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NON-COOPERATIVE FISHER-KPP SYSTEMS: ASYMPTOTIC
BEHAVIOR OF TRAVELING WAVES

LEO GIRARDIN

ABsTrACT. This paper is concerned with non-cooperative parabolic reaction—diffusion
systems which share structural similarities with the scalar Fisher- KPP equa-

tion. In a previous paper, we established that these systems admit traveling

wave solutions whose profiles connect the null state to a compact subset of the
positive cone. The main object of the present paper is the investigation of a

more precise description of these profiles. Non-cooperative KPP systems can

model various phenomena where the following three mechanisms occur: local
diffusion in space, linear cooperation and superlinear competition.

1. INTRODUCTION

This paper is a sequel to a previous paper by the same author [I6] where the
so-called KPP systems were investigated. The prototypical and, arguably, most
famous KPP system is the Lotka—Volterra mutation—competition—diffusion system:

ou

ot
where u is a nonnegative vector containing phenotypical densities, d and r are
positive vectors containing respectively diffusion rates and growth rates, M is an
essentially nonnegative irreducible matrix with null Perron—Frobenius eigenvalue
containing mutation rates (typically a discrete Neumann Laplacian) and C is a
positive matrix containing competition rates. Although the Lotka—Volterra com-
petition—diffusion system (without mutations) is a very classical research subject,
mutations can dramatically influence some of its properties and their overall effect
is still poorly understood.

More generally, KPP systems as defined in [I6] are non-cooperative (or non-
monotone, i.e. they do not satisfy a comparison principle; see Protter—Weinberger
[30, Chapter 3, Section 8]) and have started to attract attention relatively recently.
Their study requires innovative ideas and the literature is limited; a detailed bibli-
ography can be found in [I6].

By adapting proofs and methods well-known in the context of the scalar KPP
equation,

diag (d) A,u = diag (r) u + Mu — diag (u) Cu,

u _ dA,u = ru — cu®,
ot
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first studied by Fisher [1I] and Kolmogorov, Petrovsky and Piskunov [23], various
properties of these systems were established in [I6]. In particular, a KPP system
equipped with a reaction term sufficiently analogous to u — u? admits traveling
wave solutions with a half-line of possible speeds and a positive minimal speed c*.
These traveling waves are defined in a very general way: it is merely required that
they describe the invasion of 0 by a positive population density. A very natural
subsequent question is that of the evolution of the distribution u during the invasion.
Which components lead the invasion? Which components settle once the invasion
is over?

Having in mind that the waves traveling at speed ¢* should attract front-like and
compactly supported initial data (although this statement has yet to be proven,
since [I6] only established the equality between ¢* and the spreading speed asso-
ciated with such initial data, and it is expected to be a very difficult problem), a
more general question is then: given a class of initial data, what is the long-time
distribution of the solution?

In the rest of the introduction, we present more precisely the problem and state
our main results. Sections 2, 3 and 4 are dedicated to the proofs of these results. Fi-
nally, open questions, interesting remarks and numerical experiments are discussed
in Section 5.

1.1. The non-cooperative KPP system. From now on, an integer N > 2 is
fixed.
A positive vector d € KT+, a square matrix L € M and a vector field ¢ €

€1 (RN, RN) are fixed. We denote for the sake of brevity D = diag (d).
We consider the following semilinear parabolic system:

Opu—DO,u=Lu—clulou, (Expp)

Notation ‘ Definition
[n] [1,n]NN
(e"’i)ie[n] canonical basis of R™
o], Euclidean norm of R™
Bn (v,7), Sn (v,7) open ball and sphere of center v € R™ and radius r > 0
>0, S, Sn v; > 9; for all i € [n], v >p v and v # v, v; > 9; for all i € [n]
nonnegative, nonneg. nonzero, positive v € R" v>2n0,v>,0,v>,0
Kn, Kﬁ, Kt sets of all nonnegative, nonneg. nonzero, positive vectors
St (0,1), ST (0,1) K{ NS, (0,1), KiT NS, (0,1)
My nss My, sets of all real matrices of dimension n X n/, n X n
In, 1, 0 identity matrix, matrix whose every entry is equal to 1
diag (v) diagonal matrix whose i-th diagonal entry is v;
essentially nonnegative matrix matrix A such that A — ng[lzl] (as,;) I is nonnegative
AoB Hadamard (entry-by-entry) product (aivjbivj)(i,]’)e[nlx[n’]
f [f'] composition of the functions f and f

TABLE 1. General notations ( the subscripts depending only on 1
or N are omitted when the context is unambiguous)
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with u : (t,7) € R? + u(t,z) € RV as unknown. In order to ease the notations,
we only consider one-dimensional spaces, however all forthcoming results could be
applied directly to traveling plane waves in multidimensional spaces (these solutions
being in fact one-dimensional).

When restricted to solutions u : R — R which are constant in space, (Expp)
reduces to

u=Lu—cluou (E}pp)

When restricted to solutions u : R — RY which are constant in time, (Expp)
reduces to

—Du” =Lu-—clujou. (Skpp)
When restricted to traveling solutions of the form u : (¢,z) — p(x — ct) with
c € R, (Expp) reduces to

—Dp” —cp' =Lp —c[pJop. (TW|c])

1.1.1. Basic KPP assumptions. The basic assumptions introduced in [I6] are the
following ones.

(Hy) L is essentially nonnegative and irreducible.

(Hz) c¢(K) C K.
(Hs) c(0)=0
(H4) There exists
(o, 6,¢) € [1,+00)? x KT+
such that
N
Sl =0 = a’c; < c;(an)
j=1
for all

(n,a,i) € ST(0,1) x [a, +00) x [N].
The assumption (Hy) loosely means that ¢ grows at least linearly at infinity. The
precise condition means, however, that in the set {v € K| (Lv), < 0} (which is
nonempty if and only if /;; < 0 and contains in such a case the open half-line
span (e;) N KT), the growth of ¢; is not important. Anyway, (H,) includes the
Lotka—Volterra form of competition (linear and positive ¢) as well as more general
forms (see for instance Gilpin—Ayala [15]).

Recall from the Perron—Frobenius theorem that if L is nonnegative and irre-
ducible, its spectral radius p (L) is also its dominant eigenvalue, called the Per-
ron—Frobenius eigenvalue App (L), and is the unique eigenvalue associated with
a positive eigenvector. Recall also that if L is essentially nonnegative and ir-
reducible, the Perron—Frobenius theorem can still be applied. In such a case,
the unique eigenvalue of L associated with a positive eigenvector is App (L) =
p <L — min (I; ;) IN) + min (/;;). Any eigenvector associated with App (L) is re-

i€[N] i€[N]
ferred to as a Perron—Frobenius eigenvector and the unit one is denoted npp (L).

In view of [16, Theorems 1.3, 1.4, 1.5], in order to study traveling waves and

non-trivial long-time behavior, the following assumption is also necessary.

(H5) )\pF (L) > 0.
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The collection (H;)—-(Hs) is always assumed from now on. Notice that, although
this does not bring any new result, the scalar KPP equation could be seen as a
particular KPP system (understanding the pair (Hy) and (Hs) as r > 0). Biological
interpretations of these assumptions can be found in [16, Section 1.5].

1.1.2. Traveling waves. Traveling waves are defined in [16] as follows.

Definition. A traveling wave solution of (Expp) is a profile—speed pair
(p,c) € > (R, RN) x [0, +00)

which satisfies:

e u: (t,x) — p(xz — ct) is a bounded positive classical solution of (Expp);
o <lim inf p; (5)) > 0;
§—=—o0 i€[N)]
e lim =0.
(Jm p ()
By construction, a traveling wave solution (p, ¢) solves (TW [c]).
The set of all profiles associated with some speed ¢ is denoted .. By [16,
Theorems 1.5, 1.7], &, is empty if
A D+ L
o< ¢ —min PP (D L)
1>0 i
The converse statement (existence of a profile if ¢ > ¢*) is likely false in general but
is true provided c is monotonic in the following sense:

Dc(v) >0 for all v € K.

1.2. Results: at the edge of the fronts. The distribution of the profiles near
+oo follows the “rule of thumb” unfolded in [I6]: for several standard problems,
KPP systems can be addressed exactly as KPP equations and the results are anal-
ogous.

Recall from [16, Lemma 6.2 the notation n, = npp (MQD + L) for all 4 € R.
Recall also that the equation

Apr (1D + L)

u

admits no real solution if ¢ < ¢*, exactly one real solution g« > 0 if ¢ = ¢* and
exactly two real solutions pio . > 1. > 0 if ¢ > ¢*. Define subsequently for all
¢ > c¢* the quantity

=cC

Apr (42D + L) _C} _ {MC* if ¢ = ¢*,

uc—mm{u>0| m pie ife>ct

Theorem 1.1. Let
- 0 ifc>c",
CT 1l fe=c.
For all traveling wave solutions (p, c), there exists A > 0 such that, as £ — 400,

p (&) ~ Agkeetetn,
P’ (&) ~ —puep (§),
p’ (&) ~uip(§).
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In particular, ifd = 1y 1,
p(§) ~ Aghe (VIR B, ),

This result is proved in Section 2.
Recall that up to a well-known change of variable z, we can always assume

without loss of generality max d; = 1.
1€E[N]

If we have in mind the mutation—competition—diffusion system, then the ecologi-
cal interpretation of this result is the following: at the leading edge of the invasion,
the normalized distribution in phenotypes is n,_ and the total population is pro-
portional to (z — ct)" e=re(@=ct),

In the special case ¢ = ¢*, this theorem answers positively a conjecture of Morris,
Borger and Crooks [29], Section 4].

Recall that, for the scalar KPP equation, the analogous result on exponential de-
cays has two common proofs, one using ODE arguments and especially phase-plane
analysis and the other one using elliptic arguments and especially the comparison
principle. Although we could prove the above result by phase-plane analysis indeed,
the proof we will provide uses a third technique relying upon the monotonicity of
the profiles near 400, bilateral Laplace transforms and a ITkehara theorem. In our
opinion, this technique of proof has independent interest: on one hand, it does not
require the comparison principle and, on the other hand, it might be generalizable
to non-ODE settings (space-periodic media and pulsating fronts, for instance).

1.3. Results: at the back of the fronts. On the contrary, the distribution of
the profiles near —oo is a much more intricate question, where the multidimensional
and non-cooperative structure of the KPP system become preponderant.

Given a positive classical solution u of (Sxpp), a traveling wave connecting 0 to
u is a traveling wave whose profile p converges to u as & — —oo. The general aim
is to prove that all traveling waves connect 0 to some positive classical solution of
(Skpp) and, when several solutions can be connected to 0, to determine somehow
which connection prevails. However, as will be explained in Subsection (and was
first pointed out in Barles—Evans—Souganidis [1]), a general and precise treatment of
this problem is likely impossible. It is necessary to focus on special cases. Looking
at the literature, we find two frameworks commonly assumed to be mathematically
tractable:

e competition terms ¢; (v) with separated dependencies on i and on v (Cov-
ille-Fabre [6], Dockery—Hutson-Mischaikow—Pernarowski [7], Griette-Raoul
[18], Leman-M¢léard-Mirrahimi [24]),

e two-component systems with linear competition and vanishingly small mu-
tations (Dockery—Hutson—Mischaikow—Pernarowski [7], Griette-Raoul [18],
Morris—Borger—Crooks [29)]).

1.3.1. Separated competition.
(Hg) There exist a € K and b: RY — R such that:
e c(v)=b(v)aforall vek;
e the function w — b(we; + v) is increasing in (0,+o00) for all v € K
and all 7 € [N].
By monotonicity of ¢, supplementing (H;)—(Hs) with (Hg) implies the existence
of a profile p € &, for all ¢ > ¢*. The decomposition ¢ = ba is unique up to



NON-COOPERATIVE KPP SYSTEMS 6

a multiplicative normalization and we will assume for instance maxa; = 1. We

1€[N]
denote A = diag(a) (so that c(v)ov =5b(v) Av).
An especially interesting subcase is the intersection between (Hg) and the Lotka—Volterra
competition form, where b is a linear functional, that is where there exists b € K++
such that
b(v) =blv for all v € K.

The system (Expp) then reads
ou—DOu=Lu— (bTu) Au.

The systems studied in Dockery—Hutson—Mischaikow—Pernarowski [7] and in Gri-
ette-Raoul [I8] correspond respectively to

a:b:1N71

(a,b) = ((I: 1)T , ;12’1> .

The matrix A~'L being essentially nonnegative and irreducible, the following
eigenpair is well-defined:

(Aa:na) = (Apr (A7'L) ,npp (A7'L)).
Applying [16, Theorem 1.4] to the following two pairs of parameters (L, c):

and to

(L,v— (1, nv)a),

(A_lL,V — (11’NV) 1N,1) s
it is easily deduced that App (L) > 0 if and only if A4 > 0. By strict monotonicity
of @ — b(an,), we can define a* > 0 as the unique solution of b(an,) = As. It
follows easily that v* = a*n, is the unique positive constant solution of (Sxpp).
In particular, if b is a linear functional, then
Aa
= n,.
bTn, °
Theorem 1.2. Assume (Hg), d =151 anda=1n;.
For all ¢ € [c¢*,+0), let p. € €*(R) such that (p.,c) is the unique traveling
wave solution of the scalar equation
8tu - 8mu = )\pF (L) u—=b (unpp (L)) u
connecting 0 to o* and satisfying p. (0) = O‘T*
Then all p € &, have the form

p:&pe (f_fo)nPF (L) with & € R.

Consequently, p € &, is unique up to translation and connects 0 to v*.

v‘k

This result is proved in Section 3.2.

This theorem establishes that the set of assumptions (Hs), d = 1n1, a = 1n,1
is so restrictive that the multidimensional problem can in fact be reduced to the
scalar one. This is really the strongest result we could hope for.

Notice that it shows that the following two mutation—competition—diffusion sys-
tems:

ou — Opzu = ru+ Mju — (bTu) u,
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oiu — Opzu = ru + Mou — (bTu) u,

with » > 0 and M; and My essentially nonnegative irreducible with null Per-
ron—Frobenius eigenvalues and equal Perron—Frobenius eigenvectors, have the ex-
act same traveling wave solutions. In other words, all else being equal (neutral
internal structure), the mutation strategy does not matter. In the absence of mu-
tations, neutral genetic diversity has been studied recently in a collection of papers
by Garnier, Hamel, Roques and others (for instance, we refer to [3, 13]). In view of
their results on pulled fronts, the preceding theorem indicates that the presence of
mutations is a necessary and sufficient condition to ensure the preservation of the
genetic diversity during the invasion.

As a side note (slightly off topic), we can use the reduction to the scalar problem
to prove the following generalization of a result due to Coville and Fabre [6, Theorem
1.1].

Theorem 1.3. Assume (Hg) and a=1x7.

All positive classical solutions of (E?(PP) set in (0,400) converge as t — +00
to v*.

Furthermore, if d = 1y, then, for all bounded intervals I C R, all bounded
positive classical solutions u of (Expp) set in (0,4+00) x R satisfy

li t,z) —v*| =0.
tiﬂoi‘éﬁ)w ,x) =V

Consequently, if d = 1y 1, the set of bounded nonnegative classical solutions of

(Skpp) is exactly {0, v*}.

This result is proved in Section 3.3.

We believe that the preceding two theorems are robust, in that they should
remain true in a neighborhood of (d,a) = (1n,1,1n,1). In particular, Theorem
could be extended by showing with the implicit function theorem that no solution
of (TW [c]) bifurcates from v* at (d,a) = (1n,1,1n,1). Theorem could be
extended thanks to Conley index theory and a Morse decomposition, exactly as in
Dockery—Hutson-Mischaikow—Pernarowski [T, Section 4|. For the sake of brevity,
we do not address these questions.

1.3.2. Two-component systems with linear competition and small mutations.
(H7) N =2, there exists C > 0 such that
c(v) =Cv for all v € K,
and the vector r € RY given by the unique decomposition of L of the form
L =diag(r) + M with 1, y\M =0
is positive.
By monotonicity of ¢, supplementing (H;)—(Hjs) with (H7) implies the existence
of a profile p € &, for all ¢ > ¢*.

When (H7) is satisfied, we denote R = diag (r) and define (n,m) € (0,400) x
ST+ (0,1) such that

M =1 (‘11 _11) diag (m).

The quantity 7 is unique and commonly referred to as the mutation rate.
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In other words, we are considering the following system:
Opur — d10zzu1 = riur — (c11u1 + ¢1,2u2) ur + nmy (ug — uq)
Oyug — doOyzua = rous — (Ca1u1 + €2 2u2) Ug + nmg (U1 — u2)

The idea is to assume that 7 is small compared to r so that the mutation—competition—diffusion
system is close to the pure competition—diffusion system

{atul — d10gpu1 = r1ug — (c11u1 + €1,2u2) Ug (Expp)
0

Opug — doOyplia = ToUs — (C21U1 + C22U2) Uso

Indeed, two-component competition diffusion systems being cooperative up to the
change of unknowns v = ; —ug, the maximum principle then simplifies noticeably

the characterization of the asymptotic behaviors. In particular, defining o; = =
for all ¢ € {1,2} and, if det C # 0,

V. — 1 T1C2,2 — T2C12
™ det C \rac11 —rice1 /)’
the asymptotic behavior of the solutions of the spatially homogeneous competitive
system

u'=Ru-(Cu)ou
is well-known.
Extinction of ug| If It > max (4, 222 ) and 21 > min (24, 242 ) | then
(1)

021’622 0217022

aje; is globally asymptotlcally stable in K*+ U (span (e1) NKT) and ases
is globally asymptotically stable in span (e3) N K™T.

(2) [Coexistence] If 22 < <3 2Ll “then v,, € K**, v,, is globally asymptot-
ically stable in K‘H‘ and for all i € {1,2}, o,e; is globally asymptotically
stable in span (e;) N K*.

(3) [Competitive exclusion] If -2 > > 2271 then v,, € K** and a one-
dimensional curve S, referred to as the separatrix, induces a partition
( TS, K+) of K such that a;e; is globally asymptotically stable in K
for all i € {1,2} and v,, is globally asymptotically stable in S.

(4) [Extinction of ui] If 2 < min (Cl'l c”) and 2L < max (Cl Lok 2) then

c2,17 €22 c217 C2,2
aes is globally asymptotlcally stable in K*+ U (span (e2) NKT) and ;e
is globally asymptotically stable in span (e;) N K™.
The cases 1, 2 and 4 are monostable whereas the case 3 is bistable. The case
o= Z;—i = 222 is degenerate and is usually discarded.

In the forthcoming statements, 7 is understood as a positive parameter which
can be passed to the limit 7 — 0 (notice that for all n > 0, (H;)—(Hs) is satisfied
indeed). The system (Expp) and the objects &. and ¢* depend on 7 and might
be denoted respectively (Exp p)n, Py and c. We define subsequently & as the
set of all (n,p,c) € (0,+00) x €2 (R,R?) x (0,+00) such that (p,c) is a traveling
wave solution of (Fx pp)n. Contrarily to the case n > 0, a traveling wave solution
of the limiting system (Expp), has no prescribed asymptotic behaviors.

We point out that Morris-Bérger—Crooks [29] showed that the limit ¢fj of (c,*,)

as 1 — 0 is well-defined and satisfies as expected

n>0

£ > drs
= ié?i’é}( i)
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with, quite interestingly, strict inequality if

di i )
and + T'>2forallz€{1,2}.

Q; 2c3_4,3—i
<
o3 Ciz—i ds—; T3

14+ ,/1+

However, they did not characterize the limiting profiles. This is what we intend to
do here (but will only partially achieve).

In the following conjecture, stability is to be understood as local asymptotic
stability with respect to (E% P P).

>0 such that

{(n,pn,cn) €& foralln>0,

Conjecture 1.4. Assume (H7). Let (py), ., and (c;)

co = lim ¢,,.
n—0 n

i) Assume that both aie; and ases are stable and that caie;—sage, 7 0.
Then there exists (577)77>0 such that (& — py (E+&) ’Cn)n>0 converges in
(‘Klic (]R, Rz) nL> (R, ]Rz)) xR asn — 0 to a semi-extinct traveling wave
solution (poe;,co) of (Expp), connecting O to cje; with

.1 if carer—aze;, >0,
1= )
2 Zf Caie; —ases < 0.

ii) Assume that there is a unique stable state vy € {aje1,azes, vy, }. Then

one and only one of the following two properties holds true.
(a) There exists (&), such that (£ = Py (£ + &), ¢y), s converges in
(€2, (R,R?) N2> (R,R?)) xR asn — 0 to a component-wise mono-

tonic traveling wave solution (po,co) of (Expp), connecting 0 to v,.

(b) There exist (§%)n>o’ (E’%)n>0 and a unique i € |, such that, as n — 0:
hd 57% - 5717 — +OO;
2 o2 2 :
° (g = Py (f + {n) ,cn)n>0 converges in 6y, (R, R )XR to a semi-
extinct traveling wave solution (pfront€i,co) of (Expp), con-
necting 0 to o, e;;
) (f = Py (f + f%) ’c")n>0 converges in 62, (R,RQ) XR to a component-

wise monotonic traveling wave solution (Ppack, o) of (Expp),
connecting a;e; to vs.

We emphasize once more that traveling waves with minimal speed ¢} do not, in
general, converge to a traveling wave with minimal speed. In particular, Figure [5.1
illustrates an interesting case of invasion driven by the fast phenotype us but where
the only settler is the slow phenotype ;. This is reminiscent of Griette-Raoul [I8],
where an analogous result was established analytically under a stronger scaling.

Conjecture is expected to be a very difficult problem and seems to be
beyond our reach. We leave it as an open problem.

On the contrary, regarding Conjecture a partial confirmation is within
reach. On one hand, we point out that the special case

c c

&:Ezlanddzlgyl

C2.1 C2.2
is somehow solved by Theorem [I.2] without any assumption on r. On the other
hand, we also have the following general theorem which concerns all monostable
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cases apart from

C1,1 C1,2 T1
PR < _1 — 77
C2.1 C22 T2
T1 C1,1 C1,2
—_— =< .
r2 C2.1 C22

Theorem 1.5. Assume (H7) and the existence of i € {1,2} such that
Ti o Cid—i
T3—i C3—4,3—i
Let

{azez if 5 2 ot
Vg = g

; Ti Ci,i
v if —= < —.
m f T3 C3_i,i

For all (py),~q and (cy), >, such that

{(T]apnvcn) €& foralln>0,

co = lim ¢
n—0 i

there ewists (Cy), <o such that, as n — 0, (£ Py (§+Cy),cn), s
to extraction in €2, (R,R?) x R to a traveling wave solution (p,co) of (Expp),
achieving one of the following connections:

(1) 0 to v,

(2) az_jes_; to v,

(3) 0 to a;e; with p semi-extinct.

CONVETGES Up

This result is proved in Section 4.
Let us clarify how this result confirms partially Conjecture and what are
the remaining open questions.

e Assume vy = v,,,. Up to the component-wise monotonicity of the profile in
the first and second cases, the three connections above correspond exactly
to the three possible limiting profiles of Conjecture Moreover we
can apply the theorem with ¢ = 1 and ¢ = 2 and obtain two limiting
profiles. However, at this point, the normalizations (C%)n>0 and (C,?)WO
are unrelated and nine possible pairs of profiles seem to exist. We do not
know how to prove that only the three following situations actually occur:
0 to vy, and 0 to v, with (¢ — C%)rpo bounded, semi-extinct 0 to aje;
and «aje; to v, with C% — C% — —00, semi-extinct 0 to ases and ases to
Vo, With C% — C}, — 400.

e Assume vy = aye;. The third connection above is actually a subcase of
the first one and the normalization ((y), ., is unable to track the semi-
extinct limiting profile connecting 0 to a3_;es_;. This is not a question
of optimality of the proof: the normalization (C77)77>O is precisely chosen so
that p; is always non-zero. Hence ((y), ., corresponds either to (), . or to

(5717)n>0' The construction of the normalization (5727)n>0 of Conjecture

is a completely open problem. Of course, once this problem is solved,
it remains to relate the limiting profiles and the normalizations, as in the
case Vg = V.



NON-COOPERATIVE KPP SYSTEMS 11
2. THE EDGE OF THE FRONTS
In this section, we fix a traveling wave (p,c¢) and we prove Theorem

2.1. Preparatory lemmas and the Ikehara theorem.

Lemma 2.1. For all i € [N],

—y! — A ‘D+L
{liminf pz,limsup pl} C {,u € (0,+00) | M - 0}7

too Py +oo  Di Iz
4 ! A ‘D+L
{liminfpz,limsuppz}c p? € (0, 400) | M:c .
too pPi oo Pi 2

Consequently, there exists 5 € R such that p is component-wise strictly convex
in [§,400).

Proof. The proof of
—p A D+ L
min liminf 2% ¢ {u>0 | PF(M)—C}
i€[N] 400 i

can be found in [I6, Proposition 6.10]. The proof also directly yields that for any
sequence (&,),,cy such that &, — 400 and such that there exists j € [N] satisfying
i _p;' (&n) e D
im ————= =
n—+oo p; (En) i€[N] +oo  p;

convergence occurs in the following sense:

— —
lim (W> = <min lim inf pz> In;.
n—+oo \ p; (€n) i€[N] i€[N] +oo  p;

The proof of

—p! A D+ L
maxlimsup&E ﬂ>O|M:C
i€[N] 400 Pi H

is a slight modification of the preceding proof, where the quantity

A = max lim sup i)
i€[N] ¢ 5400 Pi (6)

is replaced by
/
A = min liminf Pi (5)
i€[N] €400 p; (§)
Similarly, we also obtain directly that for any sequence (£, ),,cy such that &, — 400
and such that there exists j € [N] satisfying
_pz‘ (gn) —pé

= max lim sup ,
n=too p;i(&n) €Nl 4oo Di

convergence occurs in the following sense:

: _p; (gn) _ . —p;
lim | —>~ = | max lim sup In.
n—+oo \ p; (gn) i€[N] i€[N] 4o Di
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The statements regarding (];—;_/) N are again established very similarly. The
i) ie
quantity

/
A = max lim sup A
i€[N] ¢—4o00 Pi 6)

is replaced by

/!
© = min lim inf pi (§)
i€[N] é=+o0 p; (€)

!/
© = max liminf pi (§)
i€[N] é=+o0 p; ()

and

respectively, and the function

w, = Ap, — IA){n
is replaced by

A/

Wy, = @f)n — P,

and
Wy, = Opy, — f);:
respectively. Since P, is nonnegative nonzero and w, = 0, necessarily © > 0 and

© > 0 and then, as in [16, Proposition 6.10], both quantities have the form u? with

. A ’D+L
1 solution of Arr (4*D+L) =

“w
Finally, the strict convexity in a neighborhood of +0c is deduced exactly as the
monotonicity in the proof of [I6, Proposition 6.10]. O

We will also need the Ikehara theorem [4, Proposition 2.3], commonly used in
such problems (see for instance Guo—-Wu [20]), as well as a lemma due to Volpert,
Volpert and Volpert [33] Chapter 5, Lemma 4.1].

Theorem 2.2. [lkehara] Let f : (0,+00) — (0,+00) be a decreasing function.
Assume that there exist A € (0,+00), k € (—=1,4+00) and an analytic function

h: (0,A] 4 iR — (0, +00)

such that
+o0 h ()\) .
A f(z) dv = ——"2— for all X € (0, ).
/ SR (0.3
Then
. T - h (X)
LR = TR

Lemma 2.3. [Volpert—Volpert—Volpert] Let A be an essentially nonnegative matrix
and let z € CN .

If
spA C (—00,0) + iR,
{ (Re(2k))pen) < 0,
then
sp (A + diag (z)) C (—o0,0) +iR.
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2.2. Convergence at the edge. Let
b 0 ife>cr,
C 1 ife=c*.
Proposition 2.4. There exists A > 0 such that, as & — 400,

p (&) ~ AgFeeetn,, |

P’ (&) ~ —pep (§),

p" (&) ~ uZp (§).
Proof. Fix temporarily u € (0, u.) +iR. In view of Lemma and of the Gronwall
lemma,

£ ep(¢) e £ (R,CY),
Errette(p(§))op () e £ (R,CY).

Multiplying (TW [c]) by e”¢, integrating by parts over R and defining

“+ o0
£, (n) = jﬁ ep (£) dt,
0
Lmzlrwm@%
&OO=AW%®@DNMS%,

we get easily
(WD = cpI + L) (£4 () + - (1) = fe (1),

whence, denoting adj (,uQD —cul + L) the adjugate matrix of u?D — cul + L, we
find
det (,u2D —cul + L) fi (n) = adj (uQD —cul + L) f. (u)—det (MQD —cpul + L) fo(u).

The functions f, f_ and f. defined above are respectively analytic in (0, i) +iR,
(0,400) 4+ iR and (0, 2u.) + iR (by local Lipschitz-continuity of ¢, (H3) and global
boundedness of p).

The function
C — C

o —  det (MQD —cul+ L)
is polynomial (whence analytic). Let Z C C be the finite set of its roots, counted

with algebraic multiplicity. In particular, p. € Z with multiplicity k. + 1.
For all € ((0, pe) + i1R)\Z,

£ (4) = (4°D — pI+ L) £ () — £ ().
The function
pes (1PD — el + L) e ()
is well-defined and analytic in ((0, uic) + iR) \Z, where it coincides with f + f_
which is analytic in (0, p.) + iR.
Define the analytic function

h: (0,p)+iR — RN
7 = (e — )"y (1)
so that
£, (n) = _bw for all p € (0, e) + iR.

ke
(ke — p)™*?
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Since, for all 11 € ((0, ) +iR)\Z,
)kc+1

(He —
h(y) =
(1) det (u?D — cul + L)

the function h can be analytically extended on (0, u.] + 4R if and only if
)ke+1

adj (4’D — epl + L) fo (1) = (e — )" £ ()

(e — 1
det (42D — cul + L)

o

has no pole in {u.} +iR.
Let 6 € R\ {0}. In view of

(e +i0)>D — ¢ (pe +0) I + L = 2D — cpd + L — 62D + i (2D — I)

and

Apr (2D — cpd + L — 6°D) < App (;@D — ¢+ L — 62 min dk>

kE[N]
= A ’D — cuJJ+ L) — 0 min d
pr (12D — cucd + L) [oin di
= —6? min dj
k€E[N]

Lemma [2.3] yields that
sp ((/@D — cpc I+ L — 6°D) + diag (i6 (2pcdy — c))ke[N]) C (—00,0) 4 iR.

) ket . . .
Hence p — % has no pole in {u.} +14 (R\ {0}) and then it has no pole
in {p.} + iR indeed.
We are now in position to apply the Ikehara theorem component-wise and to
deduce from it the existence of n € S*(0,1) and A > 0 such that

I el‘c‘f A
Jm p ) g~ A
In particular, for all k& € [N] such that ny > 0,
b (g + C) ep,C£ _ i
(—+oo Pk (C) ng

However, back to the proof of Lemma there exists k € [N] and a sequence

(&n)pen such that &, — +oo, (;i’“(éif;))neN converges to

a : —Ph
@ = max limsup —=,
kE[N]  +oo Pk

(6 "6 ) e

and

converges in 672, to

1
& —e*“gn#.
N,k
This clearly implies 4 = p. and n=mn,,_.
Consequently, A > 0,
eﬂcf

lim p(§) o~

= An,
§—+o0 fkc fre?
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and, by Lemma [2.1]

o o
e < min liminf P < max lim sup Py
ke[N] +oo  pg k€[N]  +oo Dk

!
lim <pk) = llc.
Too N Pk / ke[n)

Quite similarly, we also obtain

= MCv

that is

/!
lim <pk> = ,ug.
00 \Pk / ke[N]

If d = 1x,1, the quantities at hand are:

(pe,my,) = (min{p >0 | App (WI+L) =cu},npp (2I+L))
= <; (C* c? — 4/\pF (L)) ,Npp (L))

and an obvious corollary follows.

3. THE BACK OF THE FRONTS: SEPARATED COMPETITION

In this section, we assume (Hg) and a = 1ly,; and prove Theorem and
Theorem [L.3]

3.1. Main tools: Jordan normal form and Perron—Frobenius projection.
Let m € [N] be the number of pairwise distinct eigenvalues of L (App (L) being
simple, m > 2) and let (Ax);(,,) € C™ be the pairwise distinct complex eigenvalues
of L ordered so that (Re (Ar))ye(n 18 @ nondecreasing family (in particular, Ap, =
ApF (L) and Re (>\m—1) < App (L))

Let P € GL (C) be such that J = PLP ! is the Jordan normal form of L:

Apr (L) 0 I

J = 0 Jm—1 7
: 0
0 0o J;

where, for all k € [m — 1], J, is the (upper triangular) Jordan block associated with
the eigenvalue Ag.
Noticing that

LPflel = PflJel = )\PF (L) Pflel,
elPL =elJP = \pr (L) el P,
it follows that P~'e; € spannpp (L) and e[ P € spannpp (LT)T. In particular,

we can normalize without loss of generality P so that P~'e; = npr (L) and then
deduce from el Pnpp (L) = 1 that

1

Nprp (LT)T Nprp (L)

efP = npp (L)
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From the preceding equality, it follows directly that the Perron—Frobenius pro-
jection, defined as

npr (L)npp (LT)T

Npg (LT)T Npg (L)

)

Mpr (L) =
satisfies
PIlpr (L)P ! = diag(e;) .

3.2. Uniqueness up to translation of the profile. In this subsection, we as-
sume d = 1y, we fix ¢ > ¢* and we prove Theorem The scalar front p. is
defined as in the statement of the theorem.

Proposition 3.1. Allp € &, have the form
p: &= pe(§—&)npr (L) with & € R.
Proof. Let p € &, and
q=Ppe ¢’ (R,CY)n.g>(R,CY).
Multiplying (TW [c]) on the left by P, we get
—q"—cq'=Jq—b[P 'q/qin R,
and in particular
—q{ —cdi = (Apr (L) —b[P'q]) q: in R.
Since
(Mpr (L) p). npp (L) = (P~ 'diag (e1) q)T npp (L)
= ¢ (P 'e;) npr (L)
= ({1,

q1 is real-valued and in fact positive in R.
First, let us verify that % is globally bounded in R for all k € [N]\ {1}. It is
bounded in (—o0, 0] since ( info] ¢1 > 0 by [16, Theorem 1.5, iii)]. It is bounded

—0Q0,

in [0,400) since a left-multiplication of the first equivalent of Theorem by P

yields
Q&) ~ Agke—é(c—\/m)iel
whence
lim sup kKl =0.
+oo [ q1

Next, let us show by induction that gy41— =0 in R for all k € [N —1].
e Basis: kK = 1. Due to the special form of J, the equation satisfied by qy is

—q —cgdy = (M —b[P'q]) gv in R.

Define z = % and w = |z|2 The function w is nonnegative and globally
bounded. From , )
S _IN _ 0

o a
1! 1 2 !
Z":qiN,qilZ, fhz/’
q1 q1 q1
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it follows

2 / 11 !
-2 — QIC(—; hy 4 —;cqlz =\ —-b[P'q])zin R

Using the equality satisfied by ¢, this equation reads:

2 /
_Z//_q1C;‘ qlzl-i-()\PF(L)_)‘l)Z:Oin R.
1

Now, multiplying by Z, taking the real part, defining
7 =2(App (L) —Re(A)) >0
and using the obvious equality

Re (2"Z) = Re(2)" Re (2) + Im (2)" Tm (2)
1 2

_ 5w// _ (Re (Z)/)Q — (Im (Z)/) )

it follows
n i€ + 2‘]/1
q1

This inequality implies the nonexistence of local maxima of w. Since w €
%' (R), there exists consequently & € R such that w is decreasing on
(=00, &) and increasing on (£y, +00). Therefore w has well-defined limits
at +oo and since w € £ (R), these limits are finite. By classical elliptic

regularity and the Harnack inequality (see Gilbarg—Trudinger [I4]) applied

w +yw <0 in R.

to the equation satisfied by ¢, % is bounded in R. By elliptic regularity
again, applied this time to the equation

/
_w' — qlc(j&w’ +yw = —2 (Re (Z)/)Q -2 (Im (Z)l)2 )
1

the limits of w have to be null, whence w itself is null, and then gy is null.
e Inductive step: let k € [N — 1]\ {1} and assume gn1-; = 0. Defining

A= jN—k,N—k €sPL\ {Apr (L)},

the equation satisfied by qn.1— (k1) = qn—r is

—qhw—cdy_r=A=b[P'q])gn_r in R.
Repeating the argument detailed in the previous step shows similarly that
qN_k is null.

Hence the proof by induction is ended and yields indeed q = ¢y e; in R. Now, back
to the equation satisfied by ¢;, we find

—qi — ¢y = (Mpr (L) = b[ginpp (L)]) ¢1 in R,

which implies in view of well-known results on the traveling wave equation for the
scalar KPP equation the existence of £ € R such that ¢ coincides with £ —

Pc (5*50) U
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3.3. Global asymptotic stability. The auxiliary functions used in the proof of
Proposition [3.1] can be used again to prove the global asymptotic stability of v* as
stated in Theorem [I.3] In particular, the following lemma will be used repeatedly.

Lemma 3.2. There exists v > 0 such that all bounded positive classical solutions
u of (Expp) set in (0,400) X R satisfying

(tvw)E(lor,lJroo)anPF( ) Hpr (L)u(t )

satisfy also

i (& sup (1= Tlpr (L)) u (0] ) 0.

t—+o00 zER

Proof. The proof is very similar to the first part of that of Proposition[3.1} Defining
v = Pu, the equation satisfied by vy is

OV — OggpV1 = (/\pp (L)—b [P_lv]) vy in (0, 400) X R.
For all k € [N]\ {1}, there exists y; > 0 such that vy satisfies

Uk 2 _ 2 2611)1
at 89::1: 6 + ’Yk:
2

= e 2% (R.[0.+00)
that is such that zy : (¢, z) — e Tt

2
<0 in (0,400) xR

Yk
V1

uk

[{0} xR

2
Yk | gatisfies
v1

{ﬁtzk — Opu 2l — 26”1“16 2k —|— Tz, <0 in (0,400) xR
(2k) {0y xr € £ (R, [0, +00)) .

Since zj stays bounded locally in time, by a classical argument (detailed for
instance in [I6, Proposition 3.4]), z; vanishes uniformly in space as t — +o0.
Consequently,

et sup |vg] = 0 as t — +o0.
z€R

The conclusion follows from v = min & and the following obvious algebraic

ke[N]
equality:

(I HPF (L (Z vkek>
(]

We begin with the case of homogeneous initial data, which does not require
d =1y since (Expp) reduces to (E%PP) in this context.

Proposition 3.3. All positive classical solutions of ( KPP) set in (0,4+00) con-
verge as t — +oo to v*.

Proof. Once again, the proof is very similar to that of Proposition

Fix a positive classical solution v of (E%pp). By [16, Theorem 1.1], v (1) > 0.
Hence the function u : ¢ — v (¢ + 1) is a classical solution of (E% ) set in (0, +00)
which is positive in [0, +00) (whereas v (0) might have null components) and which
converges to v* if and only if v converges to v*.
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The function v = npp (L)T IIpp (L) u satisfies
u = App (L)u —b[u]u.
In order to apply Lemma [3.2] it suffices to verify

inf w(t) >0.
te(0,+00)

On one hand, since u is positive in [0, +00), u is positive in [0, +00) as well. Hence
any ¢t > 0 such that «’ (¢) = 0 is such that b (u(t)) = Apr (L) and consequently
any local minimum is larger than some positive constant. On the other hand,

ltim +inf u > 0 is a direct consequence of the persistence result [16, Theorem 1.3].
—r+00

Since b is Lipschitz-continuous on the compact set {v € K | v < k}, there exists
C1 > 0 such that

|blunpp (L)] = b[u]| < Cy [(I-IIpp (L)) ul in [0, +o00),
Now u satisfies
u’ = /\pF (L) u—>b [UIIPF (L)} u -+ (b [uon (L)] —-b [u]) u,
with, by Lemma[3.2]
(blunpr (L)] —b[u]))u=o0(u) as t = +oo.

It follows easily (see for instance [24]) that u converges to the unique constant
o* > 0 such that App (L) = b[a*npp (L)], which precisely means
lim u(t) =v™.
t——+o0

O

Finally, at the expense of assuming d = 15,1, we extend the previous result to
non-homogeneous initial data.

Proposition 3.4. Assume d = 1y1. Then, for all bounded intervals I C R, all
bounded positive classical solutions u of (Expp) set in (0,+00) X R satisfy

li t,x) — v =0.
tJTooi‘éf}‘“(’x) \a

Consequently, if d = 1y 1, the set of bounded nonnegative classical solutions of
(Skpp) is exactly {0,v*}.
Proof. Let (t,), oy € (0, +00)" such that lirf t, = +00. Then, by classical par-

n—-+0oo
abolic estimates (Lieberman [27]) and a diagonal extraction process, the sequence
(un)neN = ((t3 ‘T) —u (t + tn? x))nEN

converges up to extraction to an entire classical solution of (Expp) valued in
N
11 [v, 9: (0)] (see |16, Theorems 1.2 and 1.3]).

i=1
Now let us prove that v* is the unique bounded entire classical solution u of

(Expp) satistying
(inf ’l]l> > 0.
R? 1E[N]

Let @ be such a solution. The function @ = npp (L)" Ipp (L) @ satisfies

Ot — Oppi = App (L)@ — b[anpr (L)] @+ (b[inpp (L)] — b[a]) 4.
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For all 7 € R,

inf a(t+7,2) > 0.
(t,2)€(0,+00) xR

By Lemma [3:2] there exists C' > 0 such that, for all ¢ > 0 and all 7 € R,
sgg i (t+7,2)npr (L) —a(t+7,x)| < Ce .
It follows that for all ¢ > 0,
sup |@(¢,z)npp (L) —a(t,z)| < Ce "
(t/,x)ER?
and then passing the right-hand side to the limit ¢ — 400, we find
a(t,x)npp (L) =0 (t,z) for all (',z) € R%
Consequently, @ satisfies
Oyt — Oyt = App (L) @ — b[unpr (L)] @.

By standard results on the scalar KPP equation, & = o* in R?, that is 01 = v*.
A standard compactness argument ends the proof. O

4. THE BACK OF THE FRONTS: VANISHINGLY SMALL MUTATIONS IN MONOSTABLE
TWO-COMPONENT SYSTEMS

In this section, we assume (H7) and recall the existence and uniqueness of
(r,n,m) € Kt* x (0, +00) x ST+ (0, 1) such that

L=R+7 (‘11 11> M with (R, M) = (diag (r) , diag (m)) .
The various objects and notations of the problem now depend a priori on n and a
subscript ,, might be added accordingly. The following definitions are recalled:

a; = Tt foralli e {1,2},

Cii

1 T1C22 —T2C12) .
Vi = ’ <) if det C # 0,
"™ det C (7‘261,1 —T1C2,1 7

& = {(n,p,c) € (0, +00)* x €2 (R,R*) |p€ Py, c> c;},
8tu — Damu =Ru-— (Cll) ou. (EKPP)O

4.1. Preparatory lemmas. The proof of Theorem [L.5] will use the following lem-
mas which are of independent interest.

Lemma 4.1. Leti e {1,2}, j =3—1i and

s s
ne <0, L ml
m;Ci;

Then for all traveling wave solutions (p,c) of (EKpp)n,

pi < a; in R

Remark. This lemma is straightforwardly generalizable to the case N > 2.



NON-COOPERATIVE KPP SYSTEMS 21

Proof. Having in mind the proof of [I6, Theorem 1.5, ii)], it suffices to investigate
the sign of

ripi —Nmip; +nmp; — (¢iipi + ¢i ;) i = pi (ri — My — ciipi) +p; (Mg — ¢ jpi) -
This quantity is nonpositive provided

Ty — nm; nm;
pi > max (77 m) ,
Ciyi Ci,j

Since

£>wforall7720,

Cii Cii

T nm; 7"7;01" ;
— > foralln < 2L
Ciji Cij m;c;;

we deduce indeed p; <

T4
Ci,

Lemma 4.2. Leti € {1,2}, j =3 —i and assume
i G
Tj Cjg

Let

o 1 T T Ci,j
ri=g5 T )
Cii \Tj  Cjj

Then for all p € (0, p;], all n € (0,7;) and all traveling wave solutions (p,c) of
(EKpp)n, there exists a unique

& ep; ({p}).

Furthermore p; is decreasing in (§,,+00) and p; — p is positive in (—00,&p).
Remark. The following proof is mostly due to Griette-Raoul [I8 Proposition 5.1].
Proof. Let ¢ € R such that p; (¢) is a local minimum of p;. Then

ripi (€) — nmipi (¢) +nmy;p; (€) — (ci.ipi (C) + cijp; (€)) pi (¢) < 0.

This implies

ripi (C) — nmipi (¢) — (ci,ipi (C) + ¢i3p; (€)) pi (€) <0,
whence
ri = nmq < ciqpi (C) + ¢ijps (€)
whence by Lemma [1.]

r
ri —nm; < ¢ ipi (C) + Ci,jcfjﬁ
35
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and then
1 iCij i
(0> L ()

Cisi Cjj Cii

,
T (Ti B Ci,j) M
Cii \Tj  Cj) = Cig

J1m (7%'_ Cm‘)
2¢,i \Tj ¢,
= Pi-

Now let p € (0, p;] and &, € p;* ({p}).

Since p; (§,) cannot be a local minimum, there exists a neighborhood of £, in
which p; is strictly monotonic. Assume it is increasing. Then by continuity of p}
and the previous estimate on local minima, p; is increasing in (—o0,§,). By classical
elliptic regularity, p converges as £ — —o0 to a solution of Lv = Cvov, and by [16,
Theorem 1.5, iii)], this solution is positive. But in view of the preceding estimates,
necessarily

lim p; (&) > pi > pi (&),

{——o0
which contradicts the monotonicity of p; in (—o0,&,). Hence p; is decreasing in a
neighborhood of ¢, and then in (§,, +00). Consequently,

pi ({p}) = {&}-
This holds for all p € (0, p;] and therefore ends the proof. ]

4.2. Convergence at the back. Let i € {1,2}, j = 3 -1, (¢y), 5, and (py)

n>0
such that

co = lim ¢
n—0 m

{(mpn,cn) €& foralln >0,

and assume from now on that
i _ Cig
—_ > 2
T Cj,j
so that the assumptions of Theorem [I.5] are satisfied. Define subsequently

LT Ci,i
oie; if TE > 2
vy = J 3,

F T Ci,i
v if Lo L
m S e

Proposition 4.3. There exists (C’?)n>0 such that, asn — 0, (£ — py (§+ () 7cn)n>0
converges up to extraction in %ﬁ)c (R, Rz) xR to a traveling wave solution (Ppack, Co)
of (Expp), achieving one of the following connections:

(1) 0 to vy,

(2) aje; tovs,

(3) 0 to ce; with p semi-extinct.

Proof. Let p = min (p;, vs,;). By virtue of Lemma [£.2] for all n > 0, there exists a
unique ¢, such that:
e p,; is decreasing in (¢, +00),

[ ] pnﬂl ((n) == p7
® D, — p is positive in (—o0, Cn)~
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By Lemma classical elliptic estimates (Gilbarg-Trudinger [I4]) and a diagonal
extraction process, (§ — py (§ + §n))n>0 converges in 62, up to extraction. Let p
be its limit. We have directly 0 < p < a in R. In view of the normalization, we
also have:

e p; is nonincreasing in (0, +00),

® Di (0) =P
e p; — p is nonnegative in (—oo,0).

Let (§1),cy such that &, — —oo as n — +00. Defining
Pn:é—p(E+E,) forallneN,

by classical elliptic estimates and a diagonal extraction process again, (p,)
converges up to extraction in 62, to a function p satisfying

—-Dp” —cp’=Rp — (Cp)op

neN

and such that
In particular, p is a stationary solution of
ou — Oz — cgdz,u=Ru— (Cu)ou in (0,400) xR
u(0,2) =p(x) for all z € R.
Applying the comparison principle for two-components competitive parabolic sys-
tems to p and to the solution of

ou — Ozpu — cgdzu=Ru— (Cu)ou in (0,400) x R

(us, u5) (0,2) = (p,sup p;) for all z € R,

which is homogeneous in space and is therefore the solution of
du=Ru— (Cu)ou in (0,400) xR

(ui,uj) (0,2) = (p,supp;) for all z € R,
we directly obtain p = v, if supp; > 0 and p = aye; if supp; = 0. In other
words, if vy = aze;, P = aye;, and if vy = vy, P € {vs,a;€;}. Since v and «;e;
are isolated steady states and p is continuous, the last diagonal extraction was not
necessary and (Pp),, oy converges indeed to p, that is

limp € {v,, ase;}.
—0oQ

Since p; is nonincreasing in (0,400), it converges as £ — +oo. By classical
elliptic regularity,

Eg.} (—dipi — cop) =0,
whence either
imp =0

or p; converges as well, its limit being

1 .
r; — ¢ limp; | .
Ci,j oo

In the second case, using —d;p// — cop); — 0, p; (0) = p and the monotonicity of p;
in (0, +00), we find Emp € {aje;, 0}, which contradicts directly Empi > 0. Hence
(oo} o0

limp; =
lim

p; converges to 0.
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Subsequently, since p; is positive, every local minimum of p; satisfies
rj < ¢ip; (§) +¢jipi (§),
which proves that for all sequences (§,),cy such that &, — +oo and p; (§,) is a
local minimum of p;, p; (§,) converges to a;. But then, by ¢! regularity, either p;

is monotonic in a neighborhood of +oco or there exists a sequence (§,,),,cy such that
§n — +00, pj (€n) is a local minimum of p; and (p; (€n)),, o converges to liIE inf p;.
oo
It turns out that in both cases p; converges, the possible limits being 0 and «;.
Therefore p is a traveling wave achieving exactly one of the following connections:
(1) 0 to v,
(2) aje; to vy,
(3) 0 to ye; with ae; # v,
(4) oje; to ase; with aye; # vs.
It remains to show that the third case is semi-extinct and the fourth case is im-
possible. We will actually prove both statements simultaneously by proving that
limp = o;e; # v, implies p; = 0 in R.
— 00
Assume limp = o;e; and vy, = v,,. Assume also by contradiction that p; is
—0o0
positive in R.
Multiplying the equation
—d;p} — cop; = (rj — ¢jjpj — Cj.iDi) Py
by the function
<o
prErent,
we find
/
—d; (¢p;) = (rj — ¢j,pj — cjapi) ¢P;-
Recall that vy = v,,, implies :— < z—, that is rj —c; ;0 > 0. Therefore the quantity
J JsT
E=sup{§ €R| V(€ (—00,€) 75— cj5p; (C) — cjapi (¢) > 0}
is well-defined in R U {+o00}. In (—00,§), @p; is decreasing. Since on one hand
lim ¢ = 0 and on the other hand lim p;- = 0 by classical elliptic regularity, the limit
— 50 —00
of pj itself is 0. Consequgntly, ©p); is negative in (foo,g). It follows that p;
itself is decreasing in (—0075). But then lim p; = 0 implies that p; is negative in
— 00

(—oo, E), which obviously contradicts the positivity of p;. This ends the proof. [J

5. DISCUSSION

5.1. Why is it likely hopeless to search for a general result on the behavior
at the back of the front? First of all, the linearization of (Skxpp) at 0 being
cooperative, it is natural to wonder whether the dynamics of (Expp) near some
constant positive solution u of (Skxpp) might be purely competitive or cooperative.
In general, neither is the case. The linearized reaction term at any constant solution
u of (SKPP) is

L, =L —diag(c(u)) — (uly n) o Dc(u).
In the Lotka—Volterra case where there exists C > 0 such that ¢ (v) = Cv, it reads
L, =L —diag (Cu) — (uly n) o C.
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On one hand, it is clear that if there exists (,7) € [N]* such that I;; = 0, then
lus; < 0. On the other hand, assuming that there exists ¢ € [N] such that ; ; <0,
we find

—lm‘ui + Ui Ci iUy > 0.
Since Lu — (Cu) o u = 0, it follows

Z (li,juj — uici’juj) > 0,
JEINN{4}
whence there exists j € [N]\ {¢} such that l; ju; — u;c; ju; > 0, that is such that
lu,i7j = li,j — UiC4 5 > 0.

Hence the competitive dynamics and the cooperative dynamics are indeed inter-
twined near u.

Next, in view of the literature on non-cooperative KPP systems, it could be
tempting to conjecture the uniqueness and the local stability of the constant positive
solution of (Sxpp) (see for instance Dockery—Hutson-Mischaikow—Pernarowski [7]
or Morris—Bérger—Crooks [29]). However, if ¢ is linear as before and if

1 /-1 1 1 /1 9
(NaLaC)<2aIQ+5<1 _1>a10<9 1>)7

then this property fails. Indeed, straightforward computations show that the set of
constant positive solutions of (Skpp) is

— /5 15
3 2 344/ 32
15

2

s 121
3+4/2 3o/

From the associated linearizations, it is easily found that, with respect to (E% pp),
the symmetric solution 1, ; is a saddle point whereas the other two solutions are
stable nodes.

Last, we also point out that if d = 15; then the preceding counter-example
admits a family of traveling waves connecting 0 to the saddle point 15 ;. Indeed,
looking for profiles p of the form & — p(§) 12,1, (T'W [¢]) reduces to

—p" —cp' =p—p?,
which, by virtue of well-known results on the scalar KPP equation, admits solutions

connecting 0 to 1 if and only if ¢ > 2. Hence we cannot hope to prove that all
traveling waves connect 0 to a stable steady state.

5.2. What about the general separated competition case, with d and
a possibly different from 1y,;? The general case might be more subtle than
expected, even regarding the ODE system (E(])( p P): although the linearization at
V¥,

Ly =L M\aA — AV (Vb (v*)T) :
seems to be adequately described as a matrix of the form —P—-Q with P = \,A—L
a singular M-matrix and Q = Av* (Vb (v*)T> a positive rank-one matrix, a recent

paper by Bierkens and Ran [2] highlights thanks to a counter-example that such
matrices can have eigenvalues with positive real part (and there is in addition
a counter-example with irreducible —P, so that irreducibility is not a sufficient
condition to ensure all eigenvalues are negative). Therefore it is unclear whether
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v* is always locally asymptotically stable with respect to (E?{ P P). Actually, the
main purpose of the study of Bierkens and Ran is to establish several conditions
sufficient to guarantee that all eigenvalues have a negative real part (conditions
among which we find N = 2 and, of course, a =1y1).

In the case N = 2, classical calculations show that the system (Expp) is not
subjected to Turing instabilities with respect to periodic perturbations. Therefore
it might be fruitful to investigate more thoroughly the two-component system.
Nevertheless, to this day we do not have any further result.

5.3. Where does Conjecture come from? Let us bring forth some insight
into the limiting problem. What are the spreading properties of (Expp), with
respect to front-like initial data? What are the propagating solutions of (Expp),
invading the null state?

Concerning the bistable case, we have at our disposal a recent result by Carrére
[6] which can be summed up as follows. Consider the Cauchy problem where
(—00,0) is initially inhabited mostly but not only (in a sense made rigorous by
Carrére) by u; and (0,+00) is completely uninhabited. Let coie;—ase, b€ the
speed of the bistable front equal to aje; at —oo and to ases at +00, as given by
Kan-On [2I] and Gardner [I2]. Recall that the following bounds hold true:

72\/ d2T2 < Caje;—ases < 2\/ lel.

Carrére’s theorem is then:

(1) if 2¢/dyr > 24/dars and coye;—ase, > 0, then asymptotically in time, wuo
is extinct and wy spreads at speed 2+v/di771;

(2) if 2¢/dim1 < 24/dare and caye;—ase, > 0, then asymptotically in time, wug
spreads on the right at speed 2+/dsrs but is then replaced by u; at speed
Caje;—azess

(3) if 2¢/d1r < 24/dars and coye;—ase, < 0, then asymptotically in time, wuso
chases u; on the left at speed cq,e;—ase, and spreads on the right at speed
2\/ d27‘2.

This result was long-awaited but, as far as we know, Carrére’s proof is the first one.

Up to the sign of cq,e;—ase,, the second and the third cases above are iden-
tical. Recall that the sign of ¢y e;—ase, iS In general a tough problem, although
recently some particular cases have been successfully solved (strong competition in
Girardin—Nadin [I7], special choices of parameter values in Guo—Lin [I9], pertur-
bation of the standing wave in Risler [31]).

A natural conjecture in view of Carrére’s result is the long-time convergence, in
the first case, to a traveling wave connecting 0 to a;e; at speed 2v/dir; and with
a semi-extinct profile p = pe;. However, in the second and third cases, a more
complex limit seems to arise.

The entire solutions connecting three or more stationary states with decreasingly
ordered speeds were first described in the scalar setting by Fife and McLeod [I0]
and are referred to as propagating terraces, or simply terraces, since the work of
Ducrot, Giletti and Matano [8]. A terrace with n — 1 intermediate states is defined
as a finite family of traveling waves ((pi, ¢i));[,,) such that p; (—00) = pit1 (+00)
for all i € [n —1] and such that (c;);c[, s decreasing. Provided the uniqueness
(up to translation of the profile) of the traveling wave connecting v; = p; (+00)
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to vi11 = pi(—00) at speed ¢;, the terrace is equivalently defined as the fam-

ily ((vi, i) i€l ,Vn+1). However, in general, this family only defines a family of

terraces that will be denoted hereafter .7 ((vi, ci) iefn] ,vn+1).

In terms of this definition, the expected limits in the second and third cases
studied by Carrére are terraces belonging to

‘7. (07 2 V dQTQ, Q2€g, Ca1e1—>a2e2 ) Oélel)

with a semi-extinct first profile.
The obvious conjecture is then that all propagating solutions invading 0 apart
from semi-extinct monostable traveling waves belong to

U U T (0,¢, i€, Coy 05 i—aier A3—i€3i)
i€{1,2} e>2Vd;r;
and have a semi-extinct first profile.

The bistable case being more or less understood, we now turn our attention
to the monostable case. Let vy € {ajer,azes, v,,} be the unique stable state,
vy € {0,a1€e1,a0e3} be an unstable state and consider the Cauchy problem with
compactly supported perturbations of v, as initial data. Although the case v, =
a;e; with

iclu={je{l,2} | aje; #vs}.

is well understood (Lewis, Li and Weinberger proved the uniqueness of the spread-
ing speed ¢, ., [25,134]), the case v, = 0 is much more intricate: in particular,
for vy = v,,, a recent theorem analogous to that of Carrére and due to Lin and
Li [28] shows that if dory > dyrq, then us will invade first at speed 2+v/dsro and
then be chased by u. Although straightforward comparisons show that the replace-
ment occurs somewhere in [cf,m%a2e2t, 2\/d1r1t], the exact speed of u is a delicate
question, unsettled in the paper of Lin and Li.

Tang and Fife [32] established by phase-plane analysis that traveling waves con-
necting 0 to v, exist if and only if the speed c satisfies ¢ > ¢TI | where

vs—0>
cIW. o =2 | max d;r
: i€{1,2}
is linearly determinate.

Terraces connecting 0 to v, through an intermediate unstable state «;e; with
i € |, should involve semi-extinct monostable traveling waves connecting 0 to
a;e; and monostable traveling waves connecting «;e; to vs. Again, there ex-
ists a minimal wave speed c{s‘ﬁmei, as proved for instance by Kan-On [22] or
Lewis—Li-Weinberger [26]. Recall that c{sviai e, 18 not linearly determinate in gen-
eral, however it is bounded from below by the linear speed:

Ca i T

TW 3—1,074

cvsﬁaiei 2 2 d3,ir3,i <1 — >
CiiT3—i

In any case, it is natural to expect that for all i € |,, terraces belonging to
T (0, ¢, e, ¢, vs) with a semi-extinct first profile exist if and only if

/
Cvomae; S C

2\/ di’f‘i S C

d <ec.
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Consequently, the conjecture is that all propagating solutions invading 0 apart
from (possibly semi-extinct) monostable traveling waves belong to

U U U T (0,¢,az€;,¢ ,vy)

1€l c>2/d;r; ¢ ZCvi—age;

and have a semi-extinct first profile.

Having these conjectures in mind, we introduce small mutations and wonder
how they affect the outcome. An heuristic answer due to Elliott and Cornell [9]
suggests that “the only role of mutations is to ensure that both morphs travel at
the same speed”. Therefore, there might exist functions u® : R — K such that
the solutions (u,7)n>0 of the Cauchy problem associated with (Fx p p)n with initial
data u’ admit as long-time asymptotic a traveling wave if n > 0 and a terrace of
T (0,c,az€;,¢,v) if n = 0. We refer hereafter to such traveling waves as quasi-
T (0,c,a;€;, ¢, v) traveling waves.

In order to study these special traveling waves, we resort to numerical simula-
tions. We find two completely different behaviors.

o In the bistable case (Figure, quasi-7 (0,2v/d;7;, ai€;, Caje;—sase; s 4€;)
traveling waves (with ¢ € {1,2} and j = 3 —4) converge as ) — 0 to a semi-
extinct traveling wave connecting 0 to aje; if cqje;sae; > 0 and to a;e;
if caje;—aze; < 0.

e In the monostable case (Figure, for alli € |, quasi-7 (O, 2/d;ri, e, VS)
traveling waves connect 0 to vy through an intermediate bump of w;. As
7 — 0, the amplitude of this bump tends to a; while its length tends slowly
to 400 (seemingly like Inn). Therefore, depending on the normalization,
the limit of the profiles as 7 — 0 is either a semi-extinct connection between
0 and «;e; or a monostable connection between «;e; and vg.

5.4. Why is Conjecturesilent about the bistable case with cy e, sase, =
0?7 In this very special case, additional asymmetry assumptions on the coefficients
are necessary in order to exclude connections between 0 and the saddle-point v,,,
as indicated by the following immediate proposition, built on a counter-example
given in Subsection [5.1

Proposition 5.1. Assume (H7),d =133, r=151, m = %1251 and the existence
of a € (1,+00) such that
1 a
C= (a 1) '

Then v,, = ﬁ(c)lzl € Kt is a saddle-point and, for alln > 0 and all ¢ > 2,
there exists a unique p., € €* (R) such that
Penlen € Pey
_ 1
Pcyn (O) = 2/\PF(CP
dm pen (§) = xppor

In particular, (penla,,c) connects 0 to vy,.
Furthermore,

(¢,n) > Pey € € ([2,+00) x [0, +00), #*> (R,R)) .
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(A)t=0 (B) t=20 (c) t=50
.. o e
oy .
| | | ” |
! :
. ‘
(D) t =155 (E) t =65 (r) t =100

FI1GURE 5.1. Numerical simulation of the bistable case with initial
data corresponding to a competition—diffusion terrace (u; dashed
line, us dotted line, x as horizontal axis).

Parameter values: d = (1,1.5125)", r = 151, m = 15, = 0.025,
C1,1 =C22 = 1, C12 = 20, Co1 = 110, so that [17] Caje;—ases > 0.
The traveling wave which is on the right at ¢ = 100, driven by
a very small bump of us but dominated at the back by w1, is the
long-time asymptotic. Indeed the us-dominated area in the middle
shrinks from both sides at a speed close t0 |co,e;—ase,| and will
ultimately disappear.

ACKNOWLEDGMENTS

The author thanks Grégoire Nadin for the attention he paid to this work and
Elaine Crooks for fruitful discussions. He also thanks anonymous referees and the
associate editor for very valuable comments which led to a much clearer manuscript.

REFERENCES

[1] Guy Barles, Lawrence C. Evans, and Panagiotis E. Souganidis. Wavefront propagation for
reaction-diffusion systems of PDE. Duke Math. J., 61(3):835-858, 1990.

[2] Joris Bierkens and André Ran. A singular M-matrix perturbed by a nonnegative rank one

matrix has positive principal minors; is it D-stable? Linear Algebra Appl., 457:191-208, 2014.

Olivier Bonnefon, Jérome Coville, Jimmy Garnier, Frangois Hamel, and Lionel Roques. The

spatio-temporal dynamics of neutral genetic diversity. Fcological Complexity, 20:282—-292,

2014.

Jack Carr and Adam Chmaj. Uniqueness of travelling waves for nonlocal monostable equa-

tions. Proc. Amer. Math. Soc., 132(8):2433-2439, 2004.

[5] Cécile Carrére. Spreading speeds for a two-species competition-diffusion system. working

paper or preprint, Mar 2017.

Jérome Coville and Frédéric Fabre. Convergence to the equilibrium in a Lotka-Volterra ODE

competition system with mutations. ArXiv e-prints, jan 2013.

[3

[4

6



(7]

(8]

[9

[10]
[11]

(12]

NON-COOPERATIVE KPP SYSTEMS 30

——

(A)t=0 (B) t=5 (c) t=40

)
*,

- -
o = —

(D) t=0 (B) t=5 (F) t =140

(e)t=0 (H) t=5 (1) t=40

FIGURE 5.2. Numerical simulations of the monostable case with
initial data corresponding to a competition—diffusion terrace (u
dashed line, us dotted line,  as horizontal axis).

Parameter values: d = (1,%)T7 r = (1,6)T7 m=151,¢c1 =1,
C22 =6, c12 =02 ¢c1 =05 1n=25x 10~! on the first line,
n = 2.5 x 1075 on the second line, n = 2.5 x 107! on the third
line.

Jack Dockery, Vivian Hutson, Konstantin Mischaikow, and Mark Pernarowski. The evolution
of slow dispersal rates: a reaction diffusion model. J. Math. Biol., 37(1):61-83, 1998.
Arnaud Ducrot, Thomas Giletti, and Hiroshi Matano. Existence and convergence to a prop-
agating terrace in one-dimensional reaction-diffusion equations. Trans. Amer. Math. Soc.,
366(10):5541-5566, 2014.

Elizabeth C. Elliott and Stephen J. Cornell. Dispersal polymorphism and the speed of bio-
logical invasions. PLOS ONE, 7(7):1-10, 07 2012.

Paul C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to
travelling front solutions. Archive for Rational Mechanics and Analysis, 65(4):335-361, 1977.
Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of eugenics,
7(4):355-369, 1937.

Robert A. Gardner. Existence and stability of travelling wave solutions of competition models:
a degree theoretic approach. J. Differential Equations, 44(3):343-364, 1982.



(13]

[14]
[15]
[16]
(17]

(18]

(19]

[20]

[21]
[22]

23]

[24]

[25]
[26]
[27]
28]
[29]
[30]
[31]
132

(33]

34]

NON-COOPERATIVE KPP SYSTEMS 31

Jimmy Garnier, Thomas Giletti, Frangois Hamel, and Lionel Roques. Inside dynamics of
pulled and pushed fronts. Journal de Mathématiques Pures et Appliquées, 98(4):428-449,
2012.

David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics. Springer-Verlag, 2001.

Michael E. Gilpin and Francisco J. Ayala. Global models of growth and competition. Pro-
ceedings of the National Academy of Sciences, 70(12):3590-3593, 1973.

Léo Girardin. Non-cooperative Fisher—- KPP systems: traveling waves and long-time behavior.
ArXiv e-prints, dec 2016.

Léo Girardin and Grégoire Nadin. Travelling waves for diffusive and strongly competitive
systems: relative motility and invasion speed. European J. Appl. Math., 26(4):521-534, 2015.
Quentin Griette and Gaél Raoul. Existence and qualitative properties of travelling waves
for an epidemiological model with mutations. J. Differential Equations, 260(10):7115-7151,
2016.

Jong-Shenq Guo and Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra
competition-diffusion system. Commun. Pure Appl. Anal., 12(5):2083-2090, 2013.
Jong-Shenq Guo and Chang-Hong Wu. Traveling wave front for a two-component lattice
dynamical system arising in competition models. J. Differential Equations, 252(8):4357-4391,
2012.

Yukio Kan-on. Parameter dependence of propagation speed of travelling waves for
competition-diffusion equations. SIAM J. Math. Anal., 26(2):340-363, 1995.

Yukio Kan-on. Fisher wave fronts for the lotka-volterra competition model with diffusion.
Nonlinear Anal., 28(1):145-164, 1997.

Andrei N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. Etude de I’équation de la diffusion
avec croissance de la quantité de matiére et son application & un probléme biologique. Bulletin
Université d’Etat ¢ Moscou, 1:1-25, 1937.

Héléne Leman, Sylvie Méléard, and Sepideh Mirrahimi. Influence of a spatial structure on
the long time behavior of a competitive lotka-volterra type system. Discrete Contin. Dyn.
Syst. Ser. B, 20(2):469-493, 2015.

Mark A. Lewis, Bingtuan Li, and Hans F. Weinberger. Spreading speed and linear determi-
nacy for two-species competition models. J. Math. Biol., 45(3):219-233, 2002.

Bingtuan Li, Hans F. Weinberger, and Mark A. Lewis. Spreading speeds as slowest wave
speeds for cooperative systems. Math. Biosci., 196(1):82-98, 2005.

Gary M. Lieberman. Second order parabolic differential equations. World Scientific Publishing
Co., Inc., River Edge, NJ, 1996.

Guo Lin and Wan-Tong Li. Asymptotic spreading of competition diffusion systems: the role
of interspecific competitions. European J. Appl. Math., 23(6):669-689, 2012.

Aled Morris, Luca Borger, and Elaine C. M. Crooks. Individual variability in dispersal and
invasion speed. ArXiv e-prints, dec 2016.

Hans F. Weinberger Murray H. Protter. Mazimum Principles in Differential Equations.
Springer-Verlag, 1984.

Emmanuel Risler. Competition between stable equilibria in reaction-diffusion systems: the
influence of mobility on dominance. ArXiv e-prints, mar 2017.

Min Ming Tang and Paul C. Fife. Propagating fronts for competing species equations with
diffusion. Arch. Rational Mech. Anal., 73(1):69-77, 1980.

Aizik I. Volpert, Vitaly A. Volpert, and Vladimir A. Volpert. Traveling wave solutions of
parabolic systems, volume 140 of Translations of Mathematical Monographs. American Math-
ematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F.
Heyda.

Hans F. Weinberger, Mark A. Lewis, and Bingtuan Li. Analysis of linear determinacy for
spread in cooperative models. J. Math. Biol., 45(3):183-218, 2002.

E-mail address: girardin@ljll.math.upmc.fr



	1. Introduction
	1.1. The non-cooperative KPP system
	1.2. Results: at the edge of the fronts
	1.3. Results: at the back of the fronts

	2. The edge of the fronts
	2.1. Preparatory lemmas and the Ikehara theorem
	2.2. Convergence at the edge

	3. The back of the fronts: separated competition
	3.1. Main tools: Jordan normal form and Perron–Frobenius projection
	3.2. Uniqueness up to translation of the profile
	3.3. Global asymptotic stability

	4. The back of the fronts: vanishingly small mutations in monostable two-component systems
	4.1. Preparatory lemmas
	4.2. Convergence at the back

	5. Discussion
	5.1. Why is it likely hopeless to search for a general result on the behavior at the back of the front?
	5.2. What about the general separated competition case, with d and a possibly different from 1N,1?
	5.3. Where does (H7) come from?
	5.4. Why is (H7) silent about the bistable case with c1e12e2=0?

	Acknowledgments
	References

