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Planar Graphs as L-intersection or L-contact graphs *

The -intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are { , |, -}-contact graphs which are the contact graphs of axis parallel , |, andshapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are -intersection graphs, and that triangle-free planar graphs are { , |, -}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs.

Introduction

The representation of graphs by contact or intersection of predefined shapes in the plane is a broad subject of research since the work of Koebe on the representation of planar graphs by contacts of circles [START_REF] Koebe | Kontaktprobleme der konformen Abbildung[END_REF]. In particular, the class of planar graphs has been widely studied in this context.

More formally, assigning a shape X of the plane for each vertex of a graph G, we say that G is a X-intersection graph if there is a representation of G such that every vertex is assigned to a shape X, and two shapes X 1 , X 2 intersect if and only if the vertices they are assigned to are adjacent in G. In the case where the shape X is homeomorphic to segments (resp. discs), a X-contact system is a collection of X shapes such that if an intersection occurs between two shapes, then it occurs at one of their endpoints (resp. on their border). We say that a graph G is a X-contact graph if it is the intersection graph of a X-contact system. This definition can be easily generalized if the representation of each vertex is chosen among a family of shapes.

The case of shapes that are homeomorphic to a disc has been widely studied; see for example the literature for triangles [START_REF] De Fraysseix | On Triangle Contact Graphs[END_REF][START_REF] Gonçalves | Triangle contact representations and duality[END_REF], homothetic triangles [START_REF] Kaufmann | Maxtolerance graphs as intersection graphs: Cliques, cycles and recognition[END_REF][START_REF] Schrezenmaier | Homothetic triangle contact representations[END_REF], axis parallel rectangles [START_REF] Thomassen | Plane representations of graphs[END_REF], squares [START_REF] Kenyon | Dimers, tilings and trees[END_REF][START_REF] Schramm | Square tilings with prescribed combinatorics[END_REF], hexagons [START_REF] Gansner | Optimal Polygonal Representation of Planar Graphs[END_REF], or convex bodies [START_REF] Schramm | Combinatorically Prescribed Packings and Applications to Conformal and Quasiconformal Maps[END_REF]. We here focus on the representation of planar graphs as contact or intersection graphs, where the assigned shapes are segments or polylines in the plane. The simplest definition of representation of graphs by intersection of curves is the so-called string-representation: each vertex is represented by a curve, and two curves intersect if and only if the vertices they represent are adjacent in the graph. It is known that every planar graph has a string-representation [START_REF] Ehrlich | Intersection graphs of curves in the plane[END_REF]. However, this representation may contain pairs of curves that cross any number of times. One may thus take an additional parameter into account, namely the maximal number of crossings of any two of the curves: a 1-string representation of a graph is a string representation where every two curves intersect at most once. The question of finding a 1-string representation of planar graphs has been solved by Chalopin et al. in the positive [START_REF] Chalopin | Planar graphs have 1-string representations[END_REF], and additional parameters are now studied, like order-preserving representations [START_REF] Biedl | Order-preserving 1-string representations of planar graphs[END_REF].

Segment intersection graphs are in turn a specialization of the class of 1string graphs. It is known that bipartite planar graphs are {|, -}-contact graphs [START_REF] Ben-Arroyo Hartman | On grid intersection graphs[END_REF][START_REF] De Fraysseix | Representation of planar graphs by segments[END_REF] (i.e. segment contact graphs with vertical or horizontal segments). De Castro et al. [START_REF] Castro | Triangle-free planar graphs as segment intersection graphs[END_REF] showed that triangle-free planar graphs are segment contact graphs with only three different slopes. De Fraysseix and Ossona de Mendez [START_REF] De Fraysseix | Representations by contact and intersection of segments[END_REF] then proved that a larger class of planar graphs are segment intersection graphs. Finally, Chalopin and the first author extended this result to general planar graphs [START_REF] Chalopin | Every planar graph is the intersection graph of segments in the plane[END_REF], which was conjectured by Scheinerman in his PhD thesis [START_REF] Scheinerman | Intersection Classes and Multiple Intersection Parameters of Graphs[END_REF].

A graph is said to be a VPG-graph (Vertex-Path-Grid) if it has a contact or intersection representation in which each vertex is a path of vertical and horizontal segments (see [START_REF] Aerts | Vertex Contact Representations of Paths on a Grid[END_REF][START_REF] Cohen | Posets and VPG Graphs[END_REF]). Asinowski et al. [START_REF] Asinowski | Vertex intersection graphs of paths on a grid[END_REF] showed that the class of VPGgraphs is equivalent to the class of graphs admitting a string-representation. They also defined the class B k -VPG, which contains all VPG-graphs for which each vertex is represented by a path with at most k bends (see [START_REF] Felsner | Intersection graphs of L-shapes and segments in the plane[END_REF] for the determination of the value of k for some classes of graphs). It is known that B k -VPG ⊆ B k+1 -VPG, and that the recognition of graphs of B k -VPG is an NP-complete problem [START_REF] Chaplick | Bend-bounded path intersection graphs: Sausages, noodles, and waffles on a grill[END_REF]. These classes have interesting algorithmic properties (see for example [START_REF] Mehrabi | Approximation Algorithms for Independence and Domination on B 1 -VPG and B 1 -EPG Graphs[END_REF] for approximation algorithms for independence and domination problems in B 1 -VPG graphs), but most of the literature studies their combinatorial properties.

Chaplick et al. [START_REF] Chaplick | Planar Graphs as VPG-Graphs[END_REF] proved that planar graphs are B 2 -VPG graphs. This result was recently improved by Biedl and Derka [START_REF] Biedl | 1-string B 2 -VPG representation of planar graphs[END_REF], as they showed that planar graphs have a 1-string B 2 -VPG representation.

Various classes of graphs have been showed to have 1-string B 1 -VPG representations, such as planar partial 3-trees [START_REF] Biedl | 1-String B1-VPG Representations of Planar Partial 3-Trees and Some Subclasses[END_REF] and Halin graphs [START_REF] Francis | VPG and EPG bend-numbers of Halin graphs[END_REF]. Interestingly, it has been showed that the class of segment contact graphs is equivalent to the one of B 1 -VPG contact graphs [START_REF] Kobourov | Combinatorial and geometric properties of planar Laman graphs[END_REF]. This implies in particular that trianglefree planar graphs are B 1 -VPG contact graphs. This has been improved by Chaplick et al. [START_REF] Chaplick | Planar Graphs as VPG-Graphs[END_REF] as they showed that triangle-free planar graphs are in fact { , , |, -}-contact graphs (that is without using the shapes and ).

The restriction of B 1 -VPG to -intersection or -contact graphs has been much studied (see for example [START_REF] Felsner | Intersection graphs of L-shapes and segments in the plane[END_REF]) and it has been shown that they are in relation with other structures such as Schnyder realizers, canonical orders or edge labelings [START_REF] Chaplick | Equilateral L-contact graphs[END_REF]. The same authors also proved that the recognition ofcontact graphs can be done in quadratic time, and that this class is equivalent to the one restricted to equilateral shapes. Finally, the monotone (or linear) -contact graphs have been recently studied further, for example in relation with MPT (Max-Point Tolerance) graphs [START_REF] Ahmed | L-Graphs and Monotone L-Graphs[END_REF][START_REF] Catanzaro | Max point-tolerance graphs[END_REF].

Our contributions

The two main results of this paper are the following:

Theorem 1 Every triangle-free planar graph is a { , |, -}-contact graph.
Theorem 2 Every planar graph is a -intersection graph.

Both results were conjectured in [START_REF] Chaplick | Planar Graphs as VPG-Graphs[END_REF]. Theorem 1 is optimal in the sense that a { , |, -}-contact graph with n vertices has at most 2n -3 edges, while triangle-free planar graphs may have up to 2n -4 edges. However, up to our knowledge, the question of whether every triangle-free planar graph is a { , |}contact graph is open1 . Theorem 2 implies that planar graphs are in B 1 -VPG, improving the results of Biedl and Derka [START_REF] Biedl | 1-string B 2 -VPG representation of planar graphs[END_REF] stating that planar graphs are in B 2 -VPG. Since a -intersection representation can be turned into a segment intersection representation [START_REF] Middendorf | The max clique problem in classes of stringgraphs[END_REF], this also directly provides a rather simple proof of the fact that planar graphs are segment intersection graphs [START_REF] Chalopin | Every planar graph is the intersection graph of segments in the plane[END_REF]. Note that a simple modification of our method can be used to prove that 4-connected planar graphs have a B 3 -EPG representation [START_REF] Biedl | 4-connected graphs are in B 3 -EPG[END_REF], where vertices are represented by paths on a rectangular grid with at most 3 bends, and adjacency is shown by sharing an edge of the grid.

The common ingredient of the two results is what we call 2-sided neartriangulations. In Section 2, we present the 2-sided near-triangulations, allowing us to provide a new decomposition of planar 4-connected triangulations (see [START_REF] Biedl | The (3,1)-ordering for 4-connected planar triangulations[END_REF] and [START_REF] Whitney | A theorem on graphs[END_REF] for other decompositions of 4-connected triangulations). This decomposition is simpler than the one provided by Whitney [START_REF] Whitney | A theorem on graphs[END_REF] that is used in [START_REF] Chalopin | Every planar graph is the intersection graph of segments in the plane[END_REF]. In Section 3, we define thick -contact systems, (i.e., -contact representations in which the shapes have some thickness ε) with specific properties. We then show that every 2-sided near-triangulation can be represented by such a system. This result is used in Section 4 to prove Theorem 1. Then in Section 5 we use 2-sided near-triangulations to prove Theorem 2.

2-sided near-triangulations

In this paper we consider plane graphs without loops nor multiple edges. In a plane graph there is an infinite face, called the outer face, and the other faces are called inner faces. A near-triangulation is a plane graph such that every inner face is a triangle. In a plane graph G, a chord is an edge not incident to the outer face but that links two vertices of the outer face. A separating triangle of G is a cycle of length three such that both regions delimited by this cycle (the inner and the outer region) contain some vertices. It is well known that a triangulation is 4-connected if and only if it contains no separating triangle. Given a vertex v on the outer face, the inner-neighbors of v are the neighbors of v that are not on the outer face. We define here 2-sided near-triangulations (see Figure 1) whose structure will be useful in the inductions of the proofs of Theorem 2, and Theorem 7.

Definition 3 A 2-sided near-triangulation is a 2-connected near-triangulation T without separating triangle and such that going clockwise on its outer face, the vertices are denoted a 1 , a 2 , . . . , a p , b q , . . . , b 2 , b 1 , with p ≥ 1 and q ≥ 1, and such that there is no chord a i a j or b i b j (that is an edge (a p -removal) This operation applies if p > 1, if a p has no neighbor b i with i < q, and if none of the inner-neighbors of a p has a neighbor b i with i < q. This operation consists in removing a p from T , and in denoting b q+1 , . . . , b q+r in anti-clockwise order the new vertices on the outer face, if any. This yields a 2-sided near-triangulation T (see Figure 2a). (b q -removal) This operation applies if q > 1, if b q has no neighbor a i with i < p, and if none of the inner-neighbors of b q has a neighbor a i with i < p. This operation consists in removing b q from T , and in denoting a p+1 , . . . , a p+r in clockwise order the new vertices on the outer face, if any. This yields a 2-sided near-triangulation T . This operation is strictly symmetric to the previous one.
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(cutting) This operation applies if p > 1 and q > 1, and if the unique common neighbor of a p and b q , denoted x, has a neighbor a i with i < p, and a neighbor b j with j < q. If x has several such neighbors, i and j correspond to the smaller possible values. This operation consists in cutting T into three 2-sided near-triangulations T , T a and T b (see Figure 2b):

-T is the 2-sided near-triangulation contained in the cycle formed by vertices (a 1 , . . . , a i , x, b j , . . . , b 1 ), and the vertex x is renamed a i+1 .

-T a (resp. T b ) is the 2-sided near-triangulation contained in the cycle (a i , . . . , a p , x) (resp. (x, b q , . . . , b j )), where the vertex x is denoted b 1 (resp. a 1 ).

Proof.

Suppose that a p has no neighbor b i with i < q and none of the inner-neighbors of a p has a neighbor b i with i < q. We denote b q+1 , . . . , b q+r the inner-neighbors of a p in anti-clockwise order such that b j is connected to b j+1 for every q ≤ j ≤ r. Let T be the graph obtained by removing a p and its adjacent edges from T . It is clear that T is a near-triangulation, and that it has no separating triangle (otherwise T would have one too). Furthermore, as there is no chord incident to a p , and as T has at least three vertices its outer face is bounded by a cycle, and T is thus 2-connected. As T is a 2-sided near-triangulation, T has no chord a i a j , with i, j < p, or b i b j with i, j ≤ q. By hypothesis, the inner-neighbors of a p have no neighbors b k with k < q, thus there is no chord b i b j with i ≤ q and q < j. There is no chord b i b j in T with q ≤ i < j. Otherwise the vertices a p , b i , and b j would form a triangle with at least one vertex inside, b i+1 , and at least one vertex outside, a p-1 : it would be a separating triangle, a contradiction. Therefore T is a 2-sided near-triangulation.

The proof for the b q -removal operation is analogous to the previous case. Suppose that we are not in the first case nor in the second one. Let us first show that p > 1 and q > 1. Towards a contradiction, consider that p = 1. Then as T is 2-connected, it has at least three vertices on the outer face and q ≥ 2. In such a case one can always perform the b q -removal operation, a contradiction.

Let us now show that a p is not adjacent to a vertex b i with i < q. Towards a contradiction, consider that a p is adjacent to a vertex b i with i < q. Then by planarity, b q (with q > 1) has no neighbor a i with i < p, and has no innerneighbor adjacent to a vertex a i with i < p. In such a case one can always perform the b q -removal operation, a contradiction. Symmetrically, we deduce that b q is not adjacent to a vertex a i with i < p.

Vertices a p and b q have one common neighbor x such that xa p b q is an inner face. Note that as there is no chord incident to a p or b q , then x is not on the outer face. They have no other common neighbor y, otherwise there would be a separating triangle ya p b q (separating x from both vertices a 1 and b 1 ).

As we are not in the first case nor in the second case, we have that a p (resp. b q ) has (at least) one inner-neighbor adjacent to a vertex b i with i < q (resp. a i with i < p). By planarity, x is the only inner-neighbor of a p (resp. b q ) adjacent to a vertex b i with i < q (resp. a i with i < p). We can thus apply the cutting operation.

We now show that T , T a and T b are 2-sided near-triangulations. Consider first T . It is clear that it is a near-triangulation without separating triangles. It remains to show that there are no chords a i a j or b i b j . By definition of T , the only chord possible would have x = a i+1 as an endpoint, but the existence of an edge xa k with k < i would contradict the minimality of i. Thus T is a 2-sided near-triangulation.

By definition, T a is also a near-triangulation containing no separating triangles. Moreover, there is no chord a k a l with i ≤ k ≤ l -2 as there are no such chords in T . Therefore T a is a 2-sided near-triangulation. We show in the same way that T b is a 2-sided near-triangulation. 2

3 Thick { }-contact system

A thick is a shape where the two segments are turned into ε-thick rectangles (see Figure 3a). Going clockwise around a thick from the bottom-right corner, we call its sides bottom, left, top, vertical interior, horizontal interior, and right.

A thick is described by four coordinates a, b, c, d such that a + ε < b and c + ε < d. It is thus the union of two boxes:

([a, a + ε] × [c, d]) ∪ ([a, b] × [c, c + ε]).
If not specified, the corner of a thick denotes its bottom-left corner (with coordinate (a, c)). In the rest of the paper, all the thick shapes have the same thickness ε.

Definition 5 Given a thick -contact system, a thick is said left if its horizontal interior is free (i.e., does not touch another ) and its left side is not contained in the side of another thick (see Figure 3b). Similarly, a thick is said bottom if its vertical interior is free and its bottom side is not contained in the side of another thick (see Figure 3c). Definition 6 A convenient thick -contact system (CTLCS) is a contact system with thick shapes (which implies that the thick shapes interiors are disjoint) with a few properties:

• Two thick shapes intersect either on exactly one segment or on a point (Figure 4 lists the allowed ways two shapes can intersect). If the intersection is a segment, then it must be exactly one side of a thick . If the intersection is a point, then it is the bottom right corner of one thick and the top left corner of the other one.

• Every thick is bottom or left.

Remark that the removal of any thick still leads to a CTLCS. This definition implies that in a CTLCS there is no three shapes intersecting as in Figure 5.

We now make a link between CTLCS and 2-sided near-triangulations (See Figure 6 for an illustration).

Theorem 7 Every 2-sided near-triangulation can be represented by a CTLCS with the following properties:

• every thick is included in the quadrant {(x, y) : x ≥ 0, y ≥ 0},

• a 1 has the rightmost corner and b 1 has the up-most corner, • every vertex a i is represented by a bottom thick whose corner has coordinates (x, 0), with x > 0, and

• every vertex b i is represented by a left thick whose corner has coordinates (0, y), with y > 0. Proof. We proceed by induction on the number of vertices. The theorem clearly holds for the 2-sided near-triangulation with three vertices. Let T be a 2-sided near-triangulation; it can thus be decomposed using one of the three operations described in Lemma 4. We go through the three operations successively.
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(a p -removal) Let T be the 2-sided near-triangulation resulting from an a premoval operation on T . By the induction hypothesis, T has a CTLCS with the required properties (see Figure 7a). We can now modify this CTLCS slightly in order to obtain a CTLCS of T (thus adding a thick corresponding to vertex a p ). Move the corners of the thick corresponding to vertices b q+1 , . . . , b q+r slightly to the right. Since these are left thick shapes, one can do this without modifying the rest of the system. Then one can add the thick of a p such that it touches the thick of vertices b q and a p-1 (as depicted in Figure 7b). One can easily check that the obtained system is a CTLCS of T and satisfies all the requirements.

(b q -removal) This case is strictly symmetric to the previous one.

(cutting) Let T , T a and T b be the three 2-sided near-triangulations resulting from the cutting operation described in Lemma 4. By induction hypothesis, each of them has a CTLCS satisfying the requirements of Theorem 7. Consider the CTLCS of T (see Figure 8). Move the corner of x = a i+1 slightly upward. Since x = a i+1 is a bottom vertex, one can do this without modifying the rest of the system. Then one can add the CTLCS of T a below vertex x and the one of T b on its left (see Figure 8, bottom). One can easily check that the obtained system satisfies all the requirements. 
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{ , |, -}-contact systems for triangle-free planar graphs

We can now use the CTLCS systems to prove Theorem 1. Recall that a { , |, -}contact system is a contact system with some , some vertical segments |, and some horizontal segments -, such that if an intersection occurs between two of these objects, then the intersection is an endpoint of one of the two objects. We need the following lemma as a tool (it is proved in appendix).

Lemma 8 For any plane triangle-free graph G, there exists a 4-connected triangulation T containing G as an induced subgraph.

We can now prove Theorem 1, which asserts that every triangle-free planar graph has a { , |, -}-contact system.

Proof. Consider a triangle-free planar graph G. According to Lemma 8, there exists a 4-connected triangulation T containing G as an induced subgraph. As the exterior face of T is a triangle, T is a 2-sided near-triangulation (denoting a 1 , b 2 , b 1 the three exterior vertices in clockwise order). By Theorem 7, T has a CTLCS and removing every thick corresponding to a vertex of T \ G leads to a CTLCS of G.

If a thick x has its bottom side included in the horizontal interior side of another thick y, then x is bottom, and so does not intersect anyone on its horizontal interior side. Furthermore, x does not intersect anyone on its right side nor on its bottom right corner. Indeed, if there was such an intersection with a thick z, then y and z would also intersect, contradicting the fact that G is triangle-free (see Figure 9). One can thus replace the thick of x by a thick |. Similarly, if a thick x has its left side included in the vertical interior side of a thick y, we can replace the thick of x by a thick -.

Note that now the intersections are on small segments, or on a point, between the bottom right corner of a thick or -, and the top left corner of a thick or |. Then, we replace each thick , |, andby thin ones as depicted in Figure 10. It is clear that we obtain a { , |, -}-contact system whose contact graph is G. This concludes the proof. An example of the process is shown in Figure 11. Figure 11: Given a CTLCS of a triangle-free graph G, we first replace some thick by thick | and thick -, and then replace every thick shape by a thin one according to Figure 10.

2 ε/2 ε/2 ε/2 ε/2 ε/2 ε/2

The -intersection systems

An -intersection system (LIS) is an intersection system of shapes where every two shapes intersect on at most one point. Using Theorem 7, one could prove that that every 4-connected triangulation has a LIS. To allow us to work on every triangulation (not only the 4-connected ones) we need to enrich our LISs with the following notion that was introduced in [START_REF] Felsner | Intersection graphs of L-shapes and segments in the plane[END_REF] under the name of private region.

An anchor can be seen as a union of three segments, or as the union of two . It has two corners, which correspond to the shapes corners. There are two types of anchors. A horizontal anchor is a set

[x 1 , x 3 ] × y 1 ∪ x 1 × [y 1 , y 2 ] ∪ x 2 × [y 1 , y 2 ]
where x 1 < x 2 < x 3 and y 1 < y 2 (see Figure 12a). The middle corner of such a horizontal anchor is defined as the point (x 2 , y 1 ). A vertical anchor is a set

x 1 × [y 1 , y 3 ] ∪ [x 1 , x 2 ] × y 1 ∪ [x 1 , x 2 ]
× y 2 where x 1 < x 2 and y 1 < y 2 < y 3 (see Figure 12b). The middle corner of such a vertical anchor is defined as the point (x 1 , y 2 ). Consider a near-triangulation T , and any inner face abc of T . Given a LIS of T , an anchor of abc is an anchor crossing the shapes of a b and c and no other , and such that the middle corner is in the square described by a, b and c as depicted in Figure 12. Figure 12: The two types of anchors (horizontal and vertical), and the two possible anchors for the 's of a triangle abc.

Definition 9 A full -intersection system (FLIS) of a near-triangulation T is a LIS of T with an anchor for every (triangular) inner face of T , such that the anchors are pairwise non-intersecting.

Let us now prove that every 2-sided near-triangulation admits a FLIS.

Proposition 10 Every 2-sided near-triangulation has a FLIS such that among the corners of the shapes and the anchors:

• from left to right, the first corners are those of vertices b 1 , b 2 , . . . b q and the last one is the corner of vertex a 1 , and As the of a i and a i+1 (resp. b i and b i+1 ) intersect, the FLIS is rather constrained. This is illustrated in Figure 14, where the grey region contains the corners of the inner vertices, and the corners of the anchors. 

•
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Figure 14: Illustration of Proposition 10 when p > 1 and q > 1, when p = 1 and q > 1, and when p > 1 and q = 1.

Proof. We proceed by induction on the number of vertices. The result clearly holds for the 2-sided near-triangulation with three vertices, whatever p = 1 and q = 2, or p = 2 and q = 1. Let T be a 2-sided neartriangulation with at least four vertices. By Lemma 4 we consider one of the following operations on T :

(a p -removal) Consider the FLIS of T obtained by induction and see in Figure 15 how one can add a for a p and an anchor for each inner face a p b j b j+1 with q ≤ j < q + r and for the inner face a p a p-1 b q+r . One can easily check that the obtained system verifies all the requirements of Proposition 10.

(b q -removal) This case is symmetric to the previous one.

(cutting) Consider the FLISs of T , T a and T b . Figure 16 depicts how to combine them, and how to add an anchor for xa p b q , in order to get the FLIS of T . One can easily check that the obtained system verifies all the requirements of Proposition 10.

2

We now prove Theorem 2 which asserts that every planar graph is aintersection graph. It is well known that every planar graph is an induced sub- graph of some triangulation (see [START_REF] Chalopin | Planar graphs have 1-string representations[END_REF] for a proof similar to the one of Lemma 8). Thus, given a planar graph G, one can build a triangulation T whose G is an induced subgraph. If one can create a FLIS of T , then it remains to remove the shapes assigned to vertices of T \ G along with the anchors in order to get a -representation of G. In order to prove Theorem 2, we thus only need to show that every triangulation admits a FLIS. Proposition 11 Every triangulation T with outer-vertices x, y, z has a FLIS such that among the corners of the shapes and the anchors:
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• the corner of x is the upmost and leftmost,

• the corner of y is the second leftmost, and

• the corner of z is the bottom-most and rightmost.

Note that in this proposition there is no constraint on x, y, z, so by renaming the outer vertices, other FLISs can be obtained. Another way to obtain more FLISs is by applying a reflection with respect to a line of slope 1. In such FLIS (see Figure 17) among the corners of the shapes and the anchors:

• the corner of x is the bottom-most and rightmost,

• the corner of y is the second bottom-most, and

• the corner of z is the upmost and leftmost.

Proof. We proceed by induction on the number of vertices in T . Let T be a triangulation with outer vertices x, y, z.

If T is 4-connected, then it is also a 2-sided near-triangulation. By Proposition 10 and by renaming the outer-vertices x to b 1 , y to b 2 and z to a 1 , T has a FLIS with the required properties.

If T is not 4-connected, then it has a separating triangle formed by vertices a, b and c. We note T in and T out the triangulations obtained from T by removing the vertices outside and inside abc respectively.

By the induction hypothesis, T out has a FLIS verifying Proposition 11 (considering the outer vertices to be x, y, z in the same order). Without loss of generality we can suppose that the shapes of a, b and c appear in the following order: the upmost and leftmost is b, the second leftmost is c and the bottom-most is a. There are two cases according to the type of the anchor of the inner face abc.

If the anchor of abc in the FLIS of T out is vertical (see Figure 18a), then applying the induction hypothesis on T in with b, c, a as outer vertices considered in that order, T in has a FLIS as depicted on the Figure 18b. Figure 18c depicts how to include the FLIS of T in \ {a, b, c} in the close neighborhood of the anchor of abc. As abc is not a face of T , the close neighborhood of its anchor is indeed available for this operation. Now suppose that the anchor of abc in the FLIS of T out is horizontal (see Figure 19a). By application of the induction hypothesis on T in with a, c, b as outer vertices considered in that order, then T in has a FLIS as depicted on the Figure 19b. By a reflection of slope 1, T in has a FLIS such that b is the up-most and left-most, c is the second left-most and a is bottom-most (see Figure 19c). Similarly to the previous case, we include this last FLIS of T in \ {a, b, c} in the one from T out (see Figure 19d). As T in and T out cover T , and intersect only on the triangle abc, and as every inner face of T is an inner face in T in or in T out , these constructions clearly verify Proposition 11. This concludes the proof of the proposition. 2

A From triangle-free planar graphs to 4-connected triangulations

We here prove Lemma 8.

Proof. The main idea of the construction of T is to insert vertices and edges in every face of G (even for the exterior face).

For the sake of clarity, vertices of G are said black and vertices of T \ G are said red. The new graph T contains G as an induced subgraph, along with other vertices and edges. More precisely, for every face of G, let P = {v 0 , e 0 , v 1 , e 1 , . . .} be the list of vertices and edges along the face boundary (see Figure 20), where e i is the edge between vertices v i and v i+1 ; there can be repetitions of vertices or edges. For each face of G, given the list P , the graph T contains a vertex v i for each vertex v i , a vertex e i for each edge e i , and an additionnal vertex t. Each vertex v i is connected to e i and e i+1 (with subscripts addition done modulo the size of the face), each vertex v i is connected to v i , e i-1 and e i , and the vertex t is connected to all vertices v i and e i (see Figures 20 and21 for examples).

The new graph T is a triangulation, and we now show that it is 4-connected, i.e., has no separating triangle. Suppose that there is a separating triangle in the new graph. There are four cases depending on the colors of the edges of this triangle:

• The separating triangle contains three black edges. It is impossible since G is triangle-free.

• The separating triangle contains exactly one red edge. One of its endpoints must be a red vertex. But a red vertex is adjacent to only red edges, a contradiction.

• The separating triangle contains exactly two red edges. Then their common endpoint is a red vertex, and the triangle is made of two vertices v i and v i+1 , together with the vertex e i . All these triangles are faces, a contradiction.

• The separating triangle contains three red edges. Since for each face, the red vertices (vertices v i , e i and t) induce a wheel graph centered on t, with at least 8 peripheral vertices (vertices v i and e i ), this separating triangle has at least one black vertex. As two adjacent black vertices are linked by a black edge, this separating triangle has exactly one black vertex. As the two red vertices are two adjacent v i or e j vertices, we have that those are v i and e j , for some i and for j = i or for j = i + 1. Such a triangle is not separating, a contradiction.

This concludes the proof of the lemma. 
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 14 Figure 1: Example of a 2-sided near-triangulation
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Figure 2 :

 2 Figure 2: Illustrations of (a) the a p -removal operation and (b) the cutting operation.

  The thick shape representing vertex x is bottom but not left. y (c) The thick shape representing vertex y is left but not bottom.

Figure 3 :

 3 Figure 3: Left and bottom thick shapes.
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 45 Figure 4: Allowed intersections in a CTLCS. From left to right: the intersection is the top, right, bottom, left side of a thick , and the intersection is a point at the bottom right corner of a thick and at the top left corner of a thick .

Figure 6 :

 6 Figure 6: A 2-sided near-triangulation and (one of) its CTLCS.

Figure 7 :

 7 Figure 7: The (a p -removal) operation for a CTLCS. Here, the grey region contains the corners of the inner vertices.

Figure 8 :

 8 Figure 8: The (cutting) operation for a CTLCS.
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 9 Figure9: If a thick x has its bottom side included in the horizontal interior of a thick y, then x has no intersection with a thick z on its right side and on its bottom right corner.
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 10 Figure 10: Replacing thick , |, andby thin ones.
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 13 Figure 13: Example of a triangulation and a corresponding FLIS
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 15 Figure 15: The (a p -removal) operation.
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 16 Figure 16: The (cutting) operation.

Figure 17 :

 17 Figure 17: Illustration of Proposition 11, and the FLIS obtained after reflection with respect to a line of slope 1.
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 18 Figure 18: FLIS inclusion in the case of a vertical anchor

  The inclusion of the FLIS of Tin in the FLIS of Tout
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 1920 Figure 19: FLIS inclusion in the case of a horizontal anchor

Figure 21 :

 21 Figure 21: Zoom on the new

In fact, it has been proven in the Masters thesis (in German) of Björn Kapelle in

[START_REF] Kapelle | Kontact-und Schnittdarstellungen planarer Graphen[END_REF] Sec. 3.3], but never published.
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