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NON-COOPERATIVE FISHER–KPP SYSTEMS: ASYMPTOTIC
BEHAVIOR OF TRAVELING WAVES

LÉO GIRARDIN

Abstract. This paper is concerned with non-cooperative parabolic reaction–diffusion
systems which share structural similarities with the scalar Fisher–KPP equa-
tion. In a previous paper, we established that these systems admit traveling
wave solutions whose profiles connect the null state to a compact subset of the
positive cone. The main object of the present paper is the investigation of a
more precise description of these profiles. Non-cooperative KPP systems can
model various phenomena where the following three mechanisms occur: local
diffusion in space, linear cooperation and superlinear competition.

1. Introduction

This paper is a sequel to a previous paper by the same author [16] where the
so-called KPP systems were investigated. The prototypical and, arguably, most
famous KPP system is the Lotka–Volterra mutation–competition–diffusion system:

∂u

∂t
− diag (d) ∆xu = diag (r) u + Mu− diag (u) Cu,

where u is a nonnegative vector containing phenotypical densities, d and r are
positive vectors containing respectively diffusion rates and growth rates, M is an
essentially nonnegative irreducible matrix with null Perron–Frobenius eigenvalue
containing mutation rates (typically a discrete Neumann Laplacian) and C is a
positive matrix containing competition rates. Although the Lotka–Volterra com-
petition–diffusion system (without mutations) is a very classical research subject,
mutations can dramatically influence some of its properties and their overall effect
is still poorly understood.

More generally, KPP systems as defined in [16] are non-cooperative (or non-
monotone, i.e. they do not satisfy a comparison principle; see Protter–Weinberger
[30, Chapter 3, Section 8]) and have started to attract attention relatively recently.
Their study requires innovative ideas and the literature is limited; a detailed bibli-
ography can be found in [16].

By adapting proofs and methods well-known in the context of the scalar KPP
equation,

∂u

∂t
− d∆xu = ru− cu2,
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NON-COOPERATIVE KPP SYSTEMS 2

first studied by Fisher [11] and Kolmogorov, Petrovsky and Piskunov [23], various
properties of these systems were established in [16]. In particular, a KPP system
equipped with a reaction term sufficiently analogous to u − u2 admits traveling
wave solutions with a half-line of possible speeds and a positive minimal speed c?.
These traveling waves are defined in a very general way: it is merely required that
they describe the invasion of 0 by a positive population density. A very natural
subsequent question is that of the evolution of the distribution u during the invasion.
Which components lead the invasion? Which components settle once the invasion
is over?

Having in mind that the waves traveling at speed c? should attract front-like and
compactly supported initial data (although this statement has yet to be proven,
since [16] only established the equality between c? and the spreading speed asso-
ciated with such initial data, and it is expected to be a very difficult problem), a
more general question is then: given a class of initial data, what is the long-time
distribution of the solution?

In the rest of the introduction, we present more precisely the problem and state
our main results. Sections 2, 3 and 4 are dedicated to the proofs of these results. Fi-
nally, open questions, interesting remarks and numerical experiments are discussed
in Section 5.

1.1. The non-cooperative KPP system. From now on, an integer N ≥ 2 is
fixed.

A positive vector d ∈ K++, a square matrix L ∈ M and a vector field c ∈
C 1
(
RN ,RN

)
are fixed. We denote for the sake of brevity D = diag (d).

We consider the following semilinear parabolic system:

∂tu−D∂xxu = Lu− c [u] ◦ u, (EKPP )

Notation Definition

[n] [1, n] ∩ N
(en,i)i∈[n] canonical basis of Rn

|•|n Euclidean norm of Rn

Bn (v, r), Sn (v, r) open ball and sphere of center v ∈ Rn and radius r > 0

≥n, >n, �n vi ≥ v̂i for all i ∈ [n], v ≥n v̂ and v 6= v̂, vi > v̂i for all i ∈ [n]

nonnegative, nonneg. nonzero, positive v ∈ Rn v ≥n 0, v >n 0, v�n 0

Kn, K+
n , K++

n sets of all nonnegative, nonneg. nonzero, positive vectors
S+n (0, 1), S++

n (0, 1) K+
n ∩ Sn (0, 1), K++

n ∩ Sn (0, 1)

Mn,n′ , Mn sets of all real matrices of dimension n× n′, n× n

In, 1n,n′ identity matrix, matrix whose every entry is equal to 1

diag (v) diagonal matrix whose i-th diagonal entry is vi

essentially nonnegative matrix matrix A such that A− min
i∈[n]

(ai,i) In is nonnegative

A ◦B Hadamard (entry-by-entry) product (ai,jbi,j)(i,j)∈[n]×[n′]

f
[
f̂
]

composition of the functions f and f̂

Table 1. General notations ( the subscripts depending only on 1
or N are omitted when the context is unambiguous)
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with u : (t, x) ∈ R2 7→ u (t, x) ∈ RN as unknown. In order to ease the notations,
we only consider one-dimensional spaces, however all forthcoming results could be
applied directly to traveling plane waves in multidimensional spaces (these solutions
being in fact one-dimensional).

When restricted to solutions u : R → RN which are constant in space, (EKPP )
reduces to

u′ = Lu− c [u] ◦ u.
(
E0
KPP

)
When restricted to solutions u : R → RN which are constant in time, (EKPP )

reduces to
−Du′′ = Lu− c [u] ◦ u. (SKPP )

When restricted to traveling solutions of the form u : (t, x) 7→ p (x− ct) with
c ∈ R, (EKPP ) reduces to

−Dp′′ − cp′ = Lp− c [p] ◦ p. (TW [c])

1.1.1. Basic KPP assumptions. The basic assumptions introduced in [16] are the
following ones.
(H1) L is essentially nonnegative and irreducible.
(H2) c (K) ⊂ K.
(H3) c (0) = 0.
(H4) There exists

(α, δ, c) ∈ [1,+∞)2 × K++

such that
N∑
j=1

li,jnj ≥ 0 =⇒ αδci ≤ ci (αn)

for all
(n, α, i) ∈ S+ (0, 1)× [α,+∞)× [N ] .

The assumption (H4) loosely means that c grows at least linearly at infinity. The
precise condition means, however, that in the set {v ∈ K | (Lv)i < 0} (which is
nonempty if and only if li,i < 0 and contains in such a case the open half-line
span (ei) ∩ K+), the growth of ci is not important. Anyway, (H4) includes the
Lotka–Volterra form of competition (linear and positive c) as well as more general
forms (see for instance Gilpin–Ayala [15]).

Recall from the Perron–Frobenius theorem that if L is nonnegative and irre-
ducible, its spectral radius ρ (L) is also its dominant eigenvalue, called the Per-
ron–Frobenius eigenvalue λPF (L), and is the unique eigenvalue associated with
a positive eigenvector. Recall also that if L is essentially nonnegative and ir-
reducible, the Perron–Frobenius theorem can still be applied. In such a case,
the unique eigenvalue of L associated with a positive eigenvector is λPF (L) =

ρ

(
L− min

i∈[N ]
(li,i) IN

)
+ min
i∈[N ]

(li,i). Any eigenvector associated with λPF (L) is re-

ferred to as a Perron–Frobenius eigenvector and the unit one is denoted nPF (L).
In view of [16, Theorems 1.3, 1.4, 1.5], in order to study traveling waves and

non-trivial long-time behavior, the following assumption is also necessary.
(H5) λPF (L) > 0.
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The collection (H1)–(H5) is always assumed from now on. Notice that, although
this does not bring any new result, the scalar KPP equation could be seen as a
particular KPP system (understanding the pair (H1) and (H5) as r > 0). Biological
interpretations of these assumptions can be found in [16, Section 1.5].

1.1.2. Traveling waves. Traveling waves are defined in [16] as follows.

Definition. A traveling wave solution of (EKPP ) is a profile–speed pair

(p, c) ∈ C 2
(
R,RN

)
× [0,+∞)

which satisfies:
• u : (t, x) 7→ p (x− ct) is a bounded positive classical solution of (EKPP );

•
(

lim inf
ξ→−∞

pi (ξ)

)
i∈[N ]

> 0;

• lim
ξ→+∞

p (ξ) = 0.

By construction, a traveling wave solution (p, c) solves (TW [c]).
The set of all profiles associated with some speed c is denoted Pc. By [16,

Theorems 1.5, 1.7], Pc is empty if

c < c? = min
µ>0

λPF
(
µ2D + L

)
µ

.

The converse statement (existence of a profile if c ≥ c?) is likely false in general but
is true provided c is monotonic in the following sense:

Dc (v) ≥ 0 for all v ∈ K.

1.2. Results: at the edge of the fronts. The distribution of the profiles near
+∞ follows the “rule of thumb” unfolded in [16]: for several standard problems,
KPP systems can be addressed exactly as KPP equations and the results are anal-
ogous.

Recall from [16, Lemma 6.2] the notation nµ = nPF
(
µ2D + L

)
for all µ ∈ R.

Recall also that the equation

λPF
(
µ2D + L

)
µ

= c

admits no real solution if c < c?, exactly one real solution µc? > 0 if c = c? and
exactly two real solutions µ2,c > µ1,c > 0 if c > c?. Define subsequently for all
c ≥ c? the quantity

µc = min

{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
=

{
µc? if c = c?,
µ1,c if c > c?.

Theorem 1.1. Let

kc =

{
0 if c > c?,
1 if c = c?.

For all traveling wave solutions (p, c), there exists A > 0 such that, as ξ → +∞,p (ξ) ∼ Aξkce−µcξnµc ,
p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .
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In particular, if d = 1N,1,

p (ξ) ∼ Aξkce−
1
2

(
c−
√
c2−4λPF (L)

)
ξ
nPF (L) .

This result is proved in Section 2.
Recall that up to a well-known change of variable x, we can always assume

without loss of generality max
i∈[N ]

di = 1.

If we have in mind the mutation–competition–diffusion system, then the ecologi-
cal interpretation of this result is the following: at the leading edge of the invasion,
the normalized distribution in phenotypes is nµc and the total population is pro-
portional to (x− ct)kc e−µc(x−ct).

In the special case c = c?, this theorem answers positively a conjecture of Morris,
Börger and Crooks [29, Section 4].

Recall that, for the scalar KPP equation, the analogous result on exponential de-
cays has two common proofs, one using ODE arguments and especially phase-plane
analysis and the other one using elliptic arguments and especially the comparison
principle. Although we could prove the above result by phase-plane analysis indeed,
the proof we will provide uses a third technique relying upon the monotonicity of
the profiles near +∞, bilateral Laplace transforms and a Ikehara theorem. In our
opinion, this technique of proof has independent interest: on one hand, it does not
require the comparison principle and, on the other hand, it might be generalizable
to non-ODE settings (space-periodic media and pulsating fronts, for instance).

1.3. Results: at the back of the fronts. On the contrary, the distribution of
the profiles near −∞ is a much more intricate question, where the multidimensional
and non-cooperative structure of the KPP system become preponderant.

Given a positive classical solution u of (SKPP ), a traveling wave connecting 0 to
u is a traveling wave whose profile p converges to u as ξ → −∞. The general aim
is to prove that all traveling waves connect 0 to some positive classical solution of
(SKPP ) and, when several solutions can be connected to 0, to determine somehow
which connection prevails. However, as will be explained in Subsection 5.1 (and was
first pointed out in Barles–Evans–Souganidis [1]), a general and precise treatment of
this problem is likely impossible. It is necessary to focus on special cases. Looking
at the literature, we find two frameworks commonly assumed to be mathematically
tractable:

• competition terms ci (v) with separated dependencies on i and on v (Cov-
ille–Fabre [6], Dockery–Hutson–Mischaikow–Pernarowski [7], Griette–Raoul
[18], Leman–Méléard–Mirrahimi [24]),
• two-component systems with linear competition and vanishingly small mu-

tations (Dockery–Hutson–Mischaikow–Pernarowski [7], Griette–Raoul [18],
Morris–Börger–Crooks [29]).

1.3.1. Separated competition.
(H6) There exist a ∈ K++ and b : RN → R such that:

• c (v) = b (v) a for all v ∈ K;
• the function w 7→ b (wei + v) is increasing in (0,+∞) for all v ∈ K

and all i ∈ [N ].
By monotonicity of c, supplementing (H1)–(H5) with (H6) implies the existence
of a profile p ∈ Pc for all c ≥ c?. The decomposition c = ba is unique up to
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a multiplicative normalization and we will assume for instance max
i∈[N ]

ai = 1. We

denote A = diag (a) (so that c (v) ◦ v = b (v) Av).
An especially interesting subcase is the intersection between (H6) and the Lotka–Volterra

competition form, where b is a linear functional, that is where there exists b ∈ K++

such that
b (v) = bTv for all v ∈ K.

The system (EKPP ) then reads

∂tu−D∂xxu = Lu−
(
bTu

)
Au.

The systems studied in Dockery–Hutson–Mischaikow–Pernarowski [7] and in Gri-
ette–Raoul [18] correspond respectively to

a = b = 1N,1

and to

(a,b) =

((
K

r
, 1

)T
,
r

K
12,1

)
.

The matrix A−1L being essentially nonnegative and irreducible, the following
eigenpair is well-defined:

(λa,na) =
(
λPF

(
A−1L

)
,nPF

(
A−1L

))
.

Applying [16, Theorem 1.4] to the following two pairs of parameters (L, c):

(L,v 7→ (11,Nv) a) ,(
A−1L,v 7→ (11,Nv) 1N,1

)
,

it is easily deduced that λPF (L) > 0 if and only if λa > 0. By strict monotonicity
of α 7→ b (αna), we can define α? > 0 as the unique solution of b (αna) = λa. It
follows easily that v? = α?na is the unique positive constant solution of (SKPP ).
In particular, if b is a linear functional, then

v? =
λa

bTna
na.

Theorem 1.2. Assume (H6), d = 1N,1 and a = 1N,1.
For all c ∈ [c?,+∞), let pc ∈ C 2 (R) such that (pc, c) is the unique traveling

wave solution of the scalar equation

∂tu− ∂xxu = λPF (L)u− b (unPF (L))u

connecting 0 to α? and satisfying pc (0) = α?

2 .
Then all p ∈Pc have the form

p : ξ 7→ pc (ξ − ξ0) nPF (L) with ξ0 ∈ R.
Consequently, p ∈Pc is unique up to translation and connects 0 to v?.

This result is proved in Section 3.2.
This theorem establishes that the set of assumptions (H6), d = 1N,1, a = 1N,1

is so restrictive that the multidimensional problem can in fact be reduced to the
scalar one. This is really the strongest result we could hope for.

Notice that it shows that the following two mutation–competition–diffusion sys-
tems:

∂tu− ∂xxu = ru + M1u−
(
bTu

)
u,



NON-COOPERATIVE KPP SYSTEMS 7

∂tu− ∂xxu = ru + M2u−
(
bTu

)
u,

with r > 0 and M1 and M2 essentially nonnegative irreducible with null Per-
ron–Frobenius eigenvalues and equal Perron–Frobenius eigenvectors, have the ex-
act same traveling wave solutions. In other words, all else being equal (neutral
internal structure), the mutation strategy does not matter. In the absence of mu-
tations, neutral genetic diversity has been studied recently in a collection of papers
by Garnier, Hamel, Roques and others (for instance, we refer to [3, 13]). In view of
their results on pulled fronts, the preceding theorem indicates that the presence of
mutations is a necessary and sufficient condition to ensure the preservation of the
genetic diversity during the invasion.

As a side note (slightly off topic), we can use the reduction to the scalar problem
to prove the following generalization of a result due to Coville and Fabre [6, Theorem
1.1].

Theorem 1.3. Assume (H6) and a = 1N,1.
All positive classical solutions of

(
E0
KPP

)
set in (0,+∞) converge as t → +∞

to v?.
Furthermore, if d = 1N,1, then, for all bounded intervals I ⊂ R, all bounded

positive classical solutions u of (EKPP ) set in (0,+∞)× R satisfy

lim
t→+∞

sup
x∈I
|u (t, x)− v?| = 0.

Consequently, if d = 1N,1, the set of bounded nonnegative classical solutions of
(SKPP ) is exactly {0,v?}.

This result is proved in Section 3.3.
We believe that the preceding two theorems are robust, in that they should

remain true in a neighborhood of (d,a) = (1N,1,1N,1). In particular, Theorem 1.2
could be extended by showing with the implicit function theorem that no solution
of (TW [c]) bifurcates from v? at (d,a) = (1N,1,1N,1). Theorem 1.3 could be
extended thanks to Conley index theory and a Morse decomposition, exactly as in
Dockery–Hutson–Mischaikow–Pernarowski [7, Section 4]. For the sake of brevity,
we do not address these questions.

1.3.2. Two-component systems with linear competition and small mutations.
(H7) N = 2, there exists C� 0 such that

c (v) = Cv for all v ∈ K,

and the vector r ∈ RN given by the unique decomposition of L of the form

L = diag (r) + M with 11,NM = 0

is positive.
By monotonicity of c, supplementing (H1)–(H5) with (H7) implies the existence

of a profile p ∈Pc for all c ≥ c?.
When (H7) is satisfied, we denote R = diag (r) and define (η,m) ∈ (0,+∞) ×

S++ (0, 1) such that

M = η

(
−1 1
1 −1

)
diag (m) .

The quantity η is unique and commonly referred to as the mutation rate.
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In other words, we are considering the following system:{
∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1 + ηm1 (u2 − u1)
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2 + ηm2 (u1 − u2)

The idea is to assume that η is small compared to r so that the mutation–competition–diffusion
system is close to the pure competition–diffusion system{

∂tu1 − d1∂xxu1 = r1u1 − (c1,1u1 + c1,2u2)u1
∂tu2 − d2∂xxu2 = r2u2 − (c2,1u1 + c2,2u2)u2

. (EKPP )0

Indeed, two-component competition–diffusion systems being cooperative up to the
change of unknowns v = r2

c2,2
−u2, the maximum principle then simplifies noticeably

the characterization of the asymptotic behaviors. In particular, defining αi = ri
ci,i

for all i ∈ {1, 2} and, if det C 6= 0,

vm =
1

det C

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
,

the asymptotic behavior of the solutions of the spatially homogeneous competitive
system

u′ = Ru− (Cu) ◦ u

is well-known.
(1) [Extinction of u2] If r1r2 ≥ max

(
c1,1
c2,1

,
c1,2
c2,2

)
and r1

r2
> min

(
c1,1
c2,1

,
c1,2
c2,2

)
, then

α1e1 is globally asymptotically stable in K++ ∪ (span (e1) ∩ K+) and α2e2

is globally asymptotically stable in span (e2) ∩ K+.
(2) [Coexistence] If c1,2c2,2

< r1
r2
<

c1,1
c2,1

, then vm ∈ K++, vm is globally asymptot-
ically stable in K++ and, for all i ∈ {1, 2}, αiei is globally asymptotically
stable in span (ei) ∩ K+.

(3) [Competitive exclusion] If c1,2
c2,2

> r1
r2

>
c1,1
c2,1

, then vm ∈ K++ and a one-
dimensional curve S, referred to as the separatrix, induces a partition(
K+
1 ,S,K

+
2

)
of K+ such that αiei is globally asymptotically stable in K+

i

for all i ∈ {1, 2} and vm is globally asymptotically stable in S.
(4) [Extinction of u1] If r1

r2
≤ min

(
c1,1
c2,1

,
c1,2
c2,2

)
and r1

r2
< max

(
c1,1
c2,1

,
c1,2
c2,2

)
, then

α2e2 is globally asymptotically stable in K++ ∪ (span (e2) ∩ K+) and α1e1

is globally asymptotically stable in span (e1) ∩ K+.
The cases 1, 2 and 4 are monostable whereas the case 3 is bistable. The case
r1
r2

=
c1,1
c2,1

=
c1,2
c2,2

is degenerate and is usually discarded.
In the forthcoming statements, η is understood as a positive parameter which

can be passed to the limit η → 0 (notice that for all η > 0, (H1)–(H5) is satisfied
indeed). The system (EKPP ) and the objects Pc and c? depend on η and might
be denoted respectively (EKPP )η, Pc,η and c?η. We define subsequently E as the
set of all (η,p, c) ∈ (0,+∞)× C 2

(
R,R2

)
× (0,+∞) such that (p, c) is a traveling

wave solution of (EKPP )η. Contrarily to the case η > 0, a traveling wave solution
of the limiting system (EKPP )0 has no prescribed asymptotic behaviors.

We point out that Morris–Börger–Crooks [29] showed that the limit c?0 of
(
c?η
)
η>0

as η → 0 is well-defined and satisfies as expected

c?0 ≥ 2
√

max
i∈{1,2}

(diri),
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with, quite interestingly, strict inequality if

1 +

√
1 +

αi
α3−i

<
2c3−i,3−i
ci,3−i

and
di
d3−i

+
ri
r3−i

> 2 for all i ∈ {1, 2} .

However, they did not characterize the limiting profiles. This is what we intend to
do here (but will only partially achieve).

In the following conjecture, stability is to be understood as local asymptotic
stability with respect to

(
E0
KPP

)
.

Conjecture 1.4. Assume (H7). Let (pη)η>0 and (cη)η≥0 such that{
(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη.

i) Assume that both α1e1 and α2e2 are stable and that cα1e1→α2e2
6= 0.

Then there exists (ξη)η>0 such that (ξ 7→ pη (ξ + ξη) , cη)η>0 converges in(
C 2
loc

(
R,R2

)
∩L∞

(
R,R2

))
×R as η → 0 to a semi-extinct traveling wave

solution (p0ei, c0) of (EKPP )0 connecting 0 to αiei with

i =

{
1 if cα1e1→α2e2 > 0,
2 if cα1e1→α2e2

< 0.

ii) Assume that there is a unique stable state vs ∈ {α1e1, α2e2,vm}. Then
one and only one of the following two properties holds true.
(a) There exists (ξη)η>0 such that (ξ 7→ pη (ξ + ξη) , cη)η>0 converges in(

C 2
loc

(
R,R2

)
∩L∞

(
R,R2

))
×R as η → 0 to a component-wise mono-

tonic traveling wave solution (p0, c0) of (EKPP )0 connecting 0 to vs.
(b) There exist

(
ξ1η
)
η>0

,
(
ξ2η
)
η>0

and a unique i ∈ Iu such that, as η → 0:
• ξ2η − ξ1η → +∞;
•
(
ξ 7→ pη

(
ξ + ξ2η

)
, cη
)
η>0

converges in C 2
loc

(
R,R2

)
×R to a semi-

extinct traveling wave solution (pfrontei, c0) of (EKPP )0 con-
necting 0 to αiei;

•
(
ξ 7→ pη

(
ξ + ξ1η

)
, cη
)
η>0

converges in C 2
loc

(
R,R2

)
×R to a component-

wise monotonic traveling wave solution (pback, c0) of (EKPP )0
connecting αiei to vs.

We emphasize once more that traveling waves with minimal speed c?η do not, in
general, converge to a traveling wave with minimal speed. In particular, Figure 5.1
illustrates an interesting case of invasion driven by the fast phenotype u2 but where
the only settler is the slow phenotype u1. This is reminiscent of Griette–Raoul [18],
where an analogous result was established analytically under a stronger scaling.

Conjecture 1.4, i) is expected to be a very difficult problem and seems to be
beyond our reach. We leave it as an open problem.

On the contrary, regarding Conjecture 1.4, ii), a partial confirmation is within
reach. On one hand, we point out that the special case

c1,1
c2,1

=
c1,2
c2,2

= 1 and d = 12,1

is somehow solved by Theorem 1.2 without any assumption on r. On the other
hand, we also have the following general theorem which concerns all monostable
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cases apart from
c1,1
c2,1

<
c1,2
c2,2

=
r1
r2
,

r1
r2

=
c1,1
c2,1

<
c1,2
c2,2

.

Theorem 1.5. Assume (H7) and the existence of i ∈ {1, 2} such that
ri
r3−i

>
ci,3−i
c3−i,3−i

.

Let

vs =

{
αiei if ri

r3−i
≥ ci,i

c3−i,i
,

vm if ri
r3−i

<
ci,i
c3−i,i

.

For all (pη)η>0 and (cη)η≥0 such that{
(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη,

there exists (ζη)η>0 such that, as η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0 converges up
to extraction in C 2

loc

(
R,R2

)
× R to a traveling wave solution (p, c0) of (EKPP )0

achieving one of the following connections:
(1) 0 to vs,
(2) α3−ie3−i to vs,
(3) 0 to αiei with p semi-extinct.

This result is proved in Section 4.
Let us clarify how this result confirms partially Conjecture 1.4, ii) and what are

the remaining open questions.
• Assume vs = vm. Up to the component-wise monotonicity of the profile in

the first and second cases, the three connections above correspond exactly
to the three possible limiting profiles of Conjecture 1.4, ii). Moreover we
can apply the theorem with i = 1 and i = 2 and obtain two limiting
profiles. However, at this point, the normalizations

(
ζ1η
)
η>0

and
(
ζ2η
)
η>0

are unrelated and nine possible pairs of profiles seem to exist. We do not
know how to prove that only the three following situations actually occur:
0 to vm and 0 to vm with

(
ζ2η − ζ1η

)
η>0

bounded, semi-extinct 0 to α1e1

and α1e1 to vm with ζ2η − ζ1η → −∞, semi-extinct 0 to α2e2 and α2e2 to
vm with ζ2η − ζ1η → +∞.

• Assume vs = αiei. The third connection above is actually a subcase of
the first one and the normalization (ζη)η>0 is unable to track the semi-
extinct limiting profile connecting 0 to α3−ie3−i. This is not a question
of optimality of the proof: the normalization (ζη)η>0 is precisely chosen so
that pi is always non-zero. Hence (ζη)η>0 corresponds either to (ξη)η>0 or to(
ξ1η
)
η>0

. The construction of the normalization
(
ξ2η
)
η>0

of Conjecture 1.4,
ii) is a completely open problem. Of course, once this problem is solved,
it remains to relate the limiting profiles and the normalizations, as in the
case vs = vm.
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2. The edge of the fronts

In this section, we fix a traveling wave (p, c) and we prove Theorem 1.1.

2.1. Preparatory lemmas and the Ikehara theorem.

Lemma 2.1. For all i ∈ [N ],{
lim inf
+∞

−p′i
pi

, lim sup
+∞

−p′i
pi

}
⊂

{
µ ∈ (0,+∞) |

λPF
(
µ2D + L

)
µ

= c

}
,

{
lim inf
+∞

p′′i
pi
, lim sup

+∞

p′′i
pi

}
⊂

{
µ2 ∈ (0,+∞) |

λPF
(
µ2D + L

)
µ

= c

}
.

Consequently, there exists ξ̃ ∈ R such that p is component-wise strictly convex
in [ξ̃,+∞).

Proof. The proof of

min
i∈[N ]

lim inf
+∞

−p′i
pi
∈

{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
can be found in [16, Proposition 6.10]. The proof also directly yields that for any
sequence (ξn)n∈N such that ξn → +∞ and such that there exists j ∈ [N ] satisfying

lim
n→+∞

−p′j (ξn)

pj (ξn)
= min
i∈[N ]

lim inf
+∞

−p′i
pi

,

convergence occurs in the following sense:

lim
n→+∞

(
−p′i (ξn)

pi (ξn)

)
i∈[N ]

=

(
min
i∈[N ]

lim inf
+∞

−p′i
pi

)
1N,1.

The proof of

max
i∈[N ]

lim sup
+∞

−p′i
pi
∈

{
µ > 0 |

λPF
(
µ2D + L

)
µ

= c

}
is a slight modification of the preceding proof, where the quantity

Λ = max
i∈[N ]

lim sup
ξ→+∞

p′i (ξ)

pi (ξ)

is replaced by

Λ = min
i∈[N ]

lim inf
ξ→+∞

p′i (ξ)

pi (ξ)
.

Similarly, we also obtain directly that for any sequence (ξn)n∈N such that ξn → +∞
and such that there exists j ∈ [N ] satisfying

lim
n→+∞

−p′j (ξn)

pj (ξn)
= max
i∈[N ]

lim sup
+∞

−p′i
pi

,

convergence occurs in the following sense:

lim
n→+∞

(
−p′i (ξn)

pi (ξn)

)
i∈[N ]

=

(
max
i∈[N ]

lim sup
+∞

−p′i
pi

)
1N,1.
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The statements regarding
(
p′′i
pi

)
i∈[N ]

are again established very similarly. The

quantity

Λ = max
i∈[N ]

lim sup
ξ→+∞

p′i (ξ)

pi (ξ)

is replaced by

Θ = min
i∈[N ]

lim inf
ξ→+∞

p′′i (ξ)

pi (ξ)

and

Θ = max
i∈[N ]

lim inf
ξ→+∞

p′′i (ξ)

pi (ξ)

respectively, and the function

wn = Λp̂n − p̂′n

is replaced by
wn = Θp̂n − p̂′′n

and
wn = Θp̂n − p̂′′n

respectively. Since p̂∞ is nonnegative nonzero and w∞ = 0, necessarily Θ > 0 and
Θ > 0 and then, as in [16, Proposition 6.10], both quantities have the form µ2 with

µ solution of
λPF (µ2D+L)

µ = c.
Finally, the strict convexity in a neighborhood of +∞ is deduced exactly as the

monotonicity in the proof of [16, Proposition 6.10]. �

We will also need the Ikehara theorem [4, Proposition 2.3], commonly used in
such problems (see for instance Guo–Wu [20]), as well as a lemma due to Volpert,
Volpert and Volpert [33, Chapter 5, Lemma 4.1].

Theorem 2.2. [Ikehara] Let f : (0,+∞) → (0,+∞) be a decreasing function.
Assume that there exist λ ∈ (0,+∞), k ∈ (−1,+∞) and an analytic function

h :
(
0, λ
]

+ iR→ (0,+∞)

such that ∫ +∞

0

eλxf (x) dx =
h (λ)(

λ− λ
)k+1

for all λ ∈
(
0, λ
)
.

Then

lim
x→+∞

f (x)
eλx

xk
=

h
(
λ
)

Γ
(
λ+ 1

) .
Lemma 2.3. [Volpert–Volpert–Volpert] Let A be an essentially nonnegative matrix
and let z ∈ CN .

If {
spA ⊂ (−∞, 0) + iR,
(Re (zk))k∈[N ] ≤ 0,

then
sp (A + diag (z)) ⊂ (−∞, 0) + iR.
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2.2. Convergence at the edge. Let

kc =

{
0 if c > c?,
1 if c = c?.

Proposition 2.4. There exists A > 0 such that, as ξ → +∞,p (ξ) ∼ Aξkce−µcξnµc ,
p′ (ξ) ∼ −µcp (ξ) ,
p′′ (ξ) ∼ µ2

cp (ξ) .

Proof. Fix temporarily µ ∈ (0, µc) + iR. In view of Lemma 2.1 and of the Gronwall
lemma,

ξ 7→ eµξp (ξ) ∈ L 1
(
R,CN

)
,

ξ 7→ eµξc (p (ξ)) ◦ p (ξ) ∈ L 1
(
R,CN

)
.

Multiplying (TW [c]) by eµξ, integrating by parts over R and defining

f+ (µ) =

∫ +∞

0

eµξp (ξ) dξ,

f− (µ) =

∫ 0

−∞
eµξp (ξ) dξ,

fc (µ) =

∫
R
eµξc (p (ξ)) ◦ p (ξ) dξ,

we get easily (
µ2D− cµI + L

)
(f+ (µ) + f− (µ)) = fc (µ) ,

whence, denoting adj
(
µ2D− cµI + L

)
the adjugate matrix of µ2D − cµI + L, we

find

det
(
µ2D− cµI + L

)
f+ (µ) = adj

(
µ2D− cµI + L

)
fc (µ)−det

(
µ2D− cµI + L

)
f− (µ) .

The functions f+, f− and fc defined above are respectively analytic in (0, µc)+iR,
(0,+∞) + iR and (0, 2µc) + iR (by local Lipschitz-continuity of c, (H2) and global
boundedness of p).

The function
C → C
µ 7→ det

(
µ2D− cµI + L

)
is polynomial (whence analytic). Let Z ⊂ C be the finite set of its roots, counted
with algebraic multiplicity. In particular, µc ∈ Z with multiplicity kc + 1.

For all µ ∈ ((0, µc) + iR) \Z,

f+ (µ) =
(
µ2D− cµI + L

)−1
fc (µ)− f− (µ) .

The function
µ 7→

(
µ2D− cµI + L

)−1
fc (µ)

is well-defined and analytic in ((0, µc) + iR) \Z, where it coincides with f+ + f−
which is analytic in (0, µc) + iR.

Define the analytic function
h : (0, µc) + iR → RN

µ 7→ (µc − µ)
kc+1

f+ (µ)

so that
f+ (µ) =

h (µ)

(µc − µ)
kc+1

for all µ ∈ (0, µc) + iR.
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Since, for all µ ∈ ((0, µc) + iR) \Z,

h (µ) =
(µc − µ)

kc+1

det (µ2D− cµI + L)
adj
(
µ2D− cµI + L

)
fc (µ)− (µc − µ)

kc+1
f− (µ)

the function h can be analytically extended on (0, µc] + iR if and only if

µ 7→ (µc − µ)
kc+1

det (µ2D− cµI + L)

has no pole in {µc}+ iR.
Let θ ∈ R\ {0}. In view of

(µc + iθ)
2
D− c (µc + iθ) I + L = µ2

cD− cµcI + L− θ2D + iθ (2µcD− cI)

and

λPF
(
µ2
cD− cµcI + L− θ2D

)
≤ λPF

(
µ2
cD− cµcI + L− θ2 min

k∈[N ]
dk

)
= λPF

(
µ2
cD− cµcI + L

)
− θ2 min

k∈[N ]
dk

= −θ2 min
k∈[N ]

dk

Lemma 2.3 yields that

sp
((
µ2
cD− cµcI + L− θ2D

)
+ diag (iθ (2µcdk − c))k∈[N ]

)
⊂ (−∞, 0) + iR.

Hence µ 7→ (µc−µ)kc+1

det(µ2D−cµI+L) has no pole in {µc}+ i (R\ {0}) and then it has no pole
in {µc}+ iR indeed.

We are now in position to apply the Ikehara theorem component-wise and to
deduce from it the existence of n ∈ S+ (0, 1) and A ≥ 0 such that

lim
ξ→+∞

p (ξ)
eµcξ

ξkc
= An.

In particular, for all k ∈ [N ] such that nk > 0,

lim
ζ→+∞

p (ξ + ζ)

pk (ζ)
eµcξ =

1

nk
n.

However, back to the proof of Lemma 2.1, there exists k ∈ [N ] and a sequence
(ξn)n∈N such that ξn → +∞,

(
−p′k(ξn)
pk(ξn)

)
n∈N

converges to

µ = max
k∈[N ]

lim sup
+∞

−p′k
pk

,

and (
ξ 7→ p (ξ + ζn)

pk (ζn)

)
n∈N

converges in C 2
loc to

ξ 7→ 1

nµ,k
e−µξnµ.

This clearly implies µ = µc and n = nµc .
Consequently, A > 0,

lim
ξ→+∞

p (ξ)
eµcξ

ξkc
= Anµc ,
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and, by Lemma 2.1,

µc ≤ min
k∈[N ]

lim inf
+∞

−p′k
pk
≤ max
k∈[N ]

lim sup
+∞

−p′k
pk

= µc,

that is

lim
+∞

(
−p′k
pk

)
k∈[N ]

= µc.

Quite similarly, we also obtain

lim
+∞

(
p′′k
pk

)
k∈[N ]

= µ2
c .

�

If d = 1N,1, the quantities at hand are:

(µc,nµc) =
(
min

{
µ > 0 | λPF

(
µ2I + L

)
= cµ

}
,nPF

(
µ2
cI + L

))
=

(
1

2

(
c−

√
c2 − 4λPF (L)

)
,nPF (L)

)
and an obvious corollary follows.

3. The back of the fronts: separated competition

In this section, we assume (H6) and a = 1N,1 and prove Theorem 1.2 and
Theorem 1.3.

3.1. Main tools: Jordan normal form and Perron–Frobenius projection.
Let m ∈ [N ] be the number of pairwise distinct eigenvalues of L (λPF (L) being
simple, m ≥ 2) and let (λk)k∈[m] ∈ Cm be the pairwise distinct complex eigenvalues
of L ordered so that (Re (λk))k∈[m] is a nondecreasing family (in particular, λm =

λPF (L) and Re (λm−1) < λPF (L)).
Let P ∈ GL (C) be such that J = PLP−1 is the Jordan normal form of L:

J =


λPF (L) 0 · · · 0

0 Jm−1
. . .

...
...

. . . . . . 0
0 · · · 0 J1

 ,

where, for all k ∈ [m− 1], Jk is the (upper triangular) Jordan block associated with
the eigenvalue λk.

Noticing that
LP−1e1 = P−1Je1 = λPF (L) P−1e1,

eT1 PL = eT1 JP = λPF (L) eT1 P,

it follows that P−1e1 ∈ spannPF (L) and eT1 P ∈ spannPF
(
LT
)T . In particular,

we can normalize without loss of generality P so that P−1e1 = nPF (L) and then
deduce from eT1 PnPF (L) = 1 that

eT1 P =
1

nPF (LT )
T

nPF (L)
nPF

(
LT
)T
.
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From the preceding equality, it follows directly that the Perron–Frobenius pro-
jection, defined as

ΠPF (L) =
nPF (L) nPF

(
LT
)T

nPF (LT )
T

nPF (L)
,

satisfies
PΠPF (L) P−1 = diag (e1) .

3.2. Uniqueness up to translation of the profile. In this subsection, we as-
sume d = 1N,1, we fix c ≥ c? and we prove Theorem 1.2. The scalar front pc is
defined as in the statement of the theorem.

Proposition 3.1. All p ∈Pc have the form

p : ξ 7→ pc (ξ − ξ0) nPF (L) with ξ0 ∈ R.

Proof. Let p ∈Pc and

q = Pp ∈ C 2
(
R,CN

)
∩L∞

(
R,CN

)
.

Multiplying (TW [c]) on the left by P, we get

−q′′ − cq′ = Jq− b
[
P−1q

]
q in R,

and in particular

−q′′1 − cq′1 =
(
λPF (L)− b

[
P−1q

])
q1 in R.

Since

(ΠPF (L) p)
T

nPF (L) =
(
P−1diag (e1) q

)T
nPF (L)

= q1
(
P−1e1

)T
nPF (L)

= q1,

q1 is real-valued and in fact positive in R.
First, let us verify that qk

q1
is globally bounded in R for all k ∈ [N ] \ {1}. It is

bounded in (−∞, 0] since inf
(−∞,0]

q1 > 0 by [16, Theorem 1.5, iii)]. It is bounded

in [0,+∞) since a left-multiplication of the first equivalent of Theorem 1.1 by P
yields

q (ξ) ∼ Aξke−
1
2

(
c−
√
c2−4λPF (L)

)
ξ
e1

whence

lim sup
+∞

∣∣∣∣qkq1
∣∣∣∣ = 0.

Next, let us show by induction that qN+1−k = 0 in R for all k ∈ [N − 1].
• Basis: k = 1. Due to the special form of J, the equation satisfied by qN is

−q′′N − cq′N =
(
λ1 − b

[
P−1q

])
qN in R.

Define z = qN
q1

and w = |z|2. The function w is nonnegative and globally
bounded. From

z′ =
q′N
q1
− q′1
q1
z,

z′′ =
q′′N
q1
− q′′1
q1
z − 2q′1

q1
z′,
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it follows

−z′′ − q1c+ 2q′1
q1

z′ − q′′1 + cq′1
q1

z =
(
λ1 − b

[
P−1q

])
z in R.

Using the equality satisfied by q1, this equation reads:

−z′′ − q1c+ 2q′1
q1

z′ + (λPF (L)− λ1) z = 0 in R.

Now, multiplying by z, taking the real part, defining

γ = 2 (λPF (L)− Re (λ1)) > 0

and using the obvious equality

Re (z′′z) = Re (z)
′′Re (z) + Im (z)

′′ Im (z)

=
1

2
w′′ −

(
Re (z)

′)2 − (Im (z)
′)2

,

it follows

−w′′ − q1c+ 2q′1
q1

w′ + γw ≤ 0 in R.

This inequality implies the nonexistence of local maxima of w. Since w ∈
C 1 (R), there exists consequently ξ0 ∈ R such that w is decreasing on
(−∞, ξ0) and increasing on (ξ0,+∞). Therefore w has well-defined limits
at ±∞ and since w ∈ L∞ (R), these limits are finite. By classical elliptic
regularity and the Harnack inequality (see Gilbarg–Trudinger [14]) applied
to the equation satisfied by q1,

q′1
q1

is bounded in R. By elliptic regularity
again, applied this time to the equation

−w′′ − q1c+ 2q′1
q1

w′ + γw = −2
(
Re (z)

′)2 − 2
(
Im (z)

′)2
,

the limits of w have to be null, whence w itself is null, and then qN is null.
• Inductive step: let k ∈ [N − 1] \ {1} and assume qN+1−k = 0. Defining

λ = jN−k,N−k ∈ spL\ {λPF (L)} ,

the equation satisfied by qN+1−(k+1) = qN−k is

−q′′N−k − cq′N−k =
(
λ− b

[
P−1q

])
qN−k in R.

Repeating the argument detailed in the previous step shows similarly that
qN−k is null.

Hence the proof by induction is ended and yields indeed q = q1e1 in R. Now, back
to the equation satisfied by q1, we find

−q′′1 − cq′1 = (λPF (L)− b [q1nPF (L)]) q1 in R,

which implies in view of well-known results on the traveling wave equation for the
scalar KPP equation the existence of ξ0 ∈ R such that q1 coincides with ξ 7→
pc (ξ − ξ0). �



NON-COOPERATIVE KPP SYSTEMS 18

3.3. Global asymptotic stability. The auxiliary functions used in the proof of
Proposition 3.1 can be used again to prove the global asymptotic stability of v? as
stated in Theorem 1.3. In particular, the following lemma will be used repeatedly.

Lemma 3.2. There exists γ > 0 such that all bounded positive classical solutions
u of (EKPP ) set in (0,+∞)× R satisfying

inf
(t,x)∈(0,+∞)×R

nPF (L)
T

ΠPF (L) u (t, x) > 0

satisfy also

lim
t→+∞

(
eγt sup

x∈R
|(I−ΠPF (L)) u (t, x)|

)
= 0.

Proof. The proof is very similar to the first part of that of Proposition 3.1. Defining
v = Pu, the equation satisfied by v1 is

∂tv1 − ∂xxv1 =
(
λPF (L)− b

[
P−1v

])
v1 in (0,+∞)× R.

For all k ∈ [N ] \ {1}, there exists γk > 0 such that vk satisfies
∂t

(∣∣∣ vkv1 ∣∣∣2)− ∂xx(∣∣∣ vkv1 ∣∣∣2)− 2∂xv1
v1

∂x

(∣∣∣vkv1 ∣∣∣2)+ γk

∣∣∣vkv1 ∣∣∣2 ≤ 0 in (0,+∞)× R(∣∣∣ vkv1 ∣∣∣2)
|{0}×R

∈ L∞ (R, [0,+∞)) ,

that is such that zk : (t, x) 7→ e
γk
2 t
∣∣∣ vkv1 ∣∣∣2 satisfies{

∂tzk − ∂xxzk − 2∂xv1
v1

∂xzk + γk
2 zk ≤ 0 in (0,+∞)× R

(zk)|{0}×R ∈ L∞ (R, [0,+∞)) .

Since zk stays bounded locally in time, by a classical argument (detailed for
instance in [16, Proposition 3.4]), zk vanishes uniformly in space as t → +∞.
Consequently,

e
γk
4 t sup

x∈R
|vk| → 0 as t→ +∞.

The conclusion follows from γ = min
k∈[N ]

γk
4 and the following obvious algebraic

equality:

(I−ΠPF (L)) u = P−1

(
N∑
k=2

vkek

)
.

�

We begin with the case of homogeneous initial data, which does not require
d = 1N,1 since (EKPP ) reduces to

(
E0
KPP

)
in this context.

Proposition 3.3. All positive classical solutions of
(
E0
KPP

)
set in (0,+∞) con-

verge as t→ +∞ to v?.

Proof. Once again, the proof is very similar to that of Proposition 3.1.
Fix a positive classical solution v of

(
E0
KPP

)
. By [16, Theorem 1.1], v (1)� 0.

Hence the function u : t 7→ v (t+ 1) is a classical solution of
(
E0
KPP

)
set in (0,+∞)

which is positive in [0,+∞) (whereas v (0) might have null components) and which
converges to v? if and only if v converges to v?.
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The function u = nPF (L)
T

ΠPF (L) u satisfies

u′ = λPF (L)u− b [u]u.

In order to apply Lemma 3.2, it suffices to verify

inf
t∈(0,+∞)

u (t) > 0.

On one hand, since u is positive in [0,+∞), u is positive in [0,+∞) as well. Hence
any t > 0 such that u′ (t) = 0 is such that b (u (t)) = λPF (L) and consequently
any local minimum is larger than some positive constant. On the other hand,
lim inf
t→+∞

u > 0 is a direct consequence of the persistence result [16, Theorem 1.3].

Since b is Lipschitz-continuous on the compact set {v ∈ K | v ≤ k}, there exists
C1 > 0 such that

|b [unPF (L)]− b [u]| ≤ C1 |(I−ΠPF (L)) u| in [0,+∞),

Now u satisfies

u′ = λPF (L)u− b [unPF (L)]u+ (b [unPF (L)]− b [u])u,

with, by Lemma 3.2,

(b [unPF (L)]− b [u])u = o (u) as t→ +∞.
It follows easily (see for instance [24]) that u converges to the unique constant

α? > 0 such that λPF (L) = b [α?nPF (L)], which precisely means

lim
t→+∞

u (t) = v?.

�

Finally, at the expense of assuming d = 1N,1, we extend the previous result to
non-homogeneous initial data.

Proposition 3.4. Assume d = 1N,1. Then, for all bounded intervals I ⊂ R, all
bounded positive classical solutions u of (EKPP ) set in (0,+∞)× R satisfy

lim
t→+∞

sup
x∈I
|u (t, x)− v?| = 0.

Consequently, if d = 1N,1, the set of bounded nonnegative classical solutions of
(SKPP ) is exactly {0,v?}.

Proof. Let (tn)n∈N ∈ (0,+∞)
N such that lim

n→+∞
tn = +∞. Then, by classical par-

abolic estimates (Lieberman [27]) and a diagonal extraction process, the sequence

(un)n∈N = ((t, x) 7→ u (t+ tn, x))n∈N

converges up to extraction to an entire classical solution of (EKPP ) valued in
N∏
i=1

[ν, gi (0)] (see [16, Theorems 1.2 and 1.3]).

Now let us prove that v? is the unique bounded entire classical solution ũ of
(EKPP ) satisfying (

inf
R2
ũi

)
i∈[N ]

� 0.

Let ũ be such a solution. The function ũ = nPF (L)
T

ΠPF (L) ũ satisfies

∂tũ− ∂xxũ = λPF (L) ũ− b [ũnPF (L)] ũ+ (b [ũnPF (L)]− b [ũ]) ũ.
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For all τ ∈ R,
inf

(t,x)∈(0,+∞)×R
ũ (t+ τ, x) > 0.

By Lemma 3.2, there exists C > 0 such that, for all t > 0 and all τ ∈ R,

sup
x∈R
|ũ (t+ τ, x) nPF (L)− ũ (t+ τ, x)| ≤ Ce−γt.

It follows that for all t > 0,

sup
(t′,x)∈R2

|ũ (t′, x) nPF (L)− ũ (t′, x)| ≤ Ce−γt

and then passing the right-hand side to the limit t→ +∞, we find

ũ (t′, x) nPF (L) = ũ (t′, x) for all (t′, x) ∈ R2.

Consequently, ũ satisfies

∂tũ− ∂xxũ = λPF (L) ũ− b [ũnPF (L)] ũ.

By standard results on the scalar KPP equation, ũ = α? in R2, that is ũ = v?.
A standard compactness argument ends the proof. �

4. The back of the fronts: vanishingly small mutations in monostable
two-component systems

In this section, we assume (H7) and recall the existence and uniqueness of
(r, η,m) ∈ K++ × (0,+∞)× S++ (0, 1) such that

L = R + η

(
−1 1
1 −1

)
M with (R,M) = (diag (r) , diag (m)) .

The various objects and notations of the problem now depend a priori on η and a
subscript η might be added accordingly. The following definitions are recalled:

αi =
ri
ci,i

for all i ∈ {1, 2} ,

vm =
1

det C

(
r1c2,2 − r2c1,2
r2c1,1 − r1c2,1

)
if det C 6= 0,

E =
{

(η,p, c) ∈ (0,+∞)
2 × C 2

(
R,R2

)
| p ∈Pc,η, c ≥ c?η

}
,

∂tu−D∂xxu = Ru− (Cu) ◦ u. (EKPP )0

4.1. Preparatory lemmas. The proof of Theorem 1.5 will use the following lem-
mas which are of independent interest.

Lemma 4.1. Let i ∈ {1, 2}, j = 3− i and

η ∈
(

0,
rici,j
mjci,i

]
.

Then for all traveling wave solutions (p, c) of (EKPP )η,

pi ≤ αi in R.

Remark. This lemma is straightforwardly generalizable to the case N > 2.
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Proof. Having in mind the proof of [16, Theorem 1.5, ii)], it suffices to investigate
the sign of

ripi−ηmipi+ηmjpj−(ci,ipi + ci,jpj) pi = pi (ri − ηmi − ci,ipi)+pj (ηmj − ci,jpi) .

This quantity is nonpositive provided

pi ≥ max

(
ri − ηmi

ci,i
,
ηmj

ci,j

)
.

Since
ri
ci,i
≥ ri − ηmi

ci,i
for all η ≥ 0,

ri
ci,i
≥ ηmj

ci,j
for all η ≤ rici,j

mjci,i
,

we deduce indeed pi ≤ ri
ci,i

. �

Lemma 4.2. Let i ∈ {1, 2}, j = 3− i and assume

ri
rj
>
ci,j
cj,j

.

Let

ηi =
1

2
min

(
rjcj,i
micj,j

,
rj
mi

(
ri
rj
− ci,j
cj,j

))
,

ρi =
1

2

rj
ci,i

(
ri
rj
− ci,j
cj,j

)
.

Then for all ρ ∈ (0, ρi], all η ∈ (0, ηi) and all traveling wave solutions (p, c) of
(EKPP )η, there exists a unique

ξρ ∈ p−1i ({ρ}) .

Furthermore pi is decreasing in (ξρ,+∞) and pi − ρ is positive in (−∞, ξρ).

Remark. The following proof is mostly due to Griette–Raoul [18, Proposition 5.1].

Proof. Let ζ ∈ R such that pi (ζ) is a local minimum of pi. Then

ripi (ζ)− ηmipi (ζ) + ηmjpj (ζ)− (ci,ipi (ζ) + ci,jpj (ζ)) pi (ζ) ≤ 0.

This implies

ripi (ζ)− ηmipi (ζ)− (ci,ipi (ζ) + ci,jpj (ζ)) pi (ζ) < 0,

whence

ri − ηmi < ci,ipi (ζ) + ci,jpj (ζ) ,

whence by Lemma 4.1

ri − ηmi < ci,ipi (ζ) + ci,j
rj
cj,j

,
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and then

pi (ζ) >
1

ci,i

(
ri −

rjci,j
cj,j

)
− ηmi

ci,i

>
rj
ci,i

(
ri
rj
− ci,j
cj,j

)
− ηimi

ci,i

≥ 1

2

rj
ci,i

(
ri
rj
− ci,j
cj,j

)
= ρi.

Now let ρ ∈ (0, ρi] and ξρ ∈ p−1i ({ρ}).
Since pi (ξρ) cannot be a local minimum, there exists a neighborhood of ξρ in

which pi is strictly monotonic. Assume it is increasing. Then by continuity of p′i
and the previous estimate on local minima, pi is increasing in (−∞, ξρ). By classical
elliptic regularity, p converges as ξ → −∞ to a solution of Lv = Cv◦v, and by [16,
Theorem 1.5, iii)], this solution is positive. But in view of the preceding estimates,
necessarily

lim
ξ→−∞

pi (ξ) > ρi ≥ pi (ξρ) ,

which contradicts the monotonicity of pi in (−∞, ξρ). Hence pi is decreasing in a
neighborhood of ξρ and then in (ξρ,+∞). Consequently,

p−1i ({ρ}) = {ξρ} .

This holds for all ρ ∈ (0, ρi] and therefore ends the proof. �

4.2. Convergence at the back. Let i ∈ {1, 2}, j = 3 − i, (cη)η≥0 and (pη)η>0

such that {
(η,pη, cη) ∈ E for all η > 0,
c0 = lim

η→0
cη,

and assume from now on that
ri
rj
>
ci,j
cj,j

so that the assumptions of Theorem 1.5 are satisfied. Define subsequently

vs =

{
αiei if ri

rj
≥ ci,i

cj,i
,

vm if ri
rj
<

ci,i
cj,i

.

Proposition 4.3. There exists (ζη)η>0 such that, as η → 0, (ξ 7→ pη (ξ + ζη) , cη)η>0

converges up to extraction in C 2
loc

(
R,R2

)
×R to a traveling wave solution (pback, c0)

of (EKPP )0 achieving one of the following connections:
(1) 0 to vs,
(2) αjej to vs,
(3) 0 to αiei with p semi-extinct.

Proof. Let ρ = min (ρi, vs,i). By virtue of Lemma 4.2, for all η > 0, there exists a
unique ζη such that:

• pη,i is decreasing in (ζη,+∞),
• pη,i (ζη) = ρ,
• pη,i − ρ is positive in (−∞, ζη).
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By Lemma 4.1, classical elliptic estimates (Gilbarg–Trudinger [14]) and a diagonal
extraction process, (ξ 7→ pη (ξ + ξη))η>0 converges in C 2

loc up to extraction. Let p

be its limit. We have directly 0 ≤ p ≤ α in R. In view of the normalization, we
also have:

• pi is nonincreasing in (0,+∞),
• pi (0) = ρ,
• pi − ρ is nonnegative in (−∞, 0).

Let (ξn)n∈N such that ξn → −∞ as n→ +∞. Defining

p̂n : ξ 7→ p (ξ + ξn) for all n ∈ N,

by classical elliptic estimates and a diagonal extraction process again, (p̂n)n∈N
converges up to extraction in C 2

loc to a function p̂ satisfying

−Dp̂′′ − cp̂′ = Rp̂− (Cp̂) ◦ p̂

and such that
(ρ, 0) ≤ (p̂i, p̂j) ≤ (αi, αj) .

In particular, p̂ is a stationary solution of{
∂tu− ∂xxu− c0∂xu = Ru− (Cu) ◦ u in (0,+∞)× R

u (0, x) = p̂ (x) for all x ∈ R.

Applying the comparison principle for two-components competitive parabolic sys-
tems to p̂ and to the solution of{

∂tu− ∂xxu− c0∂xu = Ru− (Cu) ◦ u in (0,+∞)× R
(ui, uj) (0, x) = (ρ, sup p̂j) for all x ∈ R,

which is homogeneous in space and is therefore the solution of{
∂tu = Ru− (Cu) ◦ u in (0,+∞)× R

(ui, uj) (0, x) = (ρ, sup p̂j) for all x ∈ R,

we directly obtain p̂ = vs if sup p̂j > 0 and p̂ = αiei if sup p̂j = 0. In other
words, if vs = αiei, p̂ = αiei, and if vs = vm, p̂ ∈ {vs, αiei}. Since vs and αiei
are isolated steady states and p is continuous, the last diagonal extraction was not
necessary and (p̂n)n∈N converges indeed to p̂, that is

lim
−∞

p ∈ {vs, αiei} .

Since pi is nonincreasing in (0,+∞), it converges as ξ → +∞. By classical
elliptic regularity,

lim
+∞

(−dip′′i − c0p′i) = 0,

whence either
lim
+∞

pi = 0

or pj converges as well, its limit being

lim
+∞

pj =
1

ci,j

(
ri − ci,i lim

+∞
pi

)
.

In the second case, using −djp′′j − c0p′j → 0, pi (0) = ρ and the monotonicity of pi
in (0,+∞), we find lim

+∞
p ∈ {αjej ,0}, which contradicts directly lim

+∞
pi > 0. Hence

pi converges to 0.
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Subsequently, since pj is positive, every local minimum of pj satisfies

rj ≤ cj,jpj (ξ) + cj,ipi (ξ) ,

which proves that for all sequences (ξn)n∈N such that ξn → +∞ and pj (ξn) is a
local minimum of pj , pj (ξn) converges to αj . But then, by C 1 regularity, either pj
is monotonic in a neighborhood of +∞ or there exists a sequence (ξn)n∈N such that
ξn → +∞, pj (ξn) is a local minimum of pj and (pj (ξn))n∈N converges to lim inf

+∞
pj .

It turns out that in both cases pj converges, the possible limits being 0 and αj .
Therefore p is a traveling wave achieving exactly one of the following connections:
(1) 0 to vs,
(2) αjej to vs,
(3) 0 to αiei with αiei 6= vs,
(4) αjej to αiei with αiei 6= vs.

It remains to show that the third case is semi-extinct and the fourth case is im-
possible. We will actually prove both statements simultaneously by proving that
lim
−∞

p = αiei 6= vs implies pj = 0 in R.
Assume lim

−∞
p = αiei and vs = vm. Assume also by contradiction that pj is

positive in R.
Multiplying the equation

−djp′′j − c0p′j = (rj − cj,jpj − cj,ipi) pj ,
by the function

ϕ : ξ 7→ e
c0
dj
ξ
,

we find
−dj

(
ϕp′j
)′

= (rj − cj,jpj − cj,ipi)ϕpj .
Recall that vs = vm implies ri

rj
<

ci,i
cj,i

, that is rj−cj,iαi > 0. Therefore the quantity

ξ = sup {ξ ∈ R | ∀ζ ∈ (−∞, ξ) rj − cj,jpj (ζ)− cj,ipi (ζ) > 0}

is well-defined in R ∪ {+∞}. In
(
−∞, ξ

)
, ϕp′j is decreasing. Since on one hand

lim
−∞

ϕ = 0 and on the other hand lim
−∞

p′j = 0 by classical elliptic regularity, the limit

of ϕp′j itself is 0. Consequently, ϕp′j is negative in
(
−∞, ξ

)
. It follows that pj

itself is decreasing in
(
−∞, ξ

)
. But then lim

−∞
pj = 0 implies that pj is negative in(

−∞, ξ
)
, which obviously contradicts the positivity of pj . This ends the proof. �

5. Discussion

5.1. Why is it likely hopeless to search for a general result on the behavior
at the back of the front? First of all, the linearization of (SKPP ) at 0 being
cooperative, it is natural to wonder whether the dynamics of (EKPP ) near some
constant positive solution u of (SKPP ) might be purely competitive or cooperative.
In general, neither is the case. The linearized reaction term at any constant solution
u of (SKPP ) is

Lu = L− diag (c (u))− (u11,N ) ◦Dc (u) .

In the Lotka–Volterra case where there exists C� 0 such that c (v) = Cv, it reads

Lu = L− diag (Cu)− (u11,N ) ◦C.
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On one hand, it is clear that if there exists (i, j) ∈ [N ]
2 such that li,j = 0, then

lu,i,j < 0. On the other hand, assuming that there exists i ∈ [N ] such that li,i ≤ 0,
we find

−li,iui + uici,iui > 0.

Since Lu− (Cu) ◦ u = 0, it follows∑
j∈[N ]\{i}

(li,juj − uici,juj) > 0,

whence there exists j ∈ [N ] \ {i} such that li,juj − uici,juj > 0, that is such that

lu,i,j = li,j − uici,j > 0.

Hence the competitive dynamics and the cooperative dynamics are indeed inter-
twined near u.

Next, in view of the literature on non-cooperative KPP systems, it could be
tempting to conjecture the uniqueness and the local stability of the constant positive
solution of (SKPP ) (see for instance Dockery–Hutson–Mischaikow–Pernarowski [7]
or Morris–Börger–Crooks [29]). However, if c is linear as before and if

(N,L,C) =

(
2, I2 +

1

5

(
−1 1
1 −1

)
,

1

10

(
1 9
9 1

))
,

then this property fails. Indeed, straightforward computations show that the set of
constant positive solutions of (SKPP ) is

3−
√

15
2

3 +
√

15
2

 ,12,1,

3 +
√

15
2

3−
√

15
2

 .

From the associated linearizations, it is easily found that, with respect to
(
E0
KPP

)
,

the symmetric solution 12,1 is a saddle point whereas the other two solutions are
stable nodes.

Last, we also point out that if d = 12,1 then the preceding counter-example
admits a family of traveling waves connecting 0 to the saddle point 12,1. Indeed,
looking for profiles p of the form ξ 7→ p (ξ) 12,1, (TW [c]) reduces to

−p′′ − cp′ = p− p2,
which, by virtue of well-known results on the scalar KPP equation, admits solutions
connecting 0 to 1 if and only if c ≥ 2. Hence we cannot hope to prove that all
traveling waves connect 0 to a stable steady state.

5.2. What about the general separated competition case, with d and
a possibly different from 1N,1? The general case might be more subtle than
expected, even regarding the ODE system

(
E0
KPP

)
: although the linearization at

v?,
Lv? = L− λaA−Av?

(
∇b (v?)

T
)
,

seems to be adequately described as a matrix of the form −P−Q with P = λaA−L

a singular M-matrix and Q = Av?
(
∇b (v?)

T
)
a positive rank-one matrix, a recent

paper by Bierkens and Ran [2] highlights thanks to a counter-example that such
matrices can have eigenvalues with positive real part (and there is in addition
a counter-example with irreducible −P, so that irreducibility is not a sufficient
condition to ensure all eigenvalues are negative). Therefore it is unclear whether
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v? is always locally asymptotically stable with respect to
(
E0
KPP

)
. Actually, the

main purpose of the study of Bierkens and Ran is to establish several conditions
sufficient to guarantee that all eigenvalues have a negative real part (conditions
among which we find N = 2 and, of course, a = 1N,1).

In the case N = 2, classical calculations show that the system (EKPP ) is not
subjected to Turing instabilities with respect to periodic perturbations. Therefore
it might be fruitful to investigate more thoroughly the two-component system.
Nevertheless, to this day we do not have any further result.

5.3. Where does Conjecture 1.4 come from? Let us bring forth some insight
into the limiting problem. What are the spreading properties of (EKPP )0 with
respect to front-like initial data? What are the propagating solutions of (EKPP )0
invading the null state?

Concerning the bistable case, we have at our disposal a recent result by Carrère
[5] which can be summed up as follows. Consider the Cauchy problem where
(−∞, 0) is initially inhabited mostly but not only (in a sense made rigorous by
Carrère) by u1 and (0,+∞) is completely uninhabited. Let cα1e1→α2e2 be the
speed of the bistable front equal to α1e1 at −∞ and to α2e2 at +∞, as given by
Kan-On [21] and Gardner [12]. Recall that the following bounds hold true:

−2
√
d2r2 < cα1e1→α2e2 < 2

√
d1r1.

Carrère’s theorem is then:

(1) if 2
√
d1r1 > 2

√
d2r2 and cα1e1→α2e2

> 0, then asymptotically in time, u2
is extinct and u1 spreads at speed 2

√
d1r1;

(2) if 2
√
d1r1 < 2

√
d2r2 and cα1e1→α2e2

> 0, then asymptotically in time, u2
spreads on the right at speed 2

√
d2r2 but is then replaced by u1 at speed

cα1e1→α2e2 ;
(3) if 2

√
d1r1 < 2

√
d2r2 and cα1e1→α2e2 < 0, then asymptotically in time, u2

chases u1 on the left at speed cα1e1→α2e2 and spreads on the right at speed
2
√
d2r2.

This result was long-awaited but, as far as we know, Carrère’s proof is the first one.
Up to the sign of cα1e1→α2e2

, the second and the third cases above are iden-
tical. Recall that the sign of cα1e1→α2e2

is in general a tough problem, although
recently some particular cases have been successfully solved (strong competition in
Girardin–Nadin [17], special choices of parameter values in Guo–Lin [19], pertur-
bation of the standing wave in Risler [31]).

A natural conjecture in view of Carrère’s result is the long-time convergence, in
the first case, to a traveling wave connecting 0 to α1e1 at speed 2

√
d1r1 and with

a semi-extinct profile p = pe1. However, in the second and third cases, a more
complex limit seems to arise.

The entire solutions connecting three or more stationary states with decreasingly
ordered speeds were first described in the scalar setting by Fife and McLeod [10]
and are referred to as propagating terraces, or simply terraces, since the work of
Ducrot, Giletti and Matano [8]. A terrace with n− 1 intermediate states is defined
as a finite family of traveling waves ((pi, ci))i∈[n] such that pi (−∞) = pi+1 (+∞)

for all i ∈ [n− 1] and such that (ci)i∈[n] is decreasing. Provided the uniqueness
(up to translation of the profile) of the traveling wave connecting vi = pi (+∞)
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to vi+1 = pi (−∞) at speed ci, the terrace is equivalently defined as the fam-
ily
(

(vi, ci)i∈[n] ,vn+1

)
. However, in general, this family only defines a family of

terraces that will be denoted hereafter T
(

(vi, ci)i∈[n] ,vn+1

)
.

In terms of this definition, the expected limits in the second and third cases
studied by Carrère are terraces belonging to

T
(
0, 2
√
d2r2, α2e2, cα1e1→α2e2

, α1e1

)
with a semi-extinct first profile.

The obvious conjecture is then that all propagating solutions invading 0 apart
from semi-extinct monostable traveling waves belong to⋃

i∈{1,2}

⋃
c≥2
√
diri

T
(
0, c, αiei, cα3−ie3−i→αiei , α3−ie3−i

)
and have a semi-extinct first profile.

The bistable case being more or less understood, we now turn our attention
to the monostable case. Let vs ∈ {α1e1, α2e2,vm} be the unique stable state,
vu ∈ {0, α1e1, α2e2} be an unstable state and consider the Cauchy problem with
compactly supported perturbations of vu as initial data. Although the case vu =
αiei with

i ∈ Iu = {j ∈ {1, 2} | αjej 6= vs} .
is well understood (Lewis, Li and Weinberger proved the uniqueness of the spread-
ing speed c?vs→αiei [25, 34]), the case vu = 0 is much more intricate: in particular,
for vs = vm, a recent theorem analogous to that of Carrère and due to Lin and
Li [28] shows that if d2r2 > d1r1, then u2 will invade first at speed 2

√
d2r2 and

then be chased by u. Although straightforward comparisons show that the replace-
ment occurs somewhere in

[
c?vm→α2e2

t, 2
√
d1r1t

]
, the exact speed of u is a delicate

question, unsettled in the paper of Lin and Li.
Tang and Fife [32] established by phase-plane analysis that traveling waves con-

necting 0 to vs exist if and only if the speed c satisfies c ≥ cTWvs→0, where

cTWvs→0 = 2
√

max
i∈{1,2}

diri

is linearly determinate.
Terraces connecting 0 to vs through an intermediate unstable state αiei with

i ∈ Iu should involve semi-extinct monostable traveling waves connecting 0 to
αiei and monostable traveling waves connecting αiei to vs. Again, there ex-
ists a minimal wave speed cTWvs→αiei , as proved for instance by Kan–On [22] or
Lewis–Li–Weinberger [26]. Recall that cTWvs→αiei is not linearly determinate in gen-
eral, however it is bounded from below by the linear speed:

cTWvs→αiei ≥ 2

√
d3−ir3−i

(
1− c3−i,iri

ci,ir3−i

)
.

In any case, it is natural to expect that for all i ∈ Iu, terraces belonging to
T (0, c, αiei, c

′,vs) with a semi-extinct first profile exist if and only if
cvs→αiei ≤ c′
2
√
diri ≤ c
c′ < c.
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Consequently, the conjecture is that all propagating solutions invading 0 apart
from (possibly semi-extinct) monostable traveling waves belong to⋃

i∈Iu

⋃
c≥2
√
diri

⋃
c′≥cvs→αiei

T (0, c, αiei, c
′,vs)

and have a semi-extinct first profile.
Having these conjectures in mind, we introduce small mutations and wonder

how they affect the outcome. An heuristic answer due to Elliott and Cornell [9]
suggests that “the only role of mutations is to ensure that both morphs travel at
the same speed”. Therefore, there might exist functions u0 : R → K such that
the solutions (uη)η≥0 of the Cauchy problem associated with (EKPP )η with initial
data u0 admit as long-time asymptotic a traveling wave if η > 0 and a terrace of
T (0, c, αiei, c

′,v) if η = 0. We refer hereafter to such traveling waves as quasi-
T (0, c, αiei, c

′,v) traveling waves.
In order to study these special traveling waves, we resort to numerical simula-

tions. We find two completely different behaviors.
• In the bistable case (Figure 5.1), quasi-T

(
0, 2
√
diri, αiei, cαjej→αiei , αjej

)
traveling waves (with i ∈ {1, 2} and j = 3− i) converge as η → 0 to a semi-
extinct traveling wave connecting 0 to αjej if cαjej→αiei > 0 and to αiei
if cαjej→αiei < 0.

• In the monostable case (Figure 5.2), for all i ∈ Iu, quasi-T
(
0, 2
√
diri, αiei, c

′,vs
)

traveling waves connect 0 to vs through an intermediate bump of ui. As
η → 0, the amplitude of this bump tends to αi while its length tends slowly
to +∞ (seemingly like ln η). Therefore, depending on the normalization,
the limit of the profiles as η → 0 is either a semi-extinct connection between
0 and αiei or a monostable connection between αiei and vs.

5.4. Why is Conjecture 1.4 silent about the bistable case with cα1e1→α2e2
=

0? In this very special case, additional asymmetry assumptions on the coefficients
are necessary in order to exclude connections between 0 and the saddle-point vm,
as indicated by the following immediate proposition, built on a counter-example
given in Subsection 5.1.

Proposition 5.1. Assume (H7), d = 12,1, r = 12,1, m = 1√
2
12,1 and the existence

of a ∈ (1,+∞) such that

C =

(
1 a
a 1

)
.

Then vm = 1
λPF (C)12,1 ∈ K++ is a saddle-point and, for all η ≥ 0 and all c ≥ 2,

there exists a unique pc,η ∈ C 2 (R) such that
pc,η12,1 ∈Pc,η

pc,η (0) = 1
2λPF (C)

lim
ξ→−∞

pc,η (ξ) = 1
λPF (C) .

In particular, (pc,η12,1, c) connects 0 to vm.
Furthermore,

(c, η) 7→ pc,η ∈ C
(
[2,+∞)× [0,+∞),W 2,∞ (R,R)

)
.



NON-COOPERATIVE KPP SYSTEMS 29

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(a) t = 0

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(b) t = 20

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(c) t = 50

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(d) t = 55

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(e) t = 65

0 100 200 300 400
0

0.2

0.4

0.6

0.8

(f) t = 100

Figure 5.1. Numerical simulation of the bistable case with initial
data corresponding to a competition–diffusion terrace (u1 dashed
line, u2 dotted line, x as horizontal axis).
Parameter values: d = (1, 1.5125)

T , r = 12,1, m = 12,1, η = 0.025,
c1,1 = c2,2 = 1, c1,2 = 20, c2,1 = 110, so that [17] cα1e1→α2e2 > 0.
The traveling wave which is on the right at t = 100, driven by
a very small bump of u2 but dominated at the back by u1, is the
long-time asymptotic. Indeed the u2-dominated area in the middle
shrinks from both sides at a speed close to |cα1e1→α2e2

| and will
ultimately disappear.
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