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Abstract: This paper presents a new set-membership observer design method for linear
discrete-time systems. The real process is assumed to be perturbed by unknown but bounded
disturbances. The set-membership observer provides a deterministic state interval that is build
as the sum of the estimated system states and its corresponding estimation errors bounds. The
proposed approach is based on the solutions of a few number of Linear Matrix Inequalities
that are suitable modified to provide both the observer parameters and ellipsoidal Robustly
Positive Invariant sets. The latter are used to frame the estimation error in a very simple and
accurate way. The enhanced precision on the computation of the estimation error bounds has
been possible thanks to the use of the a posteriori calculated covariance matrix that allows,
in a second time, to better describe the dissipation equation used in the Bounded-real lemma
formulation. A numerical example illustrates the behavior of such observer and discuss its easy
implementation.
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1. INTRODUCTION

State estimation is often a necessary task to solve many
control problems. Since in practical applications, sensors
are often limited in number, can provide measurements
with not enough accuracy and/or present low reliability,
the knowledge of the full state of the system can be
possible by using state observers. Several of the today
control problems are related to decision-making process.
Such real-time decisions are mostly based on estimated
states. However, the associated thresholds for making
decisions are often based on statistical results obtained
during experimental tests. Those thresholds are intended
to provide an admissible domain for starting or not a given
action. For instance, in diagnosis and fault-tolerant control
systems, several fault detection mechanisms are based on
the detection of abnormal values on the observer-based
residuals, see for instance Seron et al. (2008), Yetendje
et al. (2011). Those residuals nominally belongs to a
given interval of values in absence of faults and leaves
those intervals in presence of faults. Thus, in this kind
of applications, the main problem is to compute variable
intervals or thresholds in a very accurate way for avoiding,
for instance, false-alarms.

State estimation of disturbed systems can be performed,
for instance, by Luenberger observers or Kalman filters
which can provide a measurement of the quality of the es-
timates (e.g. the covariance matrix of the estimates). How-
ever, obtain a simple and accurate characterization of the
state bounds in presence of bounded disturbances remains
an open problem for high dimensional systems. In partic-
ular methods based on (real-time) interval arithmetic, see
for instance Kieffer et al. (2002),Jaulin (2002), Kieffer and
Walter (2002) and Efimov et al. (2013); methods based
on online computation of zonotopes, see Combastel (2015)

and Le et al. (2013); methods based on online computa-
tion of ellipsoidal sets, see Ben Chabane et al. (2014b)
and Durieu et al. (2001); and/or methods that combine
zonotopes and ellipsoidal sets Ben Chabane et al. (2014a);
are susceptible to increase the computational cost for high
order systems and/or solving Linear Matrix Inequalities
(LMI) in real-time. Some of the existent approaches do
not guarantee stability of the obtained bounds for unstable
open-loop systems, and most of the existent approaches
are based on the propagation of the initial computed set
which implies propagation, and possible amplification, of
the initial state bounding error.

In this paper, we explore the concept of Robustly Pos-
itive Invariant (RPI) sets for designing set-membership
observers. In particular, we explore the use of RPI sets
with ellipsoidal form, see for instance Martinez (2015).
There are two main reasons for this choice: i) Invariant
sets allow to obtain state bounds in a deterministic and
guarantee way, and ii) Geometry of ellipsoidal forms can
be exploited to obtain more implementable solutions.

This paper presents a new set-membership observer design
method for linear discrete-time disturbed systems. The
system is assumed to be detectable. This concerns the only
necessary condition for the system during the observer
design process. The system disturbances are considered to
be unknown inputs but belong to a bounded and known
set. The proposed set-membership observer provides a
deterministic state interval that is build as the sum of the
estimated system states and its corresponding estimation
errors bounds. The proposed approach is based on the
solutions of a few number of Linear Matrix Inequalities
that are suitable modified to provide both the observer
parameters and ellipsoidal RPI sets. The latter are used to
frame the estimation error in a very simple and accurate



way. The enhanced precision on the computation of the
estimation error bounds has been possible thanks to the
use of the a posteriori calculated covariance matrix that
allows, in a second time, to better describe the dissipation
equation used in the Bounded-real lemma formulation.
Comparing with respect to standard state observers for n-
order systems, the proposed set-membership observer will
be a (n+ 1)-order observer which facilitate its implemen-
tation for high order systems.

The paper is organized as follows. Section 2 presents the
problem statement. Then, in Section 3 the Bounded-real
lemma has been used to design a Luenberger observer
and provides ellipsoidal Robustly Positive Invariant (RPI)
sets. In Section 4, an strategy based on an, a posteriori
calculated, covariance matrix is used to obtain smaller RPI
sets. This Section also summarizes the proposed observer
design process. Sections 5 and 6 are dedicated to infer
the evolution of such RPI sets starting for any initial
estimation error and illustrates the implementation of the
set membership observer. Finally in Section 7 a numerical
example illustrates the interest of such approach. Conclu-
sions and future work are presented in Section 8.

2. PROBLEM STATEMENT

Consider the time invariant linear discrete-time system:{
xk+1 = Axk +Buk + Fdk

yk = Cxk + Zvk
(1)

where xk ∈ Rn is the state vector, uk ∈ Rnu is the input
vector and yk ∈ Rny is the measured output vector. The
vectors dk and vk are unknown state disturbances and
unknown measurement noises, respectively. The vector of
total disturbances, i.e. [dk vk]T , is assumed to belong
to a bounded set which includes the zero. The matrices
A,B,F,C,Z have appropriated dimensions. We assume
that the pair (A,C) is detectable.

Suppose we can design the following Luenberger observer:

x̂k+1 = (A− LC)x̂k +Buk + Lyk (2)

where L is the observer gain matrix. One of the objectives
of this matrix is to guarantee that the estimation dynamics
(2) will be stable.

Defining the estimation error at a given instant k as
ek := xk − x̂k, the dynamics of the estimation error can
be obtained from (1) and (2), as follows:

ek+1 = Aoek +Ewk (3)

where Ao = (A − LC), E = [F − LZ] and wk ∈ Rm,

defined as wk :=

(
dk

vk

)
.

Remark that the matrix L guarantees the stability of the
error dynamics (3). However, it also intervenes on the
amplification or on the attenuation of the disturbances
wk. In the sequel we assume that disturbance wk can be
bounded as follows wT

kwk ≤ wTw for all k ≥ 0, where
w ∈ Rm, w ≥ 0 and w := sup{wk}.
Now suppose that we exactly known a bound of the
estimation error ek, denoted ek. At each time-instant, the
real state vector satisfies

x̂k − ek ≤ xk ≤ x̂k + ek (4)

In other words, at every time-instant we can guarantee
that the system state belongs to a set defined by the
vectors xk := x̂k − ek and xk := x̂k + ek.

In this case, a set-membership observer could be imple-
mented as follows:

x̂k+1 = (A− LC)x̂k +Buk + Lyk (5)
xk = x̂k + ek (6)
xk = x̂k − ek (7)

Therefore the set-membership observer design problem can
be reduced to compute at each time-instant the vectors xk

and xk as the sum of both a state estimation and a bound
of the estimation error ek and −ek, respectively.

Nevertheless, computation of a deterministic, simple and
accurate bound ek is not an easy task. In this paper
we propose a new method to design a set-membership
observer in a very accurate and implementable way. The
proposed method is based on the computation of ellip-
soidal Robustly Positive Invariant (RPI) sets. Such sets
are used to compute suitable deterministic bounds of the
estimation error ek.

3. SET-MEMBERSHIP OBSERVER DESIGN

In this Section, a first observer design based on H∞
synthesis is presented. Additionally, the ellipsoidal RPI
sets are derived and used for bounding the estimation error
at steady-state regime.

3.1 H∞ Observer design using the Bounded-real lemma

Consider the estimation error dynamics (3). An H∞ ob-
server is intended for minimizing the impact of the system
disturbances wk on the estimation error ek.

Now consider the following candidate Lyapunov function
Vk = eTkPek for system (3). Suppose there exist a
symmetric positive definite matrix P and a scalar γ > 0
verifying the following dissipation inequality:

Vk+1 −Vk ≤ −eTk ek + γ2wT
k wk (8)

We can use the Bounded-real Lemma for discrete-time
systems for designing a state observer, i.e. find the matrix
L, the matrix P and the minimum scalar γ which verify:(

AT
o PAo −P+ In AT

o PE
ETPAo ETPE− γ2Im

)
! 0 (9)

This condition has to be transformed into a Linear Matrix
Inequality (LMI) to be solved. Thus, we start by written
condition (9) as follows:(

−P+ In 0
0 −γ2Im

)
+

(
AT

o PAo AT
o PE

ETPAo ETPE

)
! 0 (10)

then, by using the Schur complement we obtain:


−P+ In 0 AT

o P
0 −γ2Im ETP

PAo PE −P



 ! 0 (11)

Replacing Ao = (A− LC) and E = [F − LZ], we have:


−P+ In 0 ATP−CTLTP

0 −γ2Im [PF −PLZ]T

PA−PLC [PF −PLZ] −P



 ! 0

(12)



by performing a change of variable in (12), i.e. U := PL,
we obtain the following LMI:


−P+ In 0 ATP−CTUT

0 −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P



 ! 0 (13)

Once the matrices P, U and the minimum scalar γ are
found, the state observer gain L can be computed as L =
P−1U. Then, the first part of the Set-membership state
observer, equation (5), can be implemented. The problem
now is to compute suitable bounds of the estimation error
for implementing (6) and (7).

3.2 Computing ellipsoidal RPI sets

Considering that the norm-2 of the disturbances can be
bounded as wT

kwk ≤ wTw, from (8) we have:

Vk+1 −Vk ≤ −eTk ek + γ2wTw ≤ 0 (14)

if eTk ek ≥ γ2wTw. Then, outside the ball

Bw := {e ∈ Rn : eT e ≤ γ2wTw} (15)

the difference of the Lyapunov function along the trajecto-
ries, i.e. Vk+1−Vk, is negative, which implies that a level
set of the Lyapunov function Ω := {e ∈ Rn : eTPe ≤ c}
that contains the ball Bw is an attractive invariant set. A
value of c which guarantees that the ball Bw is included
into the set Ω can be calculated as c = λmax(P)γ2wTw.
Thus, the set Φ defined below is an attractive invariant set
for the system (3):

Φ := {e ∈ Rn : eTPe ≤ λmax(P)γ2wTw} (16)

The symbol λmax(P) denotes the maximum eigenvalue of
matrix P.

Now, using geometrical properties of the ellipsoids, steady-
state bounds on ek (i.e. for k → ∞), denoted e∞, can be
obtained as follows:

e∞ = diag

((
P

λmax(P)γ2w̄T w̄

)−1/2
)

(17)

The symbol diag(M) denotes the diagonal of matrix M .

The above bounds on ek presents two drawbacks: i) those
bounds only characterize the steady-state regime of the
estimation error, and ii) the used ellipsoidal RPI set could
present an important volume, providing very conservative
bounds of the estimation error.

In the next Section, we will propose a method to reduce the
size (the volume) of the obtained RPI sets to enhance the
precision of the obtained bounds. In addition, in Section
5 we will use the evolution of the Lyapunov level sets,
describing the RPI sets, for finding suitable bounds during
the whole period of the state observer evolution, i.e. for
k > 0.

4. SHRINKING ELLIPSOIDAL RPI SETS

4.1 Suitable modification of the dissipation matrix

It is possible to shrink the ellipsoidal RPI set (16) by find-
ing a novel condition of the contraction of the Lyapunov
function. That is, assuming the existence of a symmetric

positive definite matrix Q, we can modify (14) to obtain
the following less restrictive dissipation inequality:

Vk+1 −Vk ≤ −eTkQek + γ2w̄T w̄ ≤ 0 (18)

which holds if eTk Qek ≥ γ2w̄T w̄.

Thus, the LMI (13), used for designing a state observer,
can be transformed into a more general LMI which con-
sider any dissipation matrix Q, that is:


−P+Q 0 ATP−CTUT

0 −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P



 ! 0 (19)

Once the matrix P and the minimum scalar γ have been
computed from (19) for any initial dissipation matrix Q.
A new and refined matrix Q can be obtained, in a second
time, by minimizing the volume of the ellipsoid defined by
this matrix. That is, find Q which minimizes − ln det(Q)

and verifies the following LMI:(
AT

o PAo −P+Q AT
o PE

ETPA ETPE− γ2Im

)
! 0 (20)

In this way, a smaller ellipsoidal RPI set can be obtained
as follows:

Ψ :=

{
e ∈ Rn : eTPe ≤ 1

λ
γ2w̄T w̄

}
(21)

where, for a given non-zero vector e, the scalar λ satisfy

eTQe

eTPe
≥ λ (22)

which is known as the generalized Rayleigh quotient.
The scalar λ satisfying (22) can be obtained as the mini-
mum generalized eigenvalue of the pair (Q,P).

The ellipsoid (21) represents the smallest level set of the
Lyapunov function which includes the set:

B∗
w := {e ∈ Rn : eTQe ≤ γ2wTw} (23)

4.2 Using the a posteriori steady-state covariance matrix

Considering that the expected value of ek ∈ Rn in (3) is
equal to zero, its steady-state covariance equal to V and
for any real number t > 0, we can use the multidimensional
Chebyshev’s inequality:

Pr(eTk V
−1ek > t2) ≤ n

t2
(24)

for computing a stochastic ellipsoidal set. Even if this set
could have very small volume, this set is not an invariant
set because there is a probability that some trajectories of
the estimation error e go out this set. However, its shape
matrix can be used to update the dissipation matrix Q
during the observer design.

Remember that the Lyapunov function in (18) only de-
creases if the following condition holds:

eTk Qek > γ2w̄T
k w̄k (25)

Remark that this deterministic condition has the same
shape than the inequality (24), if we get Q = V −1.

Hence, the problem now is to calculate the matrix V . The
steady-state covariance of the estimation error, denoted
V , can be obtained by solving the following Lyapunov
equation:

AoVAT
o − V = −W (26)



where W represents the co-variance matrix for distur-
bances Ewk in (3). In practical applications where the
co-variance matrix for disturbances is not available, we
can assume that every element of the disturbance vector
wk is uniform distributed but bounded in a given interval
[a b]. In this case, its variance can be computed as

W = var(Ewk) = (1/12)(b− a)2EET (27)

Remark that the computation of V is possible once the
matrixAo is available, i.e. an a priori observer matrix gain
L has to be calculated using an initial and arbitrary matrix
Q, for instance Q = In. After applying this heuristic
procedure, a significant reduction of the RPI set volume
can be obtained by re-starting the observer design process
with the new computed matrix Q = V −1.

The complete observer design process is summarizing in
Algorithm 1.

Algorithm 1 set-membership observer design based on
ellipsoidal invariant sets.
Require: Matrices A,B,C,F and Z describing system

(1). Initialization of Q = In and i = 0.
1: Increment i by one
2: Find matrices P, U and the minimum γ who satisfy

the LMI (19).
3: Compute L = P−1U.
4: Compute Ao = A− LC.
5: Compute E = [F − LZ]
6: Using P and γ, find a new matrix Q which satisfies

the LMI (20) and minimize (− log(det(Q)))
7: Compute the minimum λ which satisfies (22)
8: if i < 2 then
9: Compute the disturbance variance W using (27).

10: Obtain the covariance matrix V using (26).
11: Do Q = V −1.
12: Go to step 1.
13: end if
14: return The observer parameters L, P, γ and λ.

Now, proceeding in a similar way that this proposed in
Section 3.2, smaller steady-state bounds on ek, denoted
e∞, can be obtained as follows:

e∞ = diag

((
P

1
λγ

2w̄T w̄

)−1/2
)

(28)

In the next Section, we will use the evolution of the
Lyapunov level sets, describing the RPI sets, for finding
suitable bounds during the whole period of the state
observer evolution, i.e. for k > 0.

5. CHARACTERIZING THE EVOLUTION OF THE
RPI SETS

Suppose that the initial estimation error, denoted e0 is
unknown but belongs to an initial bounded set E0 ⊂ Rn.

There exist a scalar µ ≥ 1 such that the following condition
holds:

E0 ⊂ Ψ (29)
with

Ψ := {e ∈ Rn : eTPe ≤ 1

λ
µγ2wTw} (30)

Remark that the set (30) corresponds to an expansion of
the invariant set (21), using µ ≥ 1. For this reason the set
(30) is also an invariant set.

Starting by the inequality (18) and using the relation (22):

Vk+1 ≤ Vk − eTkQek + γ2w̄T w̄ (31)

eTk+1Pek+1 ≤ eTkPek − eTkQek + γ2w̄T w̄ (32)

≤ 1

λ
eTk Qek − eTk Qek + γ2w̄T w̄ (33)

≤
(
1

λ
− 1

)
eTkQek + γ2w̄T w̄ (34)

Now considering the fact that the set Ψ includes the set:

B
∗
w := {e ∈ Rn : eTQe ≤ µγ2wTw} (35)

we have

eTk+1Pek+1 ≤
(
1

λ
− 1

)
µγ2w̄T w̄+ γ2w̄T w̄ (36)

we can now explicitly compute the one-step ahead RPI set,

denoted Ψ
+
, as follows:

Ψ
+
:=

{
e ∈ Rn : eTPe ≤

(
1

λ
µ− µ+ 1

)
γ2wTw

}
(37)

By defining c̄ := 1
λγ

2wTw we have a more compact
expression of the expanded invariant set (30) and its one-
step ahead invariant set evolution (37), that is






Ψ : eTPe ≤ µ c̄

Ψ
+
: eTPe ≤ ((1 − λ)µ+ λ)︸ ︷︷ ︸

µ+

c̄ (38)

These expressions can be used to infer a recursive rela-
tionship between µ and its one-step ahead value, denoted
µ+ in (38). Thus, for a given initial condition µ0 ≥ 1 the
dynamics of this scalar, at every time-instant k, obeys:

µk+1 = (1− λ)µk + λ (39)

This dynamics is necessarily stable because it characterizes
the contraction of the invariant set (30). Remark that

µk+1 ≤ µk because Ψ
+ ⊆ Ψ. In addition, µk asymptot-

ically converges to 1 as long as the time-instant k → ∞.

Hence, at every time instant, the invariant sets obeys the
following dynamics:

Ψk :=
{
e ∈ Rn : eTPe ≤ µk c̄

}
(40)

and its ellipsoidal shape matrix can be used to compute
a more accuracy bounds for the estimation error ek. That
is,

ek = diag

((
P

µk c̄

)−1/2
)

(41)

equivalently,

ek = e∞µ1/2
k (42)

with e∞ a known constant column vector defined in (28).

It only remains to compute an appropriated initial value
for the scalar µ. To do this, suppose that the initial
condition for the estimation error verifies e(0) ∈ E0 ⊆ B0,



where, for a given scalar γε ≥ 0, the ball B0 defined as
follows:

B0 := {e ∈ Rn : eT e ≤ γ2
ε } (43)

will be included into the invariant set

Ψ0 := e ∈ Rn :
{
eTPe ≤ λmax(P)γ2

ε

}
(44)

Thus, using (40) and (44) a suitable initial value of µ
verifies:

µ0c̄ = λmax(P)γ2
ε (45)

and then, we can chose µ0 = λmax(P)γ2
ε /c̄.

The next Section summarizes the set-membership observer
implementation.

6. THE SET-MEMBERSHIP OBSERVER
IMPLEMENTATION

Once the Algorithm 1 returns the observer parameters L,
P, γ and λ, and after to initialize the scalar µ in a suitable
way. The dynamical equations of the set-membership
observer will be implemented as follows:

x̂k+1 = (A− LC)x̂k +Buk + Lyk (46)
µk+1 = (1− λ)µk + λ (47)

xk = x̂k + e∞ µ1/2
k (48)

xk = x̂k − e∞ µ1/2
k (49)

with a constant column vector:

e∞ = diag

((
P

c̄

)−1/2
)

(50)

where c̄ = 1
λγ

2wTw.

The initial condition for the scalar µ can be obtained as

µ0 =
λmax(P)γ2

ε

c̄
(51)

for any initial estimation error insides a given ball with
radius γε ≥ 0, i.e.

eT0 e0 ≤ γ2
ε (52)

with e0 := x0 − x̂0.

Recall that we assume that the initial estimation error is
bound, and its bound is known, that is γε is known. This
value allows to properly initialize the scalar µ using (51).

The implementation of the proposed set-membership ob-
server is relatively simple, since it only requires to extend
its dynamics by including a scalar dynamical equation.
Thus, the order of the set-membership state observer will
be only of n+ 1, for any n-order system, i.e. x ∈ Rn.

7. A NUMERICAL EXAMPLE

Consider a second order linear discrete-time system (1)
with matrices:

A =

(
0.2 0.2
0 0.5

)
, B =

(
1
1

)
, F =

(
0
0.1

)
, C = ( 1 0 )

and Z = 0.1.

After applying the Algorithm 1, the obtained matrices
which describe the set-membership state observer are:

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

x 1

Time−instant

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

x 2

Time−instant

Fig. 1. Set-membership estimation. The dashed lines
correspond to the bounds obtained from the set-
membership state observer. For comparison, the solid
lines corresponds to the real system state.

0 2 4 6 8 10 12 14 16 18 20
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µ
k
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Fig. 2. Evolution of the scalar µk. This scalar characterizes
the contraction of the initial RPI set. The value of µk

converges to 1 as k → ∞.

L =

(
0.5453
0.8919

)
, P = 1e3

(
2.5084 −0.8209
−0.8209 0.4749

)

and the scalars: γ = 2.3223 and λ = 0.6289.

We suppose that for all k, the disturbanceswk are random
variables with uniform distribution but bounded by the
vector w = [1 1]T . That is, −w ≤ wk ≤ w.

In this example, we consider a constant system input
uk = 1 for time-instants k < 9. After the time-instant
k ≥ 9 the system input is uk = 0.

The set-membership state observer has been implemented
using equations (46)-(49). The initial conditions for the
observer states x̂ and the scalar µ are: x̂0 = (0 0)T and
µ0 = 163.17, respectively. The latter has been computed
using (51) by considering (−1 0)T ≤ x0 ≤ (1 0)T and
then γε = 1.
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Fig. 3. Invariant set and states covariances. The solid
line corresponds to the obtained RPI set used for
computing deterministic bounds of the estimation
error. The dashed line corresponds to the stochastic
ellipsoidal defined by (24) with t = 3.

Figure 1 illustrates the behavior of the observer. The
dashed lines correspond to the bounds obtained from the
set-membership state observer. For comparison, we have
included the solid lines which corresponds to the real
system state. Remark that the obtained bounds are very
accuracy for both during the transient and during the
steady-state periods.

Figure 2 depicts the behavior of the scalar µk during
the whole period of the estimation. Remark that even if
its value starts at 163.17, it converges asymptotically to
1 with a behavior compatible with the estimation error
dynamics.

In Figure 3, the solid-line ellipsoid corresponds to the
obtained RPI set used for computing deterministic bounds
of the estimation error (for µ = 1). The dashed-line
corresponds to the stochastic ellipsoidal defined by (24)
with t = 3. Remark that the obtained RPI set has taken
a shape that is very close to that characterizing the states
covariances. The latter set represents the set of possible
values of the estimation error with a probability greater
than 77.78%. Thus, according to the Chebyshev’s inequal-
ity (24) there is a probability of obtaining estimation errors
outside this set with a probability less or equal to 22.22%.
However, for initial conditions starting inside the RPI set
(solid-line ellipsoid), it is possible to conclude that, for all
k > 0, the estimation error always remains inside this set.

8. CONCLUSIONS AND FUTURE WORK

In this paper we has presented a new method for designing
state set-membership observers. The proposed observer is
able to provide, at every time-instant, accurate bounds
of the current system state. The observer design is based
on the computation of an H∞ observer using LMIs and
including a modified Bounded-real lemma formulation.
The implementation of the observer is very simple. Com-
paring with respect to standard state observers for n-order
systems, the proposed set-membership observer will be a

(n+ 1)-order observer which facilitate its implementation
for high order systems.

As future work, we expect to perform an extension of this
work for parameter uncertain systems and its application
on fault detection and fault-tolerant control problems.
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