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Abstract

The x-intersection graphs are the graphs that have a representation as
intersection graphs of axis parallel x shapes in the plane. A subfamily of
these graphs are {x, |,−}-contact graphs which are the contact graphs of
axis parallel x, |, and − shapes in the plane. We prove here two results that
were conjectured by Chaplick and Ueckerdt in 2013. We show that planar
graphs are x-intersection graphs, and that triangle-free planar graphs are
{x, |,−}-contact graphs. These results are obtained by a new and simple
decomposition technique for 4-connected triangulations. Our results also
provide a much simpler proof of the known fact that planar graphs are
segment intersection graphs.

1 Introduction
The representation of graphs by contact or intersection of predefined shapes
in the plane is a broad subject of research since the work of Koebe on the
representation of planar graphs by contacts of circles [28]. In particular, the
class of planar graphs has been widely studied in this context.

More formally, assigning a shape X of the plane for each vertex of a graph
G, we say that G is a X-intersection graph if there is a representation of G such
that every vertex is assigned to a shape X, and two shapes X1, X2 intersect if
and only if the vertices they are assigned to are adjacent in G. In the case where
the shape X is homeomorphic to segments (resp. discs), a X-contact system is
a collection of X shapes such that if an intersection occurs between two shapes,
then it occurs at one of their endpoints (resp. on their border). We say that
a graph G is a X-contact graph if it is the intersection graph of a X-contact
∗This research is partially supported by the ANR GATO, under contract ANR-16-CE40-

0009.
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system. This definition can be easily generalized if the representation of each
vertex is chosen among a family of shapes.

The case of shapes that are homeomorphic to a disc has been widely studied;
see for example the literature for triangles [19, 24], homothetic triangles [25, 35],
axis parallel rectangles [36], squares [26, 33], hexagons [23], or convex bodies [34].
We here focus on the representation of planar graphs as contact or intersection
graphs, where the assigned shapes are segments or polylines in the plane. The
simplest definition of representation of graphs by intersection of curves is the
so-called string-representation: each vertex is represented by a curve, and two
curves intersect if and only if the vertices they represent are adjacent in the
graph. It is known that every planar graph has a string-representation [20].
However, this representation may contain pairs of curves that cross any number
of times. One may thus take an additional parameter into account, namely the
maximal number of crossings of any two of the curves: a 1-string representation
of a graph is a string representation where every two curves intersect at most
once. The question of finding a 1-string representation of planar graphs has
been solved by Chalopin et al. in the positive [11], and additional parameters
are now studied, like order-preserving representations [7].

Segment intersection graphs are in turn a specialization of the class of 1-
string graphs. It is known that bipartite planar graphs are {|,−}-contact
graphs [3, 18] (i.e. segment contact graphs with vertical or horizontal seg-
ments). De Castro et al. [16] showed that triangle-free planar graphs are seg-
ment contact graphs with only three different slopes. De Fraysseix and Ossona
de Mendez [17] then proved that a larger class of planar graphs are segment
intersection graphs. Finally, Chalopin and the first author extended this result
to general planar graphs [10], which was conjectured by Scheinerman in his PhD
thesis [32].

A graph is said to be a VPG-graph (Vertex-Path-Grid) if it has a contact or
intersection representation in which each vertex is a path of vertical and hori-
zontal segments (see [1, 15]). Asinowski et al. [2] showed that the class of VPG-
graphs is equivalent to the class of graphs admitting a string-representation.
They also defined the class Bk-VPG, which contains all VPG-graphs for which
each vertex is represented by a path with at most k bends (see [21] for the
determination of the value of k for some classes of graphs). It is known that
Bk-VPG 6⊆ Bk+1-VPG, and that the recognition of graphs of Bk-VPG is an
NP-complete problem [12]. These classes have interesting algorithmic proper-
ties (see for example [29] for approximation algorithms for independence and
domination problems in B1-VPG graphs), but most of the literature studies
their combinatorial properties.

Chaplick et al. [14] proved that planar graphs are B2-VPG graphs. This
result was recently improved by Biedl and Derka [5], as they showed that planar
graphs have a 1-string B2-VPG representation.

Various classes of graphs have been showed to have 1-string B1-VPG repre-
sentations, such as planar partial 3-trees [4] and Halin graphs [22]. Interestingly,

2



it has been showed that the class of segment contact graphs is equivalent to the
one of B1-VPG contact graphs [27]. This implies in particular that triangle-
free planar graphs are B1-VPG contact graphs. This has been improved by
Chaplick et al. [14] as they showed that triangle-free planar graphs are in fact
{x, p, |,−}-contact graphs (that is without using the shapes y and q).

The restriction of B1-VPG to x-intersection or x-contact graphs has been
much studied (see for example [21]) and it has been shown that they are in
relation with other structures such as Schnyder realizers, canonical orders or
edge labelings [13]. The same authors also proved that the recognition of x-
contact graphs can be done in quadratic time, and that this class is equivalent
to the one restricted to equilateral x shapes. Finally, the monotone (or linear)
x-contact graphs have been recently studied further, for example in relation with
MPT (Max-Point Tolerance) graphs [31, 9].

Our contributions The two main results of this paper are the following:

Theorem 1 Every triangle-free planar graph is a {x, |,−}-contact graph.

Theorem 2 Every planar graph is a x-intersection graph.

Both results were conjectured in [14]. Theorem 1 is optimal in the sense
that a {x, |,−}-contact graph with n vertices has at most 2n − 3 edges, while
triangle-free planar graphs may have up to 2n − 4 edges. However, up to our
knowledge, the question of whether every triangle-free planar graph is a {x, |}-
contact graph is open. Theorem 2 implies that planar graphs are in B1-VPG,
improving the results of Biedl and Derka [5] stating that planar graphs are in
B2-VPG. Since a x-intersection representation can be turned into a segment
intersection representation [30], this also directly provides a rather simple proof
of the fact that planar graphs are segment intersection graphs [10]. Note that
a simple modification of our method can be used to prove that 4-connected
planar graphs have a B3-EPG representation [8], where vertices are represented
by paths on a rectangular grid with at most 3 bends, and adjacency is shown
by sharing an edge of the grid.

The common ingredient of the two results is what we call 2-sided near-
triangulations. In Section 2, we present the 2-sided near-triangulations, allowing
us to provide a new decomposition of planar 4-connected triangulations (see [6]
and [37] for other decompositions of 4-connected triangulations). This decom-
position is simpler than the one provided by Whitney [37] that is used in [10].
In Section 3, we define thick x-contact systems, (i.e., x-contact representations
in which the shapes have some thickness ε) with specific properties. We then
show that every 2-sided near-triangulation can be represented by such a system.
This result is used in Section 4 to prove Theorem 1. Then in Section 5 we use
2-sided near-triangulations to prove Theorem 2.
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2 2-sided near-triangulations
In this paper we consider plane graphs without loops nor multiple edges. In a
plane graph there is an infinite face, called the outer face, and the other faces
are called inner faces. A near-triangulation is a plane graph such that every
inner face is a triangle. In a plane graph G, a chord is an edge not incident to
the outer face but that links two vertices of the outer face. A separating triangle
of G is a cycle of length three such that both regions delimited by this cycle
(the inner and the outer region) contain some vertices. It is well known that
a triangulation is 4-connected if and only if it contains no separating triangle.
Given a vertex v on the outer face, the inner-neighbors of v are the neighbors
of v that are not on the outer face. We define here 2-sided near-triangulations
(see Figure 1) whose structure will be useful in the inductions of the proofs of
Theorem 2, and Theorem 7.

Definition 3 A 2-sided near-triangulation is a 2-connected near-triangulation
T without separating triangle and such that going clockwise on its outer face,
the vertices are denoted a1, a2, . . . , ap, bq, . . . , b2, b1, with p ≥ 1 and q ≥ 1, and
such that there is no chord aiaj or bibj (that is an edge aiaj or bibj such that
|i− j| > 1).

b1
b2

b3

a1

a2a3

Figure 1: Example of a 2-sided near-triangulation

The structure of the 2-sided near-triangulations allows us to describe the
following decomposition:

Lemma 4 Given a 2-sided near-triangulation T with at least 4 vertices, one
can always perform one of the following operations:

(ap-removal) This operation applies if p > 1, if ap has no neighbor bi with i < q, and
if none of the inner-neighbors of ap has a neighbor bi with i < q. This
operation consists in removing ap from T , and in denoting bq+1, . . . , bq+r

in anti-clockwise order the new vertices on the outer face, if any. This
yields a 2-sided near-triangulation T ′ (see Figure 2a).
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b1

b2

bq

ap

bq+r

ap−1

bq−1

a2

a1

T ′

(a)

b1

bq

ap

ap−1

bq−1

a1

T ′
bj

ai

Tb
Ta

x

(b)

Figure 2: Illustrations of (a) the ap-removal operation and (b) the cut-
ting operation.

(bq-removal) This operation applies if q > 1, if bq has no neighbor ai with i < p, and
if none of the inner-neighbors of bq has a neighbor ai with i < p. This
operation consists in removing bq from T , and in denoting ap+1, . . . , ap+r

in clockwise order the new vertices on the outer face, if any. This yields a
2-sided near-triangulation T ′. This operation is strictly symmetric to the
previous one.

(cutting) This operation applies if p > 1 and q > 1, and if the unique common
neighbor of ap and bq, denoted x, has a neighbor ai with i < p, and a
neighbor bj with j < q. If x has several such neighbors, i and j correspond
to the smaller possible values. This operation consists in cutting T into
three 2-sided near-triangulations T ′, Ta and Tb (see Figure 2b):

– T ′ is the 2-sided near-triangulation contained in the cycle formed by
vertices (a1, . . . , ai, x, bj , . . . , b1), and the vertex x is renamed ai+1.

– Ta (resp. Tb) is the 2-sided near-triangulation contained in the cycle
(ai, . . . , ap, x) (resp. (x, bq, . . . , bj)), where the vertex x is denoted b1
(resp. a1).

Proof. Suppose that ap has no neighbor bi with i < q and none of the
inner-neighbors of ap has a neighbor bi with i < q. We denote bq+1, . . . , bq+r

the inner-neighbors of ap in anti-clockwise order such that bj is connected to
bj+1 for every q ≤ j ≤ r. Let T ′ be the graph obtained by removing ap and
its adjacent edges from T . It is clear that T ′ is a near-triangulation, and that
it has no separating triangle (otherwise T would have one too). Furthermore,
as there is no chord incident to ap, and as T ′ has at least three vertices its
outer face is bounded by a cycle, and T ′ is thus 2-connected. As T is a 2-sided
near-triangulation, T ′ has no chord aiaj , with i, j < p, or bibj with i, j ≤ q.
By hypothesis, the inner-neighbors of ap have no neighbors bk with k < q, thus
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there is no chord bibj with i ≤ q and q < j. There is no chord bibj in T ′

with q ≤ i < j. Otherwise the vertices ap, bi, and bj would form a triangle
with at least one vertex inside, bi+1, and at least one vertex outside, ap−1:
it would be a separating triangle, a contradiction. Therefore T ′ is a 2-sided
near-triangulation.

The proof for the bq-removal operation is analogous to the previous case.
Suppose that we are not in the first case nor in the second one. Let us first

show that p > 1 and q > 1. Towards a contradiction, consider that p = 1. Then
as T is 2-connected, it has at least three vertices on the outer face and q ≥ 2. In
such a case one can always perform the bq-removal operation, a contradiction.

Let us now show that ap is not adjacent to a vertex bi with i < q. Towards
a contradiction, consider that ap is adjacent to a vertex bi with i < q. Then
by planarity, bq (with q > 1) has no neighbor ai with i < p, and has no inner-
neighbor adjacent to a vertex ai with i < p. In such a case one can always
perform the bq-removal operation, a contradiction. Symmetrically, we deduce
that bq is not adjacent to a vertex ai with i < p.

Vertices ap and bq have one common neighbor x such that xapbq is an inner
face. Note that as there is no chord incident to ap or bq, then x is not on the
outer face. They have no other common neighbor y, otherwise there would be
a separating triangle yapbq (separating x from both vertices a1 and b1).

As we are not in the first case nor in the second case, we have that ap (resp.
bq) has (at least) one inner-neighbor adjacent to a vertex bi with i < q (resp. ai
with i < p). By planarity, x is the only inner-neighbor of ap (resp. bq) adjacent
to a vertex bi with i < q (resp. ai with i < p). We can thus apply the cutting
operation.

We now show that T ′, Ta and Tb are 2-sided near-triangulations. Consider
first T ′. It is clear that it is a near-triangulation without separating triangles.
It remains to show that there are no chords aiaj or bibj . By definition of T ′,
the only chord possible would have x = ai+1 as an endpoint, but the existence
of an edge xak with k < i would contradict the minimality of i. Thus T ′ is a
2-sided near-triangulation.

By definition, Ta is also a near-triangulation containing no separating trian-
gles. Moreover, there is no chord akal with i ≤ k ≤ l − 2 as there are no such
chords in T . Therefore Ta is a 2-sided near-triangulation. We show in the same
way that Tb is a 2-sided near-triangulation. 2

3 Thick {x}-contact system
A thick x is a x shape where the two segments are turned into ε-thick rectangles
(see Figure 3a). Going clockwise around a thick x from the bottom-right corner,
we call its sides bottom, left, top, vertical interior, horizontal interior, and right.

A thick x is described by four coordinates a, b, c, d such that a + ε < b and
c+ε < d. It is thus the union of two boxes: ([a, a+ε]× [c, d])∪([a, b]× [c, c+ε]).
If not specified, the corner of a thick x denotes its bottom-left corner (with
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coordinate (a, c)). In the rest of the paper, all the thick x shapes have the same
thickness ε.

Definition 5 Given a thick x-contact system, a thick x is said left if its hor-
izontal interior is free (i.e., does not touch another x) and its left side is not
contained in the side of another thick x (see Figure 3b). Similarly, a thick x is
said bottom if its vertical interior is free and its bottom side is not contained
in the side of another thick x (see Figure 3c).

d

c+ ε

c

a a+ ε b

(a) A thick x

x

(b) The thick x shape rep-
resenting vertex x is bot-
tom but not left.

y

(c) The thick x shape rep-
resenting vertex y is left
but not bottom.

Figure 3: Left and bottom thick x shapes.

Definition 6 A convenient thick x-contact system (CTLCS) is a contact sys-
tem with thick x shapes (which implies that the thick x shapes interiors are
disjoint) with a few properties:

• Two thick x shapes intersect either on exactly one segment or on a point
(Figure 4 lists the allowed ways two x shapes can intersect). If the inter-
section is a segment, then it must be exactly one side of a thick x. If the
intersection is a point, then it is the bottom right corner of one thick x and
the top left corner of the other one.

• Every thick x is bottom or left.

Remark that the removal of any thick x still leads to a CTLCS. This def-
inition implies that in a CTLCS there is no three x shapes intersecting as in
Figure 5.

We now make a link between CTLCS and 2-sided near-triangulations (See
Figure 6 for an illustration).

Theorem 7 Every 2-sided near-triangulation can be represented by a CTLCS
with the following properties:

• every thick x is included in the quadrant {(x, y) : x ≥ 0, y ≥ 0},

• a1 has the rightmost corner and b1 has the up-most corner,
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Figure 4: Allowed intersections in a CTLCS. From left to right: the
intersection is the top, right, bottom, left side of a thick x, and the
intersection is a point at the bottom right corner of a thick x and at the
top left corner of a thick x.

x x

Figure 5: Two examples of forbidden configurations in a CTLCS. Here
x is not bottom nor left.

• every vertex ai is represented by a bottom thick x whose corner has coor-
dinates (x, 0), with x > 0, and

• every vertex bi is represented by a left thick x whose corner has coordinates
(0, y), with y > 0.

a1

b1

a2

a3

b2

b3

x

b1

b2

b3

x

a1a2a3

Figure 6: A 2-sided near-triangulation and (one of) its CTLCS.

Proof. We proceed by induction on the number of vertices. The theorem
clearly holds for the 2-sided near-triangulation with three vertices. Let T be
a 2-sided near-triangulation; it can thus be decomposed using one of the three
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b1

bq

bq+1

bq+r

b2

a1a2ap−1

(a) CTLCS of T ′

b1

bq

bq+1

bq+r

b2

a1a2ap−1ap

(b) CTLCS of T

Figure 7: The (ap-removal) operation for a CTLCS. Here, the grey
region contains the corners of the inner vertices.

operations described in Lemma 4. We go through the three operations succes-
sively.

(ap-removal) Let T ′ be the 2-sided near-triangulation resulting from an ap-
removal operation on T . By the induction hypothesis, T ′ has a CTLCS with the
required properties (see Figure 7a). We can now modify this CTLCS slightly in
order to obtain a CTLCS of T (thus adding a thick x corresponding to vertex
ap). Move the corners of the thick x corresponding to vertices bq+1, . . . , bq+r

slightly to the right. Since these are left thick x shapes, one can do this without
modifying the rest of the system. Then one can add the thick x of ap such that
it touches the thick x of vertices bq and ap−1 (as depicted in Figure 7b). One
can easily check that the obtained system is a CTLCS of T and satisfies all the
requirements.

(bq-removal) This case is strictly symmetric to the previous one.
(cutting) Let T ′, Ta and Tb be the three 2-sided near-triangulations result-

ing from the cutting operation described in Lemma 4. By induction hypothesis,
each of them has a CTLCS satisfying the requirements of Theorem 7. Consider
the CTLCS of T ′ (see Figure 8). Move the corner of x = ai+1 slightly upward.
Since x = ai+1 is a bottom vertex, one can do this without modifying the rest
of the system. Then one can add the CTLCS of Ta below vertex x and the one
of Tb on its left (see Figure 8, bottom). One can easily check that the obtained
system satisfies all the requirements. 2
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b1

b2

bj−1

bj

bj+1

bq−1

bq
x

ap ap−1 ai+1 ai a2 a1

bj

bj+1

bq−1

bq

x

x

ap ap−1 ai+1 ai

b1

b2

bj−1

bj

x ai a2 a1

Figure 8: The (cutting) operation for a CTLCS.

4 {x, |,−}-contact systems for triangle-free planar
graphs

We can now use the CTLCS systems to prove Theorem 1. Recall that a {x, |,−}-
contact system is a contact system with some x, some vertical segments |, and
some horizontal segments −, such that if an intersection occurs between two of
these objects, then the intersection is an endpoint of one of the two objects. We
need the following lemma as a tool (it is proved in appendix).

Lemma 8 For any plane triangle-free graph G, there exists a 4-connected tri-
angulation T containing G as an induced subgraph.

We can now prove Theorem 1, which asserts that every triangle-free planar
graph has a {x, |,−}-contact system.

Proof. Consider a triangle-free planar graph G. According to Lemma 8, there
exists a 4-connected triangulation T containing G as an induced subgraph. As
the exterior face of T is a triangle, T is a 2-sided near-triangulation (denoting
a1, b2, b1 the three exterior vertices in clockwise order). By Theorem 7, T has a
CTLCS and removing every thick x corresponding to a vertex of T \G leads to
a CTLCS of G.
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If a thick x x has its bottom side included in the horizontal interior side of
another thick x y, then x is bottom, and so does not intersect anyone on its
horizontal interior side. Furthermore, x does not intersect anyone on its right
side nor on its bottom right corner. Indeed, if there was such an intersection
with a thick x z, then y and z would also intersect, contradicting the fact that
G is triangle-free (see Figure 9). One can thus replace the thick x of x by a
thick |.

z z

z
y y yx x x

Figure 9: If a thick x x has its bottom side included in the horizontal
interior of a thick x y, then x has no intersection with a thick x z on its
right side and on its bottom right corner.

Similarly, if a thick x x has its left side included in the vertical interior side
of a thick x y, we can replace the thick x of x by a thick −.

Note that now the intersections are on small segments, or on a point, between
the bottom right corner of a thick x or −, and the top left corner of a thick x or
|. Then, we replace each thick x, |, and − by thin ones as depicted in Figure 10.
It is clear that we obtain a {x, |,−}-contact system whose contact graph is G.
This concludes the proof. An example of the process is shown in Figure 11. 2

ε/2
ε/2

ε/2

ε/2

ε/2 ε/2

Figure 10: Replacing thick x, |, and − by thin ones.

Figure 11: Given a CTLCS of a triangle-free graph G, we first replace
some thick x by thick | and thick −, and then replace every thick shape
by a thin one according to Figure 10.
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5 The x-intersection systems
An x-intersection system (LIS) is an intersection system of x shapes where every
two x shapes intersect on at most one point. Using Theorem 7, one could prove
that that every 4-connected triangulation has a LIS. To allow us to work on
every triangulation (not only the 4-connected ones) we need to enrich our LISs
with the following notion that was introduced in [21] under the name of private
region.

An anchor can be seen as a union of three segments, or as the union of two
x. It has two corners, which correspond to the x shapes corners. There are two
types of anchors. A horizontal anchor is a set [x1, x3]× y1 ∪ x1 × [y1, y2]∪ x2 ×
[y1, y2] where x1 < x2 < x3 and y1 < y2 (see Figure 12a). The middle corner of
such a horizontal anchor is defined as the point (x2, y1). A vertical anchor is a
set x1× [y1, y3]∪ [x1, x2]×y1∪ [x1, x2]×y2 where x1 < x2 and y1 < y2 < y3 (see
Figure 12b). The middle corner of such a vertical anchor is defined as the point
(x1, y2). Consider a near-triangulation T , and any inner face abc of T . Given a
LIS of T , an anchor of abc is an anchor crossing the x shapes of a b and c and
no other x, and such that the middle corner is in the square described by a, b
and c as depicted in Figure 12.

(a) (b)

a

b

c

(c)

a

b

c

(d)

Figure 12: The two types of anchors (horizontal and vertical), and the
two possible anchors for the x’s of a triangle abc.

Definition 9 A full x-intersection system (FLIS) of a near-triangulation T is
a LIS of T with an anchor for every (triangular) inner face of T , such that the
anchors are pairwise non-intersecting.

Let us now prove that every 2-sided near-triangulation admits a FLIS.

Proposition 10 Every 2-sided near-triangulation has a FLIS such that among
the corners of the x shapes and the anchors:

• from left to right, the first corners are those of vertices b1, b2, . . . bq and
the last one is the corner of vertex a1, and

• from bottom to top, the first corners are those of vertices a1, a2, . . . ap and
the last one is the corner of vertex b1.
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a

c

b
d

a

b

c

d

Figure 13: Example of a triangulation and a corresponding FLIS

As the x of ai and ai+1 (resp. bi and bi+1) intersect, the FLIS is rather
constrained. This is illustrated in Figure 14, where the grey region contains the
corners of the inner vertices, and the corners of the anchors.

b1

b2

b3

bq

ap
a3

a2
a1

b1

ap

a3
a2

a1

ap−1

b1

b2

b3

bq

a1

bq−1

Figure 14: Illustration of Proposition 10 when p > 1 and q > 1, when
p = 1 and q > 1, and when p > 1 and q = 1.

Proof. We proceed by induction on the number of vertices.
The result clearly holds for the 2-sided near-triangulation with three vertices,

whatever p = 1 and q = 2, or p = 2 and q = 1. Let T be a 2-sided near-
triangulation with at least four vertices. By Lemma 4 we consider one of the
following operations on T :

(ap-removal) Consider the FLIS of T ′ obtained by induction and see in
Figure 15 how one can add a x for ap and an anchor for each inner face apbjbj+1

with q ≤ j < q+ r and for the inner face apap−1bq+r. One can easily check that
the obtained system verifies all the requirements of Proposition 10.

(bq-removal) This case is symmetric to the previous one.
(cutting) Consider the FLISs of T ′, Ta and Tb. Figure 16 depicts how to

combine them, and how to add an anchor for xapbq, in order to get the FLIS of
T . One can easily check that the obtained system verifies all the requirements
of Proposition 10. 2

We now prove Theorem 2 which asserts that every planar graph is a x-
intersection graph. It is well known that every planar graph is an induced sub-
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b2

b1

bq

bq+r

a2

b2

b1

bq

bq+r

ap−1
ap−2

a2

b2

b1

bq

bq+r

a2

b2

b1

bq

bq+r

ap−1
ap−2

a2
a1a1

ap

Figure 15: The (ap-removal) operation.

b1

bj

bj−1

bq

bq−1

x

ai
ai−1

ap
ap−1

a1

bj

bq

bq−1

x

x

ai

ap
ap−1

b1

bj

bj−1

x

ai
ai−1

a1

Figure 16: The (cutting) operation.

graph of some triangulation (see [11] for a proof similar to the one of Lemma 8).
Thus, given a planar graph G, one can build a triangulation T whose G is an
induced subgraph. If one can create a FLIS of T , then it remains to remove the
x shapes assigned to vertices of T \G along with the anchors in order to get a
x-representation of G. In order to prove Theorem 2, we thus only need to show
that every triangulation admits a FLIS.
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x

y

z

z

x
y

Figure 17: Illustration of Proposition 11, and the FLIS obtained after
reflection with respect to a line of slope 1.

Proposition 11 Every triangulation T with outer-vertices x, y, z has a FLIS
such that among the corners of the x shapes and the anchors:

• the corner of x is the upmost and leftmost,

• the corner of y is the second leftmost, and

• the corner of z is the bottom-most and rightmost.

Note that in this proposition there is no constraint on x, y, z, so by renaming
the outer vertices, other FLISs can be obtained. Another way to obtain more
FLISs is by applying a reflection with respect to a line of slope 1. In such FLIS
(see Figure 17) among the corners of the x shapes and the anchors:

• the corner of x is the bottom-most and rightmost,

• the corner of y is the second bottom-most, and

• the corner of z is the upmost and leftmost.

Proof. We proceed by induction on the number of vertices in T . Let T be a
triangulation with outer vertices x, y, z.

If T is 4-connected, then it is also a 2-sided near-triangulation. By Proposi-
tion 10 and by renaming the outer-vertices x to b1, y to b2 and z to a1, T has
a FLIS with the required properties.

If T is not 4-connected, then it has a separating triangle formed by vertices a,
b and c. We note Tin and Tout the triangulations obtained from T by removing
the vertices outside and inside abc respectively.

By the induction hypothesis, Tout has a FLIS verifying Proposition 11 (con-
sidering the outer vertices to be x, y, z in the same order). Without loss of
generality we can suppose that the x shapes of a, b and c appear in the fol-
lowing order: the upmost and leftmost is b, the second leftmost is c and the
bottom-most is a. There are two cases according to the type of the anchor of
the inner face abc.

If the anchor of abc in the FLIS of Tout is vertical (see Figure 18a), then
applying the induction hypothesis on Tin with b, c, a as outer vertices considered

15



in that order, Tin has a FLIS as depicted on the Figure 18b. Figure 18c depicts
how to include the FLIS of Tin \{a, b, c} in the close neighborhood of the anchor
of abc. As abc is not a face of T , the close neighborhood of its anchor is indeed
available for this operation.

b

c

a

a

Tout

(a) The vertical anchor of
abc in the FLIS of Tout

b

c

a

Tin

(b) The FLIS of Tin

b

c

a

a

Tin

Tout

(c) The inclusion of
the FLIS of Tin in the
FLIS of Tout

Figure 18: FLIS inclusion in the case of a vertical anchor

Now suppose that the anchor of abc in the FLIS of Tout is horizontal (see
Figure 19a). By application of the induction hypothesis on Tin with a, c, b as
outer vertices considered in that order, then Tin has a FLIS as depicted on the
Figure 19b. By a reflection of slope 1, Tin has a FLIS such that b is the up-most
and left-most, c is the second left-most and a is bottom-most (see Figure 19c).
Similarly to the previous case, we include this last FLIS of Tin \ {a, b, c} in the
one from Tout (see Figure 19d). As Tin and Tout cover T , and intersect only on
the triangle abc, and as every inner face of T is an inner face in Tin or in Tout,
these constructions clearly verify Proposition 11. This concludes the proof of
the proposition. 2

A From triangle-free planar graphs to 4-connected
triangulations

We here prove Lemma 8.
Proof. The main idea of the construction of T is to insert vertices and edges
in every face of G (even for the exterior face).

For the sake of clarity, vertices of G are said black and vertices of T \G are
said red. The new graph T contains G as an induced subgraph, along with other
vertices and edges. More precisely, for every face of G, let P = {v0, e0, v1, e1, . . .}
be the list of vertices and edges along the face boundary (see Figure 20), where
ei is the edge between vertices vi and vi+1; there can be repetitions of vertices or
edges. For each face of G, given the list P , the graph T contains a vertex v′i for
each vertex vi, a vertex e′i for each edge ei, and an additionnal vertex t. Each
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b b

c a

Tout

(a) The horizontal anchor of abc in
the FLIS of Tout

a

c

b

Tin

(b) The FLIS of Tin

b

c

a

Tin

(c) The reflected FLIS of Tin

b b

c a

Tout

Tin

(d) The inclusion of the FLIS of
Tin in the FLIS of Tout

Figure 19: FLIS inclusion in the case of a horizontal anchor

17



1 2

3
4

5

6 7

Figure 20: A planar triangle-free graph G (in black) and a 4-
connected near-triangulation containing it as an induced subgraph
(adding red vertices and edges). The boundary lists of the two inner
faces of G are respectively {1, (1, 2), 2, (2, 3), 3, (3, 4), 4, (4, 7), 7, (7, 1)},
{1, (1, 7), 7, (7, 4), 4, (4, 5), 5, (5, 6), 6, (6, 5), 5, (5, 1)} The outer face is
{1, (1, 2), 2, (2, 3), 3, (3, 4), 4, (4, 5), 5, (5, 1)}.

vertex v′i is connected to e′i and e′i+1 (with subscripts addition done modulo the
size of the face), each vertex vi is connected to v′i, e′i−1 and e′i, and the vertex t
is connected to all vertices v′i and e′i (see Figures 20 and 21 for examples).

The new graph T is a triangulation, and we now show that it is 4-connected,
i.e., has no separating triangle. Suppose that there is a separating triangle in
the new graph. There are four cases depending on the colors of the edges of this
triangle:

• The separating triangle contains three black edges. It is impossible since
G is triangle-free.

• The separating triangle contains exactly one red edge. One of its endpoints
must be a red vertex. But a red vertex is adjacent to only red edges, a
contradiction.

• The separating triangle contains exactly two red edges. Then their com-
mon endpoint is a red vertex, and the triangle is made of two vertices
vi and vi+1, together with the vertex e′i. All these triangles are faces, a
contradiction.
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• The separating triangle contains three red edges. Since for each face, the
red vertices (vertices v′i, e′i and t) induce a wheel graph centered on t, with
at least 8 peripheral vertices (vertices v′i and e′i), this separating triangle
has at least one black vertex. As two adjacent black vertices are linked
by a black edge, this separating triangle has exactly one black vertex. As
the two red vertices are two adjacent v′i or e′j vertices, we have that those
are v′i and e′j , for some i and for j = i or for j = i+ 1. Such a triangle is
not separating, a contradiction.

This concludes the proof of the lemma. 2

vi

vi+1

ei

ei+1
vi+2

ei+2

vi+3

v′i
e′i v′i+1

e′i+1

v′i+2 e′i+2

v′i+3

t

Figure 21: Zoom on the new connections.
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