feynman as
the summit of statistical mechanics [5], but is recovered

in two lines from the exponential distribution. As a con-
sequence, the relative subpopulations of energies E1 and
E2 are given by the ratio of two Eq.(10b)

P(E=E1)

P(E=E2)
= e

E2−E1
〈E〉 (10c)

Note that the approximations used above are based
on the following property of the exponential function

lim
ε→0

(1 + ε x)
1/ε

= ex

which can also be written

lim
q→1

(1 + (1− q) x)
1/(1−q)

= ex

that is the q-exponential on which rate theories are also
built [6, 7].

4.2 Simplified Maxwell-Boltzmann dis-
tribution

When 〈E〉 corresponds to kBT if adding energy units,
the structure of Eq.(10b) corresponds exactly to that of
the celebrated Boltzmann’s energy distribution, which
itself simply becomes a particular case of thermal sys-
tem. The ideal monoatomic gas is the perfect example
of a system with a maximal entropy and whose individ-
ual components have an energy stritly proportional to
temperature. Inversely, most real systems have a cer-
tain degree of organization (non-maximal entropy) but
are made of molecular components with a certain de-
gree of entropy, which will be examined later. Let us
first deepen the analogies between the exponential dis-
tribution and Maxwell-Boltzmann results. The particles
which have an energy content Ei constitute a fraction of
the system ni/N and bring together in the system a frac-
tion of energy P (Ei) Ei. The most represented particles
are, according to the exponential as well as Boltzmann
distributions, the low energy particles, which poorly con-
tribute to the total energy of the system, thus generat-
ing a peak in the energy density curve at the level of
the largest product Ei d(Ei), where d(Ei) is the density
function of the exponential distribution

d(Ei) =
1

〈E〉
e

Ei
〈E〉

The normalized expression of Ei d(Ei) is the density
of the Γ2 function

D(E) = γ2(E) =
E
〈E〉2

e−
E
〈E〉 (11)

whose shape is shown in the middle panel of Fig.4.
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Figure 4. Fractional densities: of the energetic states of

particles (D(p), top panel), of energy (D(E), middle panel),

and of velocities (D(v), bottom panel). Curves drawn with

arbitrary units and a mass of 1 unit. The fractions of par-

ticles with energy higher than E‡ correspond to the colored

surfaces in the top panel. They are expected to increase

with 〈E〉, itself increasing with temperature. This traditional

interpretation of the role of temperature on rate constants

supposes that particle energies increase with temperature,

contrary to Gibbs free energies. This scheme does not hold

for the activated complex theory in which the threshold en-

ergy is not fixed, but is itself temperature-dependent.

For a monoatomic ideal gas, the energy content of a
particle is exclusively translational. When substituting
Ei = 1

2mv
2
i , Ei d(Ei) becomes

Ei d(Ei) =
mv2

i

2 〈E〉
e−

mv2
i

2〈E〉

whose integration between 0 < v < ∞ is
√
π 〈E〉 /8m.

Multiplying the equation by the inverse of this value di-

rectly yields the normalized velocity density function.

D(v) =
(
2

π

)1/2(
m

〈E〉

)3/2

v2 e−
mv2

2〈E〉 (12)

which gives the nice bell-shaped curves shown in the bot-
tom panel of Fig.4, with a mode at

vmp =

√
2 〈E〉
m

Therefore, we verify that the most probable values of
energy and velocity (tips of the curves of the middle
and bottom panels of Fig.4 respectively), naturally co-
incide through Emp = 1

2mv
2
mp. The mean velocity value∫∞

0
vD(v)dv is

〈v〉 =

√
8 〈E〉
πm

When substituting 〈E〉 = kBT , Eq.(12) is the
Maxwell velocity distribution.
Let us now consider more elaborate systems with differ-
ent types of particles and energies.

5 Comparative influences of tem-
perature in the different treat-
ments

5.1 Influence of temperature on rate
constants

If the mean reactional energies are proportional to tem-
perature (H = CT ), the traditional shape of the Ar-
rhenius plot is obtained with the present treatment, but
through a different way. Increasing the temperature in-
creases the thermal energy stored in the particles and
responsible for their reactional capacity, thus reducing
the activation energy Ea = E‡ − H. By contrast using
the conventional formula of Eq.(1), Ea is the constant
steering coefficient of the Arrhenius plot [8] and the ef-
fect of temperature comes only from the entity kBT ,
in contradiction with the frequently noticed dependence
on temperature of Ea [9, 10]. It would be preferable
in practice to use the fixed thresholds E‡ instead of the
traditional activation energies which are different for the
two interconvertible reactants and depend on tempera-
ture.
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5.2 Influence of temperature in equilib-
rium

5.2.1 Where is the temperature in the different
equations?

Equilibrium constants are assumed to vary with temper-
ature according to the equation derived from the van’t
Hoff relationship.

lnKji =
Gj −Gi

kBT
(13)

Writing ∆G = ∆H − T∆S in this equation and sup-
posing that H and S are temperature-independent, has
the practical advantage to yield the expected van’t Hoff
plots linearly dependent of 1/T . In the present treat-
ment, the equilibrium constant remains a function of the
energies, which can be considered discretely as a number
of quanta in Eq.(7), or translated into classical energies
(joules or calories) as follows. Using an energy threshold
E‡ and a mean enthalpy H for a reactant or a group of
reactants according to the Hess’s law,

lnKji =
Sij − Sji

kB
+ E‡

(
1

Hi
− 1

Hj

)
(14a)

or, using the activation energy Ea,

lnKji =
Sij − Sji

kB
+

(
1− Hi

Hj

)(
1 +

Ea(i→ j)

Hi

)
(14b)

Temperature is not apparent in this equation but
hidden in the variables. The relative temperature-
dependence of the enthalpies regulate the equilibrium,
as schematized in Fig.3. In Fig.3A, the enthalpies of the
reactants are shown to increase in the same proportion
with temperature, but note that in fact, the temperature-
dependence of the traditional van’t Hoff plot would still
be obtained even if these enthalpies remain constant, in
complete opposition to the other traditional explanation
that the effect of temperature on the reactions is due to
an increase in the mean energy of the particles.

Figure 3. Comparative interpretation of the role of temper-

ature in van’t Hoff plots. (A) In the classical interpretation,

the two reactants are assumed to have identical heat capac-

ities. (B) In the present interpretation, temperature affects

in a different manner the reactivity of both reactants because

of their different heat capacities. As a consequence, ∆H

depends on temperature.

5.2.2 The kinetic formalism using Gibbs free en-
ergies is misleading

Temperature is intuitively expected to increase the re-
action rates by increasing the energy of the reactants,
but the kinetic treatments using free energies say the op-
posite. G always decreases with temperature, thereby
increasing the difference E‡ − G and raising the height
of the barrier. Using the so-called enthalpies of reac-
tion H instead of Gibbs free energies, allows to circum-
vent this contradiction, but if H is indeed proportional
to temperature in certain ranges of temperature, it no
longer corresponds to G used in equilibrium. The energy
landscape of Arrhenius is governed by enthalpies whereas
thermodynamic landscapes include entropies. In this re-
spect, the activated complex theory [3, 11] may introduce
some confusion since it describes the kinetic barrier in
term of difference of Gibbs free energies. In this theory,
the tip of the barrier is not a temperature-independent
threshold but the energy of an activated complex that
itself depends on temperature, so that the temperature-
dependence of the height of the barrier ∆G‡ results from
the relative dependences on temperature of the reactant
(G) and of the activated complex (G‡). The activated
complex is an atypical structure stably standing in a crest
of the energetic landscape and with the strange property,
when it is reached, to only evolve in the direction of the
complete transition but can not turn back. Moreover,
the forbidden transition is not the same depending to
the starting reactant [4].
In the kinetic theory, temperature is the macroscopic
manifestation of microscopic motions, that is re-scaled
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at the microscopic level through the Boltzmann con-
stant, so that kBT is an average index of single par-
ticle motion. But temperature is also present in the
Gibbs free energy, not only in its most frequent ex-
pression G = H − TS, but also because H and S
are themselves temperature-dependent [12, 13]. Raising
temperature from T1 to T2 (> T1) increases enthalpy
by H(T2) − H(T1) = CP (T2 − T1) and entropy by
S(T2) − S(T1) = CP ln(T2/T1), where CP is the heat
capacity at constant pressure.

5.3 Reintroducing temperature in reac-
tional energies

5.3.1 Increasing temperature favors reactions

Using the energy quanta approach, the dependence on
temperature is conferred by the ratio E‡ (temperature-
independent) over 〈E〉 (temperature-dependent). This is
in fact less clear for the traditional Eq.(13) where both
the numerator and the denominator are temperature-
dependent. Reactions are facilitated when the energy of
the reactants is higher. Possibly because this reasoning is
contradicted for Gibbs free energies which decrease with
temperature, teachers prefer drawing the Maxwell veloc-
ity distribution to show that increasing the temperature
increases the fractional population over the activation
energy threshold. This view can be recovered without
returning to the ideal gas, using the partial integration
of the exponential distribution density, as illustrated by
the colored surfaces in the top panel of Fig.4.

P (E > E‡) =

∫ ∞
E‡

1

〈E〉
e−

E
〈E〉 dE = e−

E‡
〈E〉

One recovers the energetic form of rate constants pro-
posed here. This rational explanation of a role of temper-
ature mediated by particle energies, corresponds exactly
to the present model. On the one hand, it can be un-
derstood for enthalpies but not for Gibbs free energies,
but on the other hand, even when using enthalpies, the
current and present approaches strikingly differ.

5.3.2 Temperature increases the reactional en-
ergy of the particles

The dimensionless exponents of the two competing struc-
tures of rate constants compared here, contain ener-
gies in the numerator and denominator, but beyond this
common property, the principles are different. In the
usual form, the exponent is H/kBT , whereas in the
present one, it is E‡/H. In the former ratio, the nu-
merator and the denominator both depend on temper-
ature, whereas in the latter one, only the denominator
is temperature-dependent. Thermal energy increases the
speed of molecules, important for the reactional efficacy

of collisions, but more generally the heat capacity of
macromolecules describes how much energy can be stored
by a molecule in its internal vibrations or rotations,
which are often the triggering factors of chemical trans-
formations, particularly for biological macromolecules
whose heat capacity is clearly not negligible. The heat
capacity of a monoatomic gas (used in the explanation
using Maxwell velocities) is purely translational, but that
of more complex particles include the other forms of en-
ergy. In the new exponent proposed here, the denomina-
tor represents the temperature-dependent reactional en-
ergy conceived in all its forms: translational, rotational
and vibrational. Since all these forms define the macro-
scopic notion of temperature, the reactional propensity is
naturally expected to follow temperature. This property
precisely characterizes enthalpy, which obeys the long es-
tablished thermodynamic relation(

∂H

∂T

)
P

= m CP

whose integration with the postulated initial value H = 0
at T = 0 simply gives H ∝ CT . The variation of en-
thalpies with temperature is in fact less simple. It is
calculated using Kirchhoff’s law in term of a reference
state different from T = 0 [14]. In addition, when tem-
perature is far from 298 K, the temperature-dependence
of CP should be introduced using empirical expressions
found in tables like CP = α+βT+γT−2+... In fact, abso-
lute enthalpies cannot be determined experimentally and
only differences of enthalpy can be measured by calorime-
try. Hence in the following equations intended to show
dependences on temperature, the simple proportionality
between H and T will be retained as a gross approxima-
tion.
For a reaction, the well established relation d∆H =
m ∆CP dt gives, upon differentiation of lnK =
−∆H/kBT ,

∂ lnK

∂T
= − 1

kBT

∂∆H

∂T
−∆H

kB

∂(1/T )

∂T
= −∆CP

kBT
+

∆CP

kBT
= 0

which shows that the temperature-dependence of
van’t Hoff is lost. By contrast, introducing this definition
of enthalpy in Eq.(7) gives

lnKji ∼
Sij − Sji

kB
+
E‡i,j
T

(
1

Ci
− 1

Cj

)
(15)

Where Ci and Cj are the average heat capacities of
the interconvertible reactants weighted by the stoichio-
metric coefficients. Strikingly, Eq.(15) is expected to
yield typical van’t Hoff plots. It also shows that at very
high temperature, the equilibrium constant becomes es-
sentially a matter of entropy, as expected.
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5.4 Reinterpretation of experimental
plots

Considering the exponential term of rate constants as
a probability implies profound conceptual changes but
moderate apparent changes in practice, which just im-
poses to reinterprete the experimental plots.

5.4.1 With temperature-independent entropies

At least the slopes of the Arrhenius and van’t Hoff plots
should be reinterpreted under the new view of rate con-
stants, as schematized in Fig.5. The most striking dif-
ference is that in the classical interpretation of the van’t
Hoff plot, the temperature-dependence of enthalpies is
denied, whereas the present probabilistic model is fun-
damentally based on calorimetric enthalpies. The en-
thalpies of some mineral substances, solid and liquid,
were indeed shown approximately independent of tem-
perature up to 200 degrees, but this behaviour is likely to
not hold for all reactional moieties like biological macro-
molecules in solution.

Figure 5. Comparative interpretations of the Arrhenius

and van’t Hoff plots between the classical and the present

treatments of the energetic exponential. The meaning of the

entropy intersect (supposed temperature-independent in this

version) is unchanged but that of the slopes is completely

different.

The equilibrium and kinetic relationships of the two
approaches are compared below.

Equilibrium constants

• In the classical treatment where both enthalpies
and entropies are temperature-independent,

∂ lnKij

∂T
= (Hj −Hi)

1

kB

1

T 2

and in the new treatment using calorimetric en-
thalpies,

• ∂ lnKij

∂T
= (Cj − Ci)

E‡i,j
CjCi

1

T 2

The difference of heat capacity between the reactants is
accentuated by the energetic threshold, but alleviated
by temperature, in accordance with the principle of Le
Chatelier.

Kinetic constants

• The classical Arrhenius form, with temperature-
independent activation energies, gives

∂ ln kij
∂T

=
Ea(i→ j)

kB

1

T 2

and the present form based on the enthalpy of
the reactant gives

• ∂ ln kij
∂T

=
E‡i,j
Ci

1

T 2

The energy threshold of the new treatment can be
deduced from values of Ea measured classically, through
E‡ij = Ci Ea(i→ j)/kB .

5.4.2 With temperature-dependent entropies

In fact, entropies and enthalpies both depend on temper-
ature according to the basic thermodynamic differentials

∂S(T )

∂T
=
Cp

T

∂H(T )

∂T
= Cp

with the following consequences on equilibrium and ki-
netic constants.

Equilibrium constants

• The differentiation of the classical equilibrium re-
lation gives

∂ lnKij(T )

∂T
=
Cj − Ci

kBT
(16a)
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which is not the van’t Hoff formula and gives the
temperature-dependence function

lnKij =
Cj − Ci

kB
lnT + c (16b)

• For the present treatment,

∂ lnKij(T )

∂T
= (Cj − Ci)

(
1

kBT
+

E‡i,j
CiCjT 2

)
(17a)

giving the temperature-dependence shape

lnKij = (Cj − Ci)

(
lnT

kB
−

E‡i,j
CiCjT

)
+ c (17b)

Kinetic constants

• When ignoring the entropic meaning of the pre-
exponential factor in the Arrhenius law,

ln kij = lnAij −
Ea

kBT
(18a)

and
∂ ln kij(T )

∂T
=
Ea

kB

1

T 2
(18b)

• For the present treatment,

ln kij = lnAij −
E‡i,j
Hi

(19a)

interpreted as

ln kij = − ln τ − Sij

kB
−
E‡i,j
Hi

(19b)

which becomes, when differentiated with respect
to temperature,

∂ ln kij(T )

∂T
= − Ci

kBT
+
E‡i,j
Ci

1

T 2
(19c)

giving a function of temperature of the form

ln kij =
Ci

kB
ln

1

T
−
E‡i,j
Ci

1

T
+ c (19d)

As explained previously, the dependence on tempera-
ture of enthalpies should be further refined in these very
approximate equations, using Kirchhoff’s law, setting the
standard values H0 at T = 298K, and taking into ac-
count the dependence on temperature of heat capacities.
Moreover, certain ranges of temperature should not be
considered in case of phase transition or of inactivation
of certain reactants. For example, most proteins are de-
natured over 320 K.

5.4.3 Deviations from the expected plots

Experimental Arrhenius plots are rarely the straight lines
expected from the Arrhenius equation [ln k = lnA −
Ea

R
1
T ], but can have convex or concave shapes, explained

by tunneling effects and other hypotheses [9, 15, 16].
In addition, the intersect with the vertical axis is more
guessed than actually existing. Deviations are also the
rule for the so-called van’t Hoff plots in equilibrium.
Moreover, the two types of enthalpy: (i) calorimetric and
(ii) determined from the analysis of experimental plots
using the currently admitted functions, are always differ-
ent [12, 13]. Reintroducing the temperature-dependence
of enthalpies and entropies may account for certain devi-
ations [17, 18]. In fact, a difference of enthalpy between
the interconvertible reactants is synonymous to a heat of
reaction, that itself reflects a difference of heat capacity.

5.5 Extension of the detailed balance to
activation energies

To the properties of the hypothetic rate constants listed
above, is added a complication to satisfy the detailed bal-
ance rule linking the different rates constants of a system.
The traditional form of the energetic exponential obvi-
ously complies with this rule since the total difference
of energy of a global reaction made of several elementary
steps is simply the sum of energy gaps of these steps, with
the automatic cancellation of activation energies, as illus-
trated in Eq.(2d). Things are less simple with the new
form since the activation energies should now take part to
the detailed balance relationship. Consider for example
a triangular circuit. The compounds a and b can inter-
convert either directly, with an activation threshold E‡a,b,
or indirectly through an intermediate c. Assuming that
the reactional enthalpy and entropy of every reactant is
the same for all its transformations, writing E‡a,c the ac-

tivation threshold between a and c, and E‡c,b between c
and b, the detailed balance relation

kab kbc kca
kba kcb kac

= 1 (20a)

implies for the energies

E‡a,c − E
‡
a,b

Ha
+
E‡a,b − E

‡
b,c

Hb
+
E‡b,c − E‡a,c

Hc
= 0 (20b)

generalizable for all the cycles of the system, with any
number of components n

n∑
i=1

E‡i,i−1 − E
‡
i,i+1

Hi
= 0 with E‡1,0 = E‡n,n+1 = E‡1,n

(20c)
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These elegant relationships with circular permuta-
tions are mutually compatible for all the cycles of a retic-
ulated system. In this new treatment, the activation en-
ergies are now envisioned as integral components of the
system, whereas in the classical theory they were extra-
parameters whose values can be arbitrary.

6 Rebuilding discrete thermody-
namics

Matter was discretized in the visionary theory of Boltz-
mann and the same was extended to energy by Planck
[19]. Since handling energy as a number of quanta fa-
cilitates the formulation of basic equations, let us ap-
ply again this recipe to the rudiments of thermodynam-
ics and then reintroduce the new kinetic rules proposed
above. Two types of systems will be examined, homo-
geneous and heterogeneous, but always made of compo-
nents whose energy is proportional to temperature, like
ideal gases. For the heterogeneous system, these particles
will be simply assumed to have different heat capacities.
The concept of entropy long proved fruitful to begin sta-
tistical physics.

6.1 Index of uncertainty for a population

Two criteria are sufficient for defining this index equiva-
lent to entropy. It should be: (i) a function of the number
of possible configurations (microstates) of the system’s
components and (ii) additive for uncorrelated systems.
(i) The number of different possible configurations (writ-
ten Ω) of a macroscopic system are invisible and def-
initely not measurable in practice, but the number of
these theoretical ”snapshots” can be deduced statisti-
cally. It reflects the uncertainty of the system, a no-
tion closely related to missing information and disorga-
nization. For example, a book is an organized object in
which the page 189 is located between the pages 187 and
191 with a good degree of confidence, but if the pages
are torn and thrown down, this probability strongly de-
creases because the number of possible arrangements of
the pages increases.
(ii) The other requirement for an index of disorganiza-
tion is its additivity for independent systems. This can
also be easily conceived: For each microstate of a sys-
tem 1, all the states of a system 2 are possible, so the
total number of states of the global system 1 + 2 is the
product Ω1Ω2. Obviously the function satisfying

f(Ω1Ω2) = f(Ω1) + f(Ω2) (21)

is the logarithmic function (ln Ω). We will also define a

single particle average index S =
1

N
ln Ω. Concretely,

the total number of configurations of a system made of
N noninteracting components falling into r categories is

Ω =
N !

n1!n2! . . . nr!
(22)

Using the Stirling approximation x! ∼ xx e−x
√

2πx
[20] of which a rough approximation is x! ∼ xx,

Ω ∼ NN

nn1
1 nn2

2 . . . nnr
r

=
[(n1

N

)n1
(n2

N

)n2

. . .
(nr
N

)nr
]−1

(23)

so that

ln Ω = −
r∑

i=1

ln
(ni
N

)ni

(24)

giving a single particle average index of

S = − 1

N

r∑
i=1

ni ln
(ni
N

)
= −

r∑
i=1

pi ln pi (25)

with pi = ni/N and
∑

i ni = N . With respect to these
definitions, the so-called Boltzmann entropy (SB) and
Gibbs/Shannon entropy (SG) are not equivalent, but re-
lated through SG = SB/N . SG/kB corresponds to S
whereas SB/kB corresponds to NS.

But for deriving a pure theory, using an approxima-
tion, as acceptable as it can be, is not satifactory. To by-
pass the need for the Stirling approximation, it is of some
interest to reconsider Eq.(23), which could simply mean
that every fractional state ni/N is occupied ni times so
that Ω is simply the reciprocal of the probability of oc-
cupancy. Based on the same principle, another equation
can be designed by supposing that the system can evolve.

6.2 Evolving system

In a first-order network, r particle states obey a lin-
ear evolution system, which has a unique stable solution
written neqi . A new state function allows to describe the

occupation of the equilibrium proportions

(
neqi
N

)ni

:

U = − 1

N

r∑
i=1

ni ln

(
neqi
N

)
(26)

U is an index of the mean gap between the current
and the equilibrium distributions. This gap can incite
the system to evolve, provided it is higher than its de-
gree of disorganization U > S. The difference F = U −S
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is

F =
1

N

(
−

r∑
i=1

ni ln

(
neqi
N

)
+

r∑
i=1

ni ln
(ni
N

))

=
1

N

r∑
i=1

ni ln

(
ni
neqi

) (27)

F will prove particularly interesting upon derivation.

6.2.1 Introducing time

To concretize the notion of system evolution and of inter-
changeability between single particle states, one should
introduce a temporal ingredient, in the form of rate con-
stants k examined previously of unit time−1. As these
rates depend on the temperature, the system will be con-
sidered closed but not isolated and embedded in a ther-
mal bath (NVT ensemble). As the different states can be
interchanged two by two, a simple two-state system can
be used to derive the proportions of particles in states A
and B (or for a single particle, the probability to be at a
given moment in state A or B. Let us first derive S.

dS
dt

= − (PA lnPA + PB lnPB)
′

= (PAkAB − PBkBA)(1 + lnPA)

+ (PBkBA − PAkAB)(1 + lnPB)

= (PAkAB − PBkBA) ln

(
PA

PB

) (28a)

which can be generalized to the r nodes

S ′ =
1

N

∑
i,j

(nikij − njkji) ln

(
ni
nj

)
(28b)

Eq.(28) is not particularly illuminating because it can
be either positive or negative. S decreases when ni/nj >
kji/kij and increases when ni/nj < kji/kij . But things
become more interesting when deriving F . Taking neq

as constants,

dF
dt

=
1

N

∑
i,j

(nikij − njkji) ln

(
nikij
njkji

)
(29a)

or, written in term of flux (J = nk),

dF
dt

=
1

N

∑
i,j

(Jij − Jji) ln

(
Jij
Jji

)
(29b)

Contrary to Eq.(28), Eq.(29) can be only zero or neg-
ative. For this reason, it remarkably illustrates the free

energy dissipation and can naturally be identified with
the arrow of time [21, 22, 23]. The discrete statistical
functions described above can be reconnected to tradi-
tional thermodynamics by identifying kBTF with the
Gibbs free energy of the system, kBTU with the inter-
nal energy and kBS with the entropy. An increase of
entropy (towards equipartition) logically decreases free
energy and the possibility to extract some work. Further
extensions of this discrete approach to thermodynamics
are described in [24, 25]. Now let us look at Eq.(29a)
which has the particularity to bring together the two dif-
ferent aspects of time.

6.2.2 Time’s arrow and time steps

The arrow of time envisioned as the dissipation of free
energy described in Eq.(29) has a clear thermodynamic
origin out of equilibrium, but even in full equilibrium
conditions, the rates constants keep their time units and
the particles continue to move as long as temperature is
nonzero. This sort of time, completely reversible con-
trary to the time’s arrow, corresponds to the elemen-
tary time steps related to another field of physics: quan-
tum physics. Statistical and quantum physics are inti-
mately and necessarily related because enumerating con-
figurations would be infinite in continuous space and
time. Accordingly, the quantum of time can be defined
as the time necessary to cross the length unit below
which successive configurations cannot be distinguished,
because of the uncertainty principle. This value can
be obtained in multiple ways including in the context
of the Maxwell-Boltzmann system. For a single par-
ticle, the length unit is the thermal wavelength of de
Broglie λ = h/p = h/

√
2πmkBT and the mean velocity

is 〈v〉 =
√

8kBT/πm [26]. The ratio gives the minimal
time step

τ =
λ

〈v〉
=

h

4kBT
≈ 4× 10−14 s at T = 300 K (30)

that is close to the reciprocal of the vibrational fre-
quency kBT/h considered by Eyring as the most remark-
able achievement of his theory [27], and which was al-
ready present in the equation of Herzfeld [28]. The tem-
poral unit of the rate constants is τ−1, weighted by unit-
less quantitative terms including the probability of suffi-
cient energy.
The arrow of time is a source of endless debates, par-
ticularly interesting when applied to the universe taken
as a whole. The free energy of a closed system should
necessarily diminish within the limits of residual fluctu-
ations. Then, whence comes the initial free energy of
our universe which does not seem very organized in its
youth? Did previously latent forces release free energy
during the physico-chemical maturation of the universe?
or do we live in a local fluctuation in a giant universe in
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equilibrium, according to an elegant but contested pro-
posal by Boltzmann [29]. These exciting questions are
beyond the scope of this study.

6.3 Introducing discrete energy

In addition to their temporal parameter, the rate con-
stants include a hidden energy parameter, that can also
be envisioned discretely. Instead of distributing particles
into ”energy levels”, energy units are distributed over
particles. Perhaps influenced by what Boltzmann said
him in 1891: ”I see no reason why energy shouldn’t also
be regarded as divided atomically”, Planck proposed in
the founder article which opened the way to quantum
physics [19], to discretize energy into quanta of value hν,
written more generally q below.

6.3.1 Homogeneous system

The mean energy of thermal systems can be recovered in
a discrete manner from the second law. Returning to the
white balls supposed to correspond to energy quanta in
Section.4, the number of ways to distribute E objects in
N boxes is

Ω =
(N + E − 1)!

(N − 1)! E!
(31)

which gives, using the Stirling approximation, a single
particle average entropy of

S =
1

N
ln Ω =

(
1 +

E

N

)
ln

(
1 +

E

N

)
− E

N
ln

(
E

N

)
(32a)

When the system contains a single category of parti-
cles, the ratio E/N is equivalent to the mean number of
energy quanta per particle U/q [19].

S =
S

kB
=

(
1 +

U

q

)
ln

(
1 +

U

q

)
− U

q
ln

(
U

q

)
(32b)

Temperature can now be introduced using the funda-
mental entropy equation.

dS

dU
=

1

T
(33)

according to which integration of Eq.(32b) yields

kB
q

ln
(

1 +
q

U

)
=

1

T
(34a)

and

〈E〉 =
U

q
= 〈E〉 =

1

eq/kBT − 1
(34b)

The reasoning can be circular in statistical thermo-
dynamics and these results can also be recovered in a
reverse way starting from the partition function, as did
Einstein [30]. The ratio of Planck (q = hν) over Boltz-
mann entities, turns to be the logarithm of the inverse
proportion of energy quanta in the mixture.

hν

kBT
= − ln

E

N + E
= ln

(
1 +

1

〈E〉

)
(35)

At the thermal scale, q is negligible compared to kBT
and the expansion of Eq.(34b) gives a mean number
(unitless) of energy quanta

〈E〉 ∼ kBT

q
(36a)

and a mean energy (joules) per particle of

〈E〉 q = U ∼ kBT (36b)

6.3.2 Heterogeneous system

When the system is composite and made of r different
categories of particles which have different mean energies
〈Ei〉, we have to fill r boxes with N =

∑
i ni particles and

E =
∑

i ni 〈Ei〉 energy quanta

Ω =

r∏
i=1

(ni + Ei − 1)!

(ni − 1)! Ei!
(37)

giving, for large populations and using the Stirling
approximation, an entropy of

ln Ω =
r∑

i=1

ni

[(
1 +

Ei

ni

)
ln

(
1 +

Ei

ni

)
− Ei

ni
ln

(
Ei

ni

)]
(38)

Keeping N and E constant, this entropy is lower than
that of an homogeneous system, showing that the cate-
gorization of objects is a first step towards organization.
As the derivative of a sum is the sum of the derivatives,

〈Ei〉 =
Ei

ni
=

1

eqi/kBT − 1
(39)

First-order particle interconversion

To render this heterogeneous system dynamic, one should
introduce the possibility of interconversion between the
particles of the different kinds in the form of rate con-
stants. The rule for particle interconversion has been
established in Eq.(7) using the exponential law. For uni-
molecular transconversions which do not modify the total
number of particles, let us abandon the ratios of pre-
exponential factors. The single particle energy averaged
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over the r(r− 1)/2 couples of categories in the system is

〈Em〉 =
E

N
=

∑
i

∑
j 6=i 〈Ei〉 e

−
E‡
i,j

〈Ei〉

∑
i

∑
j 6=i e

−
E‡
i,j

〈Ei〉

(40)

in which the inexisting interchanges are characterized
by E‡i,j =∞. One can define the enthalpic transition rate
constants introduced in the flux system

kij = τ−1e−E
‡
i,j/〈Ei〉 (41a)

kji = τ−1e−E
‡
i,j/〈Ej〉 (41b)

where τ is the time step and 〈Ei〉 is the mean energy
of the particles of type i, both depending on tempera-
ture through Eq.(30) and Eq.(39) respectively. The dis-
sipation/time’s arrow now depends on the relative values
between populations and energies according to

dF
dt

=
1

Nτ

∑
i,j

[
nie
−

E‡
i,j

〈Ei〉 − nje
−

E‡
i,j

〈Ej〉

]
[
ln

(
ni
nj

)
− E‡i,j

(
1

〈Ei〉
− 1

〈Ej〉

)] (42)

For two categories n1 and n2, the relationships linking
energy and particle numbers are

n1

N
=

(
1 + eE

‡
1,2

(
1

〈E1〉−
1

〈E2〉

))−1

(43a)

n2

N
=

(
1 + eE

‡
1,2

(
1

〈E2〉−
1

〈E1〉

))−1

(43b)

E1

E2

=
〈E1〉
〈E2〉

e
E‡1,2

(
1
〈E1〉
− 1
〈E2〉

)
(43c)

and the mean particle energy in the system is

〈Em〉 =
〈E1〉 e−

E‡
1,2

〈E1〉 + 〈E2〉 e−
E‡
1,2

〈E2〉

e−
E‡
1,2

〈E1〉 + e−
E‡
1,2

〈E2〉

(43d)

Circular equilibria

Only three categories of particles are sufficient to estab-
lish the famous detailed balance relationship of Wegschei-
der linking the constants of a cycle [31]. The relation

n1

n2

n2

n3

n3

n1
= 1 (44a)

is obviously always true, in particular at equilibrium, so
the constants are necessarily related through

k12

k21

k23

k32

k31

k13
= 1 (44b)

The activation energies, which were completely arbi-
trary in previous theories, are now mutually connected
through

E‡1,3 − E
‡
1,2

〈E1〉
+
E‡1,2 − E

‡
2,3

〈E2〉
+
E‡2,3 − E

‡
1,3

〈E3〉
= 0 (45)

Circular equilibria are particularly relevant with re-
spect to catalysts. Contrary to the widespread repre-
sentation of catalysis as a deformation of the energy
landscape along the coordinates of a single transition,
it should rather be envisioned as a circuit, at least trian-
gular and letting unchanged the uncatalysed single step
reaction.

6.3.3 Possible source of confusion for modeling
the relationships between fractional popu-
lations and energy

The enthalpic particles of the toy systems described
above are sufficient to visualize the important differences
of representation of the degree of formulation of particles,
depending on whether they belong to the same category
or not. For a single type of particle n1 of mean energy
〈E1〉, the concentration ratio of particles with energies Ea
and Eb follows the familiar ratio

n1(a)/n1(b) = e
Ea−Eb
〈E1〉 (46)

whereas interchangeable particles of different cate-
gories with different mean energies 〈E1〉 and 〈E2〉, are
related through

n1/n2 = e
E‡1,2

(
1
〈E1〉
− 1
〈E2〉

)
(47)

Eq.(46) is valid only for a single phase in the pio-
neer kinetic theory, because 〈E〉 = kBT is not general-
izable to any system. The next (hard) task will be to
implement these rules defined for first order networks to
second order and entropic open systems in steady state,
like biochemical systems, for modeling the fundamental
ingredients of life: nonlinearity, retroactions and multi-
stability.
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7 Conclusions

The present probabilistic treatment based on the ex-
ponential distribution does not invalidate the Maxwell-
Boltzmann distribution, but encompasses it as a par-
ticular case of homogeneous system with temperature-
dependent particle energies. Hence, there is no reason
to not extend this approach to the energy-dependence
of transitions, because rates constants are integral con-
stituents of dynamic systems. The central and original
assumption of statistical physics was the modeling of ran-
domness, but randomness is precisely described in the
most fundamental way by the exponential law. In fact,
the equations of Arrhenius and Boltzmann are two facets
of the same law of randomness, unified in the present
theory. This is perfectly illustrated by Eqs.(9) and (10)
respectively: the first one is the probability that E > E‡
and the second one that E = E‡.
The relationships established here are simply derived
from the single postulate that the exponential term of
rate constants has the status of a probability, in line with
the profoundly probabilistic spirit of Boltzmann’s theory
and with the intuition of Maxwell: ”The true logic of this
world is in the calculus of probabilities”. In this respect,
the rate constants defined here are entirely probabilistic

k = τ−1 × P (configuration is OK)× P (energy is OK)

which simply says that the frequency of a transforma-
tion follows the probability of favorable conjunctions of
configurational and energetic conditions, which is

k = τ−1 × 1

Ω
× e−E

‡/〈E〉

leading to the equilibrium relationship

lnKji = Sij − Sji + E‡i,j
(

1

〈Ei〉
− 1

〈Ej〉

)
where the temperature-dependence is mediated by the
variables. The mean reactional energy 〈E〉 can logically
be identified with enthalpy. If the starting probabilis-
tic postulate is wrong, the present study would remain a
theoretical exercise, but its validity seems however sup-
ported by (i) the mathematical rational of the exponen-
tial distribution, (ii) its capacity to recover the Boltz-
mann distribution and to unify kinetics and thermody-
namics and (iii) the restoration of the link between the
reactional propensity and the heat capacity, which was
ignored in the interpretation of the slope of van’t Hoff
plots as ∆H/kb. In the current formulas, the enthalpies
are not responsible for the dependence on temperature
that is due only to the division of enthalpies by kBT .
By contrast, it is proposed here that enthalpies medi-
ate the dependence on temperature. Strangely, the same
view is assumed in courses of kinetics, in which the de-
pendence on temperature is explained using populational

energy distributions without realizing that this explana-
tion contradicts the general formula where the enthalpies
are at the numerator of the exponent. But although pro-
foundly restructured, the thermodynamic relationships
derived from this approach yield resembling behaviours,
so that the comparison between the previous and new
treatments is more a question of interpretation of the
experimental plots than a true discrimination. In the
field of rate theories, Laidler already noticed that, sur-
prisingly, the widely different rate equations proposed in
the past can give reasonably good fit to the same experi-
mental data [2]. The litterature also shows that the same
deviations can be interpreted by different authors in the
frame of different theories. In the alternative view exam-
ined here, the entropies of the reactants are completely
identical to the previous ones; the calorimetric enthalpies
and the Hess’s law are unchanged; the equilibrium con-
stants remain defined by the ratios of interconvertible
reactants concentrations in equilibrium, and the domi-
nant term of the temperature-dependence of equilibrium
constants still satisfies the van’t Hoff formula. Note in
this respect that the original formula of van’t Hoff was
not the equation currently attributed to van’t Hoff in
texbooks, since van’t Hoff did not use the Boltzmann’s
constant or the ideal gas constant, and his reasoning was
fundamentally calorimetric [32], in line with the changes
of heat capacity on which the present theory is based. In
addition, van’t Hoff indicated that he managed his equa-
tion for numerical applications and experimental controls
only, but did not enter into the details of thermodynam-
ics necessary for its demonstration [32]. The 19th century
formula of Arrhenius also remains an equation of practi-
cal convenience, even if experimental data show that it
is not valid for most reactions. Precise experimental val-
idations in this field are hindered by numerous problems,
including the dependence of enthalpies on temperature,
the complex temperature-dependence of heat capacities,
the interferences with tunnel effects, the narrow range of
temperature testable in practice for macromolecules and
the lack of knowledge of many parameters. For instance
the present approach makes use of absolute enthalpies
which are refractory to experimental measurements con-
trary to differences of enthalpy calculable by calorimetry.
Experimental and calculated values are rarely in good
agreement [14] and strikingly, calorimetric and van’t Hoff
enthalpies never coincide [12, 13], which is not a surprise
considering that the enthalpy change for a reaction is
commonly known as heat of reaction, whereas the heat
capacity of enthalpies is ignored in the current van’t Hoff
plot approach. Moreover, even a faint difference of heat
capacity, and a barely detectable change of this differ-
ence upon temperature increase, have exponential con-
sequences on rate constants and equilibrium constants
respectively. The elucidation of the nature of rate con-
stants is essential considering their widespread use from
chemistry to systems modeling. Rate constants are the
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motors of systems and as such allow to introduce the no-
tion of time. If time proves so difficult to conceive, it
is probably because it relies on two completely different
pedestals belonging to different branches of physics: (i)
the step of time, always at work, both out of and in equi-
librium and originating from quantum physics and (ii)
time arrow, existing only out of equilibrium and which
is a populational phenomenon emerging from statistical
physics [29]. Dynamic systems clarify this perception be-
cause they combine both aspects: the time step included
in the preexponential component of the Arrhenius equa-
tion, and the time arrow describing the spontaneous evo-
lution of a system of interconvertible particle states.
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