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1. Introduction. Many modern problems in a variety of disciplines (imaging, machine learning, statistics, etc.) can be formulated as convex optimization problems. Instead of solving the optimization problems directly, it is often advantageous to reformulate the problem as a saddle point problem. A very popular algorithm to solve such saddle point problems is the primal-dual hybrid gradient (PDHG) 1 algorithm [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF][START_REF] Esser | A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science[END_REF][START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF][START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF][START_REF] Chambolle | An Introduction to Continuous Optimization for Imaging[END_REF][START_REF] Chambolle | On the Ergodic Convergence Rates of a First-Order Primal-Dual Algorithm[END_REF]. It has been used to solve a vast amount of stateof-the-art problems-to name a few examples in imaging: image denoising with the structure tensor [START_REF] Estellers | Adaptive Regularization With the Structure Tensor[END_REF], total generalized variation denoising [START_REF] Bredies | A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics[END_REF], dynamic regularization [START_REF] Benning | Explorations on Anisotropic Regularisation of Dynamic Inverse Problems by Bilevel Optimisation[END_REF], multi-modal medical imaging [START_REF] Knoll | Joint MR-PET Reconstruction using a Multi-Channel Image Regularizer[END_REF], multi-spectral medical imaging [START_REF] Rigie | Joint Reconstruction of Multi-Channel, Spectral CT Data via Constrained Total Nuclear Variation Minimization[END_REF], computation of non-linear eigenfunctions [START_REF] Gilboa | Nonlinear Spectral Analysis via One-homogeneous Functionals -Overview and Future Prospects[END_REF], regularization with directional total generalized variation [START_REF] Kongskov | Directional Total Generalized Variation Regularization[END_REF]. Its popularity stems from two facts: First, it is very simple and therefore easy to implement. Second, it involves only simple operations like matrix-vector multiplications and evaluations of proximal operators which are for many problems of interest simple and in closed-form or easy to compute iteratively, cf. e.g. [START_REF] Parikh | Proximal Algorithms[END_REF]. However, for large problems that are encountered in many real world applications, even these simple operations might be still too costly to perform too often.

We propose a stochastic extension of the PDHG for saddle point problems that are separable in the dual variable (cf. e.g. [START_REF] Dang | Randomized Methods for Saddle Point Computation[END_REF][START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF][START_REF] Zhu | Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems[END_REF][START_REF] Peng | Coordinate Friendly Structures, Algorithms and Applications[END_REF]) where not all but only a few of these operations are performed in every iteration. Moreover, as in incremental optimization algorithms [START_REF] Tseng | An Incremental Gradient(-Projection) Method with Momentum Term and Adaptive Stepsize Rule[END_REF][START_REF] Nedić | Incremental Subgradient Methods for Nondifferentiable Optimization[END_REF][START_REF] Blatt | A Convergent Incremental Gradient Method with a Constant Step Size[END_REF][START_REF] Bertsekas | Incremental Proximal Methods for Large Scale Convex Optimization[END_REF][START_REF] Bertsekas | Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey[END_REF][START_REF] Schmidt | Minimizing Finite Sums with the Stochastic Average Gradient[END_REF][START_REF] De Oliviera | String-Averaging Incremental Subgradients for Constrained Convex Optimization with Applications to Reconstruction of Tomographic Images[END_REF] over the course of the iterations we continuously build up information from previous iterations which reduces variance and thereby negative effects of stochasticity. Non-uniform samplings [START_REF] Richtárik | Iteration Complexity of Randomized Block-Coordinate Descent Methods for Minimizing a Composite Function[END_REF][START_REF] Qu | Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity[END_REF][START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF][START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF][START_REF] Allen-Zhu | Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling[END_REF] have been proven very efficient for stochastic optimization. In this work we use the expected separable overapproximation framework of [START_REF] Qu | Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity[END_REF][START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF][START_REF] Richtárik | On Optimal Probabilities in Stochastic Coordinate Descent Methods[END_REF] to prove all statements for all non-trivial and iteration-independent samplings.

Related Work. The proposed algorithm can be seen as a generalization of the algorithm of [START_REF] Dang | Randomized Methods for Saddle Point Computation[END_REF][START_REF] Zhu | Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems[END_REF][START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF] to arbitrary blocks and a much wider class of samplings. Moreover, in contrast to their results, our results generalize the deterministic case considered in [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF][START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF][START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF][START_REF] Chambolle | On the Ergodic Convergence Rates of a First-Order Primal-Dual Algorithm[END_REF]. Fercoq and Bianchi [START_REF] Fercoq | A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non Separable Functions[END_REF] proposed a stochastic primaldual algorithm with explicit gradient steps that allows for larger step sizes by averaging over previous iterates, however, this comes at the cost of prohibitively large memory requirements. Similar memory issues are encountered by a primal-dual algorithm of [START_REF] Balamurugan | Stochastic Variance Reduction Methods for Saddle-Point Problems[END_REF]. It is related to forward-backward splitting [START_REF] Lions | Splitting Algorithms for the Sum of Two Nonlinear Operators[END_REF] and averaged gradient descent [START_REF] Blatt | A Convergent Incremental Gradient Method with a Constant Step Size[END_REF][START_REF] Defazio | SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives[END_REF] and therefore suffers the same memory issues as the averaged gradient descent. Moreover, Valkonen proposed a stochastic primal-dual algorithm that can exploit partial strong convexity of the saddle point functional [START_REF] Valkonen | Block-Proximal Methods with Spatially Adapted Acceleration[END_REF]. Randomized versions of the alternating direction method of multipliers are discussed for instance in [START_REF] Zhong | Fast Stochastic Alternating Direction Method of Multipliers[END_REF][START_REF] Gao | Randomized Primal-Dual Proximal Block Coordinate Updates[END_REF]. In contrast to other works on stochastic primal-dual algorithms [START_REF] Pesquet | A Class of Randomized Primal-Dual Algorithms for Distributed Optimization[END_REF][START_REF] Wen | A Randomized Inertial Primal-Dual Fixed Point Algorithm for Monotone Inclusions[END_REF], our analysis is not based on Fejér monotonicity [START_REF] Combettes | Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping[END_REF]. We therefore do not prove almost sure convergence of the sequence but prove a variety of convergence rates depending on strong convexity assumptions instead.

As a word of warning, our contribution should not be mistaken by other "stochastic" primal-dual algorithms, where errors in the computation of matrix-vector products and evaluation of proximal operators are modeled by random variables, cf. e.g. [START_REF] Pesquet | A Class of Randomized Primal-Dual Algorithms for Distributed Optimization[END_REF][START_REF] Combettes | Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping[END_REF][START_REF] Rosasco | Stochastic Inertial Primal-Dual Algorithms[END_REF]. In our work we deliberately choose to compute only a subset of a whole iteration to save computational cost. These two notations are related but are certainly not the same.

1.1. Contributions. We briefly mention the main contributions of our work. Generalization of Deterministic Case. The proposed stochastic algorithm is a direct generalization of the deterministic setting [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF][START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF][START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF][START_REF] Chambolle | An Introduction to Continuous Optimization for Imaging[END_REF][START_REF] Chambolle | On the Ergodic Convergence Rates of a First-Order Primal-Dual Algorithm[END_REF]. In the degenerate case where in every iteration all computations are performed, our algorithm coincides with the original deterministic algorithm. Moreover, the same holds true for our analysis of the stochastic algorithm where we recover almost all deterministic statements [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF][START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF] in this degenerate case. Therefore, the theorems for both the deterministic and the stochastic case can be combined by a single proof.

Better Rates. Our analysis extends the simple setting of [START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF] such that the strong convexity assumptions and the sampling do not have to be uniform. Even in the special case of uniform strong convexity and uniform sampling, the proven convergence rates are slightly better than the ones proven in [START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF].

Arbitrary Sampling. The proposed algorithm is guaranteed to converge under a very general class of samplings [START_REF] Qu | Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity[END_REF][START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF][START_REF] Richtárik | On Optimal Probabilities in Stochastic Coordinate Descent Methods[END_REF] and thereby generalizes also the algorithm of [START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF] which has only been analyzed for two specific samplings. As long as the sampling is independent and identically distributed over the iterations and all computations have non-zero probability to be carried out, the theory holds and the algorithm will converge with the proven convergence rates.

Acceleration. We propose an acceleration of the stochastic primal-dual algorithm which accelerates the convergence from O(1/K) to O(1/K 2 ) if parts of the saddle point functional are strongly convex and thereby results in a significantly faster algorithm.

Scaling Invariance. In the strongly convex case, we propose parameters for several serial samplings (uniform, importance, optimal), all based on the condition numbers of the problem and thereby independent of scaling.

2. General Problem. Let X, Y i , i = 1, . . . , n be real Hilbert spaces of any dimension and define the product space Y := n i=1 Y i . For y ∈ Y, we shall write y = (y 1 , y 2 , . . . , y n ), where y i ∈ Y i . Further, we consider the natural inner product on the product space Y given by y, z = n i=1 y i , z i , where y i , z i ∈ Y i . This inner product induces the norm y 2 = n i=1 y i 2 . Moreover, for simplicity we will consider the space W := X × Y that combines both primal and dual variables.

Let A : X → Y be a bounded linear operator. Due to the product space nature of Y, we have (Ax) i = A i x, where A i : X → Y i are linear operators. The adjoint of A is given by

A * y = n i=1 A * i y i . Moreover, let f : Y → R ∞ := R ∪ {+∞} and g : X → R ∞ be convex functions. In particular, we assume that f is separable, i.e. f (y) = n i=1 f i (y i ).
Given the setup described above, we consider the optimization problem

min x∈X Φ(x) := n i=1 f i (A i x) + g(x) . (1) 
Instead of solving (1) directly, it is often desirable to reformulate the problem as a saddle point problem with the help of the Fenchel conjugate. If f is proper, convex, and lower semi-continuous, then f (y) = f * * (y) = sup z∈Y z, y -f * (z) where f * :

Y → R ∪ {-∞, +∞}, f * (y) = n i=1 f * i (y i )
is the Fenchel conjugate of f (and f * * its biconjugate defined as the conjugate of the conjugate). Then solving (1) is equivalent to finding the primal part x of a solution to the saddle point problem (called a saddle point)

min x∈X sup y∈Y Ψ(x, y) := n i=1 A i x, y i -f * i (y i ) + g(x) . (2) 
We will assume that the saddle point problem (2) has a solution. For conditions for existence and uniqueness, we refer the reader to [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. A saddle point w = (x , y ) = (x , y 1 , . . . , y n ) ∈ W satisfies the optimality conditions

A i x ∈ ∂f * i (y i ) i = 1, . . . , n, -A * y ∈ ∂g(x ) . An important notion in this work is strong convexity. A functional g is called µ g - convex if g - µg 2
• 2 is convex. In general, we assume that g is µ g -convex, f * i is µ i -convex with non-negative strong convexity parameters µ g , µ i ≥ 0. The convergence results in this contribution cover three different cases of regularity: i) no strong convexity µ g , µ i = 0, ii) semi strong convexity µ g > 0 or µ i > 0 and iii) full strong convexity µ g , µ i > 0. For notational convenience we make use of the operator M := diag(µ 1 I, . . . , µ n I).

A very popular algorithm to solve the saddle point problem ( 2) is the Primal-Dual Hybrid Gradient (PDHG) algorithm [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF][START_REF] Esser | A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science[END_REF][START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF][START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF][START_REF] Chambolle | An Introduction to Continuous Optimization for Imaging[END_REF][START_REF] Chambolle | On the Ergodic Convergence Rates of a First-Order Primal-Dual Algorithm[END_REF]. It reads (with extrapolation on y)

x (k+1) = prox τ g x (k) -τ A * y (k) y (k+1) = prox σ f * y (k) + σAx (k+1) y (k+1) = y (k+1) + θ y (k+1) -y (k) ,
where the proximal operator (or proximity / resolvent operator) is defined as

prox τ f (y) := arg min x∈X 1 2 x -y 2 τ -1 + f (x)
and the weighted norm by x 2 τ -1 = τ -1 x, x . Its convergence is guaranteed if the step size parameters σ, τ are positive and satisfy στ A 2 < 1, θ = 1 [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF]. Note that the definition of the proximal operator is well-defined for an operator-valued step size τ . In the case of a separable function f and with operator-valued step sizes the PDHG algorithm takes the form

x (k+1) = prox T g x (k) -TA * y (k) (3a) y (k+1) i = prox Si f * i y (k) i + S i A i x (k+1) i = 1, . . . , n (3b) 
y (k+1) = y (k+1) + θ y (k+1) -y (k) . (3c)
Here the step size parameters S = diag(S 1 , . . . , S n ) (a block diagonal operator), S 1 , . . . , S n and T are symmetric and positive definite. The algorithm is guaranteed to converge if S 1/2 AT 1/2 < 1 and θ = 1 [START_REF] Pock | Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization[END_REF].

Algorithm.

In this work we extend the PDHG algorithm to a stochastic setting where in each iteration we update a random subset S of the dual variables (3b). This subset is sampled in an i.i.d. fashion from a fixed but otherwise arbitrary distribution, whence the name "arbitrary sampling". In order to guarantee convergence, it is necessary to assume that the sampling is "proper" [START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF][START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF]. A sampling is proper if for each dual variable i we have i ∈ S with a positive probability p i > 0. Examples of proper samplings include the full sampling where S = {1, . . . , n} with probability 1 and serial sampling where S = {i} is chosen with probability p i . It is important to note that also other samplings are admissible. For instance for n = 3, consider the sampling that selects S = {1, 2} with probability 1/3 and S = {2, 3} with probability 2/3. Then the probabilities for the three blocks are p 1 = 1/3, p 2 = 1 and p 3 = 2/3 which makes it a proper sampling. However, if only S = {1, 2} is chosen with probability 1, then this sampling is not proper as the probability for the third block is zero:

p 3 = 0.
The algorithm we propose is formalized as Algorithm 1. As in the original PDHG, the step size parameters T, S i have to be self-adjoint and positive definite operators for the updates to be well-defined. The extrapolation is performed with a scalar θ > 0 and an operator Q := diag(p -1 1 I, . . . , p -1 n I) of probabilities p i that an index is selected in each iteration.

Remark 1. Both, the primal and dual iterates x (k) and y (k) are random variables but only the dual iterate y (k) depends on the sampling S (k) . However, x (k) depends of course on all previous samplings S (i) , i < k.

Algorithm 1 Stochastic Primal-Dual Hybrid Gradient algorithm (SPDHG). Input: x (0) , y (0) , S = diag(S 1 , . . . , S n ), T, θ, S (k) , K. Initialize: y (0) = y (0) for k = 0, . . . , K -1 do

x (k+1) = prox T g x (k) -TA * y (k) Select S (k+1) ⊂ {1, . . . , n}. y (k+1) i = prox Si f * i y (k) i + S i A i x (k+1) if i ∈ S (k+1) y (k) i else y (k+1) = y (k+1) + θQ y (k+1) -y (k) end for
Remark 2. Due to the sampling each iteration requires both A i and A * i to be evaluated only for each selected index i ∈ S (k+1) . To see this, note that

A * y (k+1) = A * y (k) + i∈S (k+1) 1 + θ p i A * i y (k+1) i -y (k) i
where A * y (k) can be stored from the previous iteration (needs the same memory as the primal variable x) and the operators A * i are evaluated only for i ∈ S (k+1) . 4. General Convex Case. We first analyze the convergence of Algorithm 1 in the general convex case without making use of any strong convexity or smoothness assumptions. In order to analyze the convergence for the large class of samplings described in the previous section we make use of the expected separable overapproximation (ESO) inequality [START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF]. Definition 4.1 (Expected Separable Overapproximation). Let S ⊂ {1, . . . , n} be a random set and p i := P(i ∈ S) the probability that an index i is in the random set S. Moreover, let C i : X → Y i be bounded linear operators and define C : X → Y = n i=1 Y i as (Cx) i := C i x. Note that its adjoint is given by

C * z = n i=1 C * i z i . We say that {v i } ⊂ R n fulfill the ESO inequality if for all z ∈ Y it holds that E S i∈S C * i z i 2 ≤ n i=1 p i v i z i 2 . ( 4 
)
Such parameters {v i } are called ESO parameters of C and S. Remark 3. Note that for any bounded linear operator C such parameters always exist but are obviously not unique. For the efficiency of the algorithm it is desirable to find ESO parameters such that (4) is as tight as possible; i.e., we want the ESO parameters {v i } to be small. As we shall see, the ESO parameters influence the choice of the extrapolation parameter θ in the strongly convex case.

The ESO inequality was first proposed by Richtárik and Takáč [START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF] to study parallel coordinate descent methods in the context of uniform samplings, which are samplings for which p i = p j for all i, j. Improved bounds for ESO parameters were obtained in [START_REF] Fercoq | Accelerated, Parallel and PROXimal Coordinate Descent[END_REF] and used in the context of accelerated coordinate descent. Qu et al. [START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF] perform an in-depth study of ESO parameters. The ESO inequality is also critical in the study mini-batch stochastic gradient descent with [START_REF] Konečný | Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting[END_REF] or without [START_REF] Takáč | Mini-Batch Primal and Dual Methods for SVMs[END_REF] variance reduction.

Example 1 (Full Sampling). Let S = {1, . . . , n} with probability 1 such that p i = P(i ∈ S) = 1 and

C i = S 1/2 i A i T 1/2 .
Then some ESO parameters are given by v i = C 2 . Thus, the deterministic condition on convergence, S 1/2 AT 1/2 < 1, implies a bound on some ESO parameters v i < p i .

Example 2 (Serial Sampling). Let S = {i} be chosen with probability p i > 0 and

C i = S 1/2 i A i T 1/2 .
Then some ESO parameters are given by v i = C i 2 . Note that obviously C i ≤ C such that the ESO parameters for serial sampling are smaller than the ones for full sampling.

We will frequently need to estimate the expected value of inner products which we will do by means of ESO parameters. Recall that we defined weighted norms as

x 2 T -1 := T -1 x, x .
The proof of this lemma can be found in the appendix. Lemma 4.2. Let S ⊂ {1, . . . , n} be a random set and y + i = ŷi if i ∈ S and y i otherwise. Moreover, let {v i } be some ESO parameters of S 1/2 AT 1/2 and p i = P(i ∈ S). Then for any x ∈ X and c > 0

2E S QAx, y + -y ≥ -E S 1 c x 2 T -1 + c max i v i p i y + -y 2 QS -1
.

The analysis for the general convex case will use the notation of Bregman distance which is defined for any function f : X → R ∞ , x, y ∈ X and q ∈ ∂f (y) in the subdifferential of f at y as

D q f (x, y) := f (x) -f (y) -q, x -y .
Next to Bregman distances, one can measure optimality by the partial primal-dual gap. Let B 1 × B 2 ⊂ W = X × Y, then we define the partial primal-dual gap as

G B1×B2 (x, y) := sup ỹ∈B2 Ψ(x, ỹ) -inf x∈B1 Ψ(x, y) .
It is convenient to define B := B 1 × B 2 ⊂ W and to denote the gap as G B (w) := G B1×B2 (x, y). Note that if B contains a saddle point w = (x , y ), then we have that

G B (w) ≥ Ψ(x, y ) -Ψ(x , y) = D -A * y g (x, x ) + D Ax f * (y, y ) = D q h (w, w ) ≥ 0
where the first equality is obtained by adding a zero and we used h(w) := g(x) + f * (y) and q := (-A * y , Ax ) ∈ ∂h(w ) for the last equality. The non-negativity stems from the fact that Bregman distances of convex functionals are non-negative and h is convex indeed.

We will make frequent use of the following "distance functions"

F i (y i |x, ỹi ) := f * i (y i ) -f * i (ỹ i ) -A i x, y i -ỹi
and F(y| w) := n i=1 F i (y i |x, ỹi ) . Note that these are strongly related to Bregman distances; if w is a saddle point, then F(y|w ) = D Ax f * (y, y ) is the Bregman distance of f * between y and y . Similarly, we make use of the weighted distance

F p (y| w) := n i=1 1 p i -1 F i (y i |x, ỹi )
and the distance for the primal functional G(x| w) := g(x) -g(x) --A * ỹ, x -x . We note that these distances are also related to the partial primal-dual gap as with H(w| w) := G(x| w) + F(y| w) we have

G B (w) = sup w∈B H(w| w) .
Theorem 4.3. Let θ = 1 and T, S be chosen so that there exist ESO parameters

{v i } of S 1/2 AT 1/2 with v i < p i i = 1, . . . , n . (5) 
Then, the Bregman distance between iterates of Algorithm 1 w (k) = (x (k) , y (k) ) ∈ W and any saddle point w ∈ W converges to zero almost surely,

D q h (w (k) , w ) → 0 a.s. (6)
Moreover, the ergodic sequence w (K) := 1 K K k=1 w (k) converges with rate 1/K in an expected partial primal-dual gap sense, i.e. for any set

B := B 1 × B 2 ⊂ W it holds E G B (w (K) ) ≤ C B K (7)
where the constant is given by

C B := sup x∈B1 1 2 x (0) -x 2 T -1 + sup y∈B2 1 2 y (0) -y 2 QS -1 + sup w∈B F p (y (0) |w) . (8) 
The same rate holds for the expected Bregman distance, ED q h (w (K) , w ) ≤ C {w } /K. In the case that h is merely strictly convex, then (6) implies that if {w (k) } converges a.s., then it converges a.s. to w . In detail, if {w (k) } (or any subsequence) converges a.s. to w and (6) holds, then by the lower semi-continuity of D q h it is clear that D q h (w, w ) = 0, thus w = w by the strict convexity of D q h . If h is not strictly convex, then (6) has to be seen in a more generalized sense. For example, if h is a 1 -norm (and thus not strictly convex), then the Bregman distance between w (k) and w is zero if and only if they have the same support and sign. Thus, the convergence statement is related to the support and sign of w . In the extreme case h ≡ 0, then D q h (•, w ) ≡ 0 and the convergence statement has no meaning. The proof of this theorem utilizes a standard inequality for which we provide the proof in the appendix for completeness. Lemma 4.4. Consider the deterministic updates

x (k+1) = prox T (k) g x (k) -T (k) A * y (k) ŷ(k+1) i = prox S i (k) f * i y (k) i + S i (k) A i x (k+1) i = 1, . . . , n
with iteration varying step sizes T (k) and S (k) = diag(S 1 (k) , . . . , S n (k) ). Then for any (x, y) ∈ W it holds that

x (k) -x 2 T -1 (k) + y (k) -y 2 S -1 (k) ≥ x (k+1) -x 2 T -1 (k) +µgI + ŷ(k+1) -y 2 S -1 (k) +M + 2 G(x (k+1) |w) + F(ŷ (k+1) |w) -2 A(x (k+1) -x), ŷ(k+1) -y (k) + x (k+1) -x (k) 2 T -1 (k) + ŷ(k+1) -y (k) 2 S -1 (k)
.

Proof of Theorem 4.3. The result of Lemma 4.4 (with constant step sizes) has to be adapted to the stochastic setting as the dual iterate is updated only with a certain probability. First, a trivial observation is that for any mapping ϕ it holds that ϕ(ŷ

(k+1) i ) = 1 p i E (k+1) ϕ(y (k+1) i ) - 1 p i -1 ϕ(y (k) i ) = 1 p i -1 E (k+1) ϕ(y (k+1) i ) - 1 p i -1 ϕ(y (k) i ) + E (k+1) ϕ(y (k+1) i ) . (9)
Thus, for the generalized distance of f * we arrive at

F(ŷ (k+1) |w) = E (k+1) F p (y (k+1) |w) -F p (y (k) |w) + E (k+1) F(y (k+1) |w) . (10) 
and for any block diagonal matrix

B = diag(B 1 , . . . , B n ) ŷ(k+1) -• 2 B = E (k+1) y (k+1) -• 2 QB -y (k) -• 2 (Q-I)B , (11) 
ŷ(k+1) = QE (k+1) y (k+1) -(Q -I)y (k) . ( 12 
)
Using ( 10)-( 12), we can rewrite the estimate of Lemma 4.4 as

x (k) -x 2 T -1 + y (k) -y 2 QS -1 + 2F p (y (k) |w) ≥ E (k+1) x (k+1) -x 2 T -1 + y (k+1) -y 2 QS -1 + 2F p (y (k+1) |w) + 2H(w (k+1) |w) -2 A(x (k+1) -x), Q(y (k+1) -y (k) ) + y (k) -y (k) + x (k+1) -x (k) 2 T -1 + y (k+1) -y (k) 2 QS -1 . ( 13 
)
where we have used the identity

• 2 B + • 2 D = • 2 B+D ( 14 
)
to simplify the expression. With the extrapolation y

(k) = y (k) + Q(y (k) -y (k-1)
), the inner product term can be reformulated as

-A(x (k+1) -x), Q(y (k+1) -y (k) ) + y (k) -y (k) = -QA(x (k+1) -x), y (k+1) -y (k) + QA(x (k+1) -x), y (k) -y (k-1) = -QA(x (k+1) -x), y (k+1) -y (k) + QA(x (k) -x), y (k) -y (k-1) + QA(x (k+1) -x (k) ), y (k) -y (k-1) (15) 
and with Lemma 4.2 and γ 2 := max i v i /p i it holds that

2E (k) QA(x (k+1) -x (k) ), y (k) -y (k-1) ≥ -E (k) γ 2 x (k+1) -x (k) 2 T -1 + y (k) -y (k-1) 2 QS -1 . ( 16 
)
Taking expectations with respect to S 1 , . . . , S K (denoted by E) on ( 13), using the estimates ( 15) and ( 16) and denoting

∆ (k) := E x (k) -x 2 T -1 + y (k) -y 2 QS -1 + 2F p (y (k) |w) + y (k) -y (k-1) 2 QS -1 -2 QA(x (k) -x), y (k) -y (k-1)
leads with γ < 1 (follows directly from ( 5)) to

∆ (k) ≥ ∆ (k+1) + E 2H(w (k+1) |w) + (1 -γ 2 ) x (k+1) -x (k) 2 T -1 ≥ ∆ (k+1) + 2EH(w (k+1) |w) . (17) 
Summing ( 17) over k = 0, . . . , K -1 (note that y (-1) = y (0) ) and using the estimate (follows directly from Lemma 4.2)

∆ (K) ≥ E (1 -γ 2 ) x (K) -x 2 T -1 + y (K) -y 2 QS -1 + 2F p (y (K) |w) ≥ 2EF p (y (K) |w) yields E F p (y (K) |w) + K k=1 H(w (k) |w) ≤ ∆ (0) 2 . ( 18 
)
All assertions of the theorem follow from inequality [START_REF] Dang | Randomized Methods for Saddle Point Computation[END_REF]. Inserting a saddle point w = w and taking the limit K → ∞, it follows from ( 18) that E ∞ k=1 D q h (w (k) , w ) < ∞ which implies almost surely ∞ k=1 D q h (w (k) , w ) < ∞ and thus (6). To see [START_REF] Benning | Explorations on Anisotropic Regularisation of Dynamic Inverse Problems by Bilevel Optimisation[END_REF], note first that [START_REF] Bertsekas | Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey[END_REF]. Moreover, the generalized distance H(•|w) is convex, thus, dividing (18) by K yields

F p (y (0) |w) -F p (y (K) |w) = F p (y (0) |x, y (K) ) ≤ sup w∈B F p (y (0) |w) and ∆ (0) /2 -F p (y (K) |w) ≤ C B if w ∈ B with C B as defined in
EH(w (K) |w) ≤ 1 K E K k=1 H(w (k) |w) ≤ C B K
for any w ∈ B. Taking the supremum over w ∈ B yields [START_REF] Benning | Explorations on Anisotropic Regularisation of Dynamic Inverse Problems by Bilevel Optimisation[END_REF]. Noting that D q h (w, w ) = G {w } (w) completes the proof.

Algorithm 2 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration on the dual variable (DA-SPDHG). Input: x (0) , y (0) , τ (0) ∈ R, σ(0) ∈ R, S (k) , K. Initialize: y (0) = y (0) 1: for k = 0, . . . , K -1 do 2:

x (k+1) = prox τ (k) g x k -τ (k) A * y (k) 3:
Select S (k+1) ⊂ {1, . . . , n}.

4:

σ (k) i = σ(k) µi[pi-2(1-pi)σ (k) ] , i ∈ S (k+1) 5: y (k+1) i =    prox σ (k) i f * i y (k) i + σ (k) i A i x (k+1) if i ∈ S (k+1) y (k) i else 6: θ (k) = (1 + 2σ (k) ) -1/2 , τ (k+1) = τ (k) /θ (k) , σ(k+1) = θ (k) σ(k) 7:
y (k+1) = y (k+1) + θ (k) Q y (k+1) -y (k) 8: end for 5. Semi-Strongly Convex Case. In this section we propose randomized and accelerated algorithms which can exploit strong convexity in either f * i or g. Algorithm 2 converges in the dual variable with rate O(1/K 2 ) if the convex conjugate f * i is strongly convex. Similarly, Algorithm 3 converges with the same accelerated rate O(1/K 2 ) in the primal variable if g is strongly convex. For simplicity we restrict ourselves from now on to scalar-valued step sizes, i.e. T = τ I and S i = σ i I. However, large parts of what follows holds true for operator-valued step sizes, too.

Theorem 5.1 (Dual Strong Convexity). Let f * i be strongly convex with constants µ i > 0, i = 1, . . . , n. Consider Algorithm 2 and let the initial step sizes σ(0) , τ (0) be chosen such that

σ(0) < min i p i 2(1 -p i ) (19)
and for the ESO parameters

{v i } of S 1/2 (0) Aτ 1/2 (0) it holds that v i ≤ p i i = 1, . . . , n (20) 
with [S (k) ] i = σ (k) i I and σ (k) i = σ(k) µ i [p i -2(1 -p i )σ (k) ] . ( 21 
)
Then there exists K ∈ N such that for all K ≥ K it holds

E y (K) -y 2 Y (0) ≤ 2 K 2 x (0) -x 2 τ -1 (0) + y (0) -y 2 Y (0)
where the metric on Y is defined by

Y (k) := QS -1 (k) + 2M(Q -I).
Remark 5. As already noted in [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF], K is usually fairly small so that the estimate in Theorem 5.1 has practical relevance. Remark 6. For serial sampling the condition on the ESO parameters (20) is equivalent to

σ(0) ≤ min i µ i p 2 i τ (0) A i 2 + 2µ i p i (1 -p i )
.

In particular, it implies condition (19) on σ(0) .

This theorem requires an estimate on the expected contraction similar to the proof of Theorem 4.3 and shown in the appendix. Lemma 5.2. Let x (k+1) , ŷ(k+1) be defined as in Lemma 4.4 and y

(k+1) i = ŷ (k+1) 
i with probability p i > 0 and unchanged else. Moreover, let

y (k+1) = y (k+1) + θ (k) Q y (k+1) -y (k) (22)
and {v i } be some ESO parameters of S

1/2 (k) Aτ 1/2 (k) . Then with γ 2 = max i vi pi it holds E (k,k-1) x (k) -x 2 τ -1 (k) + y (k) -y 2 QS -1 (k) +2M(Q-I) -2θ (k-1) QA(x (k) -x ), y (k) -y (k-1) + (γθ (k-1) ) 2 y (k) -y (k-1) 2 QS -1 (k) ≥ E (k+1,k) x (k+1) -x 2 τ -1 (k) +2µgI + y (k+1) -y 2 QS -1 (k) +2MQ -2 QA(x (k+1) -x ), y (k+1) -y (k) + y (k+1) -y (k) 2 QS -1 (k) 
.

Proof of Theorem 5.1. The update on the step sizes in Algorithm 2 imply that

θ (k) 1 τ (k) ≥ 1 τ (k+1) , θ (k) 1 
p i σ (k) i + 2µ i p i ≥ 1 
p i σ (k+1) i + 2(1 -p i )µ i p i ( 23 
)
for all i = 1, . . . , n and therefore

θ (k) • 2 τ -1 (k) ≥ • 2 τ -1 (k+1) , (24) 
θ (k) • 2 QS -1 (k) +2MQ ≥ • 2 QS -1 (k+1) +2M(Q-I) = • 2 Y (k+1) . (25) 
To see [START_REF] Fercoq | A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non Separable Functions[END_REF], the auxiliary sequence σ(k) satisfies

σ(k) = p i µ i σ (k) i 1 + 2(1 -p i )µ i σ (k) i
such that ( 23) is satisfied as soon as

θ (k) 1 + 2σ (k) σ(k) ≥ 1 σ(k+1) . ( 26 
)
Note that the transformation from σ(k) to σ

(k) i is well-defined if σ(k) < min i pi 2(1-pi)
which is the case as σ(k) is monotonically non-increasing and σ(0) satisfies the condition. By construction of the sequence σ(k+1) = θ (k) σ(k) , ( 26) is solved with equality by θ (k) = (1 + 2σ (k) ) -1/2 . Moreover, the sequence σ (k) i is also non-increasing as

σ (k+1) i = θ (k) σ (k) i 1 + 2(1 -θ (k) )(1 -p i )µ i σ (k) i ≤ θ (k) σ (k) i ,
thus, with [START_REF] Defazio | SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives[END_REF] we see that the ESO parameters of S

1/2 (k) Aτ 1/2
(k) are also bounded by p i . For the actual proof of the theorem, note that the inequalities ( 24) and [START_REF] Gao | Randomized Primal-Dual Proximal Block Coordinate Updates[END_REF] imply

θ (k) E x (k+1) -x 2 τ -1 (k) + y (k+1) -y 2 QS -1 (k) +2MQ -2 QA(x (k+1) -x ), y (k+1) -y (k) ≥ E∆ (k+1) (27) with ∆ (k) := x (k) -x 2 τ -1 (k) + y (k) -y 2 Y (k) -2θ (k-1) QA(x (k) -x ), y (k) -y (k-1) .
Thus, combining Lemma 5.2 (µ g = 0) and ( 27) yields

θ (k) E ∆ (k) + (γθ (k-1) ) 2 y (k) -y (k-1) 2 QS -1 (k) ≥ θ (k) E x (k+1) -x 2 τ -1 (k) + y (k+1) -y 2 QS -1 (k) +2MQ -2 QA(x (k+1) -x ), y (k+1) -y (k) + y (k+1) -y (k) 2 QS -1 (k) ≥ E ∆ (k+1) + θ (k) y (k+1) -y (k) 2 QS -1 (k) 
.

With

γθ (k-1) ≤ 1, S (k+1) ≤ θ (k) S (k) and ∆(k) := E ∆ (k) + y (k) -y (k-1) 2 QS -1 (k)
we derive the recursion

θ (k) ∆(k) ≥ θ (k) E ∆ (k) + (γθ (k-1) ) 2 y (k) -y (k-1) 2 QS -1 (k) ≥ E ∆ (k+1) + θ (k) y (k+1) -y (k) 2 QS -1 (k) ≥ ∆(k+1) .
Using this inequality recursively, y (-1) = y (0) , we arrive at

K-1 k=0 θ (k) ∆(0) ≥ ∆(K) ≥ E (1 -γ 2 ) x (K) -x 2 τ -1 (K) + y (K) -y 2 Y (K) ≥ E y (K) -y 2 Y (K)
where the second estimated follows directly from Lemma 4.2 and the third inequality from γ ≤ 1 which holds by assumption [START_REF] Defazio | SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives[END_REF].

As ∆(0) = x (0) -x 2 τ -1 (0) + y (0) -y 2 Y (0) , θ (k) = σ(k+1) σ(k) and • 2 Y (K) = 1 σ(K) • 2 M = σ(0) σ(K) • 2 Y (0)
which holds by the definition of σ(k) , it holds that

E y (K) -y 2 Y (0) ≤ σ(K) σ(0) 2 x (0) -x 2 τ -1 (0) + y (0) -y 2 Y (0)
.

Finally, the assertion follows by Corollary 1 of [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF].

Remark 7. If g is strongly convex, then the primal variable can be accelerated, see Algorithm 3. Its convergence can be analyzed similar to the deterministic case, cf. Appendix C.2 of [START_REF] Chambolle | An Introduction to Continuous Optimization for Imaging[END_REF], and omitted here for brevity. It converges with rate O(1/K 2 ) in the primal variable if the ESO parameters satisfy v i < p i .

Algorithm 3 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration on the primal variable (PA-SPDHG). Input: x (0) , y (0) , τ (0) ∈ R, σ (0) ∈ R n , S (k) , K. Initialize: y (0) = y (0) 1: for k = 0, . . . , K -1 do 2:

x (k+1) = prox τ (k) g x (k) -τ (k) A * y (k) 3:
Select S (k+1) ⊂ {1, . . . , n}.

4:

y (k+1) i =    prox σ (k) i f * i y (k) i + σ (k) i A i x (k+1) if i ∈ S (k+1) y (k) i else 5: θ (k) = (1 + 2µ g τ (k) ) -1/2 , τ (k+1) = θ (k) τ (k) , σ (k+1) = σ (k) /θ (k) 6:
y (k+1) = y (k+1) + θ (k) Q y (k+1) -y (k) 7: end for 6. Strongly Convex Case. If both f * i and g are strongly convex, we may find step size parameters such that the Algorithm 1 converges linearly. Theorem 6.1. Let (x , y ) ∈ W be a saddle point and g, f * i be strongly convex with constants µ g , µ i > 0, i = 1, . . . , n. Let the step sizes τ, σ 1 , . . . , σ n , 0 < θ < 1 be chosen such that the ESO parameters {v i } of S 1/2 Aτ 1/2 can be estimated as

v i < p i θ i = 1, . . . , n, (28) 
and the extrapolation θ satisfies the lower bounds

θ ≥ 1 1 + 2µ g τ , θ ≥ 1 + 2(1 -p i )µ i σ i 1 + 2µ i σ i i = 1, . . . , n . (29) 
Then the iterates of Algorithm 1 converge linearly to the saddle point, in particular

E (1 -γ 2 θ) x (K) -x 2 X + y (K) -y 2 Y ≤ θ K x (0) -x 2 X + y (0) -y 2 Y
holds where the metrics are given by X := (τ -1 + 2µ g )I, Y := (S -1 + 2M)Q and

γ 2 = max i v i /p i .
Proof. The requirements (29) on the step sizes τ, σ 1 , . . . , σ n and θ imply θ

• 2 X ≥ • 2 τ -1 and θ • 2 Y ≥ • 2 QS -1 +2M(Q-I)
. Thus, we directly get

θ E∆ (k) ≥ E x (k) -x 2 τ -1 + y (k) -y 2 QS -1 +2M(Q-I) -2θ QA(x (k) -x ), y (k) -y (k-1) (30) 
where we denoted 1) .

∆ (k) := x (k) -x 2 X + y (k) -y 2 Y -2 QA(x (k) -x ), y (k) -y (k-
Combining [START_REF] Lions | Splitting Algorithms for the Sum of Two Nonlinear Operators[END_REF] and Lemma 5.2 with constant step sizes yields

θ E∆ (k) ≥ E ∆ (k+1) + y (k+1) -y (k) 2 QS -1 -(γθ) 2 y (k) -y (k-1) 2 QS -1
.

Multiplying both sides by θ -(k+1) and summing over k = 0, . . . , K -1 yields

∆ (0) ≥ θ -K E ∆ (K) + y (K) -y (K-1) 2 QS -1 + (1 -γ 2 θ)E K-1 k=1 θ -k y (k) -y (k-1) 2 QS -1 ≥ θ -K E x (K) -x 2 X + y (K) -y 2 Y + y (K) -y (K-1) 2 QS -1 -2 QA(x (K) -x ), y (K) -y (K-1) ≥ θ -K E x (K) -x 2 X -γ 2 x (K) -x 2 τ -1 + y (K) -y 2 Y ≥ θ -K E (1 -γ 2 θ) x (K) -x 2 X + y (K) -y 2 Y
where we used again Lemma 4.2 and the non-negativity of norms for the second inequality. Thus, the assertion is proven.

Optimal Parameters for Serial

Sampling. This analysis is to optimize the convergence rate θ of Theorem 6.1 for three different serial sampling options where exactly one block is chosen in each iteration. Other sampling strategies, including multi-block, parallel, etc. [START_REF] Qu | Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling[END_REF] will be subject of future work.

We will derive the rates and parameters in terms of the condition numbers κ i := A i 2 /(µ g µ i ) as these are scaling invariant, thus we cannot improve the rates by simple rescaling of the problem. This can be seen as follows. If we rewrite problem (2) in terms of the scaled variables x := αx and y i := β i y i , then the corresponding operators A i := A i /(αβ i ) have norm A i = A i /(αβ i ), the function g(x) := g(x/α) is µ g := µ g /α 2 strongly convex and the functions f * i (y i ) := f * i (y i /β i ) are µ i := µ i /β 2 i strongly convex. Thus the condition numbers are scaling invariant as

κ i = A i 2 µ g µ i = 1 (αβi) 2 A i 2 1 α 2 µ g 1 β 2 i µ i = A i 2 µ g µ i = κ i .
With σi := σ i µ i and τ := τ µ g , the conditions on the step sizes (29) become

θ ≥ 1 1 + 2τ , θ ≥ max i 1 -2 σi p i 1 + 2σ i
, and max

i τ σi κ i θ ≤ ρ 2 p i (31)
for some ρ < 1. The last condition arises from the ESO parameters of serial sampling which are

v i = σ i τ A i 2 , see Example 2.
Finding optimal parameters is equivalent to equating the above inequalities. Note that the first two conditions (with equality) are equivalent to θτ = (1 -θ)/2 and σi =

1-θ 2(pi-(1-θ))
. With these choices, the third condition in [START_REF] Nedić | Incremental Subgradient Methods for Nondifferentiable Optimization[END_REF] reads

(1 -θ) 2 κ ≤ 4ρ 2 p i (p i -(1 -θ)) i = 1, . . . , n . (32) 
It follows from [START_REF] Ollinger | Positron Emisson Tomography[END_REF] that with κ = 1 + κ/ρ 2 it holds

θ ≥ max i 1 - 2p i 1 + √ κi (33)
Example 3 (Serial Uniform Sampling). We first consider uniform sampling, i.e. every block is sampled with the same probability p i = 1/n. Then it is easy to see that the smallest achievable rate is given by [START_REF] Peng | Coordinate Friendly Structures, Algorithms and Applications[END_REF] and the step sizes become

θ uni = 1 - 2 n + n max j κj
σ i = µ -1 i max j κj -1 , τ = µ -1 g n -2 + n max j κj .
Example 4 (Serial Importance Sampling). Instead of uniform sampling we may sample "important blocks" more often, i.e. we sample every block with a probability proportional to the square root of its condition number p i = √ κ i / j √ κ j . Then the smallest rate that achieves (33) is given by

θ imp = 1 - 2ν n j=1
√ κ j [START_REF] Pesquet | A Class of Randomized Primal-Dual Algorithms for Distributed Optimization[END_REF] with ν := min j √ κ j /(1 + κj ) and the step sizes are

σ i = νµ -1 i √ κ i -2ν , τ = νµ -1 g n j=1 √ κ j -2ν .
Example 5 (Serial Optimal Sampling). Instead of a predefined probability we will seek for an "optimal sampling" that minimizes the linear convergence rate θ. The optimal sampling can be found by equating condition [START_REF] Parikh | Proximal Algorithms[END_REF] 

for i = 1, . . . , n θ 1 + κi = 1 + κi -2p i . ( 36 
)
Summing (36) from 1 to n and using that for serial sampling n i=1 p i = 1 leads to

θ opt = 1 - 2 n + n j=1 κj (37)
with step size parameters

σ i = µ -1 i √ κi -1 , τ = µ -1 g n -2 + n j=1
κj and probabilities

p i = 1 + √ κi n + n j=1 κj .
Remark 8 (Minibatches). All arguments above can readily be extended to samplings where at each iteration not only one but a fixed number of blocks are chosen.

Remark 9 (Better Sampling). It is easy to see that optimal sampling is better than uniform sampling: if all condition numbers are the same, then the rates for uniform sampling [START_REF] Peng | Coordinate Friendly Structures, Algorithms and Applications[END_REF] and optimal sampling (37) are equal but if they are not, then the rate of optimal sampling is strictly smaller and thus better. Moreover, optimal sampling is better than importance sampling. To see this, note that due to the monotonicity of

√ x/(1 + √ 1 + x) we get θ imp = 1 -min i 2 1 + √ κi n j=1 κ j /ρ 2 / κ i /ρ 2 ≥ 1 -min i 2 1 + √ κi n j=1 (1 + κj )/(1 + √ κi ) = θ opt .
Remark 10 (Comparison to Zhang and Xiao [START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF]). The algorithm of Zhang and Xiao [START_REF] Zhang | Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization[END_REF] is (almost2 ) a special case of the proposed algorithm where each block is picked with probability p i = 1/n. Here m denotes the size of each block to be processed at every iteration and n the number of blocks. Moreover, they only consider the strongly convex case where g is µ g -strongly convex and all f * i are µ f -strongly convex. Then with R being the largest norm of the rows in A they achieve

θ ZX = 1 - 1 n + n √ mR √ µgµ f .
If the minibatch size is m = 1, the blocks are chosen to be single rows and the probabilities are uniform, then their rate is slightly worse than ours

θ ZX = 1 - 1 n + n max j √ κ j ≥ 1 - 2 2n + n max j κ j /ρ 2 ≥ 1 - 2 2n + n(max j 1 + κ j /ρ 2 -1)
= θ uni for any ρ ≥ 1 2 . For m > 1, the rates differ even more as the condition numbers are conservatively estimated. Similarly, the rates can be improved by non-uniform sampling if the row norms are not equal.

Numerical Results.

All numerical examples are implemented in python using numpy and the operator discretization library (ODL) [START_REF] Adler | Operator Discretization Library (ODL)[END_REF]. The python code and all example data will be made available on github upon acceptance of this manuscript.

7.1. Non-Strongly Convex PET Reconstruction. In this example we consider positron emission tomography (PET) reconstruction with a total variation (TV) prior. The goal in PET imaging is to reconstruct the distribution of a radioactive tracer from its line integrals [START_REF] Ollinger | Positron Emisson Tomography[END_REF]. Let X = R d1×d2 , d 1 = d 2 = 250 be the space of tracer distributions (images) and Y i = R |Bi| the data spaces where B i ⊂ {1, . . . , N }, N = 200 • 250 (200 views around the object) are subsets of indices with B i ∩ B j = ∅ if i = j and ∪ n i=1 B i = {1, . . . , N }. All samplings in this example divide the views equidistantly. It is standard that PET reconstruction can be posed as the optimization problem [START_REF] Adler | Operator Discretization Library (ODL)[END_REF] where the data fidelity term is given by the Kullback-Leibler divergence where it is convention that 0 log 0 := 0. The operator A is a scaled X-ray transform where in each of 200 directions 250 line integrals are computed with the astra toolbox [START_REF] Van Aarle | The ASTRA Toolbox: A Platform for Advanced Algorithm Development in Electron Tomography[END_REF][START_REF] Van Aarle | Fast and Flexible X-ray Tomography using the ASTRA Toolbox[END_REF]. The prior is the TV of x with non-negativity constraint, i.e. g(x) = α ∇x 2,1 + ı ≥0 (x), with regularization parameter α = 0.2 and the gradient operator ∇x = (∇ 1 x, ∇ 2 x) ∈ R d1•d2×2 is discretized by forward differences in horizontal and vertical direction, cf. [START_REF] Chambolle | An Algorithm for Total Variation Minimization and Applications[END_REF] for details. The 2, 1-norm of these gradients is defined as x 2,1 := j (∇ 1 x j ) 2 + (∇ 2 x j ) 2 . The Fenchel conjugate of the Kullback-Leibler divergence [START_REF] Qu | Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity[END_REF] is

f i (y) = j∈Bi y j + r j -b j + b j log bj yj +rj if y j + r j > 0 ∞ else (38) 
f * i (z) = j∈Bi -z j r j -b j log(1 -z j ) if z j ≤ 1 and (b j = 0 or z j < 1) ∞ else , (39) 
its proximal operator given by

prox σi f * i (z) j = 1 2 z j + 1 + σ i r j -(z j -1 + σ i r j ) 2 + 4σ i b j .
The proximal operator for g is approximated with 20 iterations of the fast gradient projection method (FGP) [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF] with a warm start applied to the dual problem.

Parameters. In this experiment we choose γ = 0.99, θ = 1 and all samplings are uniform, i.e. p i = 1/n. The number of subsets varies between n = 1 (deterministic case), 50 and 250. The other step size parameters are chosen as • PDHG, Pesquet&Repetti [START_REF] Pesquet | A Class of Randomized Primal-Dual Algorithms for Distributed Optimization[END_REF]: σ i = τ = γ/ A ≈ 6.9 • 10 -4 • SPDHG:

σ i = γ/ A i ≈ 2.2 • 10 -3 , τ = γ/(n max i A i ) ≈ 2.2 • 10 -4
Results. Figure 1 on the left shows that the ergodic Bregman distance converges with rate 1/k as proven in Theorem 4.3. On the right we compare the deterministic PDHG with the randomized SPDHG and the algorithm of Pesquet&Repetti. It can be clearly seen that the proposed SPDHG converges much faster than both the algorithm of Pesquet&Repetti and the deterministic PDHG. Some example images are found in Figure 2 after 5 epochs which again highlight the speed-up gained by randomization.

7.2. TV denoising with Gaussian Noise (Primal Acceleration). In the second example we consider denoising of an image that is degraded by Gaussian noise with the help of the anisotropic TV. This can be achieved by solving [START_REF] Adler | Operator Discretization Library (ODL)[END_REF] with

X = R d1×d2 , d 1 = 442, d 2 = 331, the data fit g(x) = 1/(2α) x -b 2
2 is the squared Euclidean norm and the prior the (anisotropic) TV f i (y i ) = y i 1 , A i = ∇ i and n = 2. Instead of the isotropic TV as in the previous example we consider here the anisotropic version as it is separable in the direction of the gradient. The regularization parameter is chosen to be α = 0.12. See e.g. [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF] for details on convex conjugates and proximal operators of these functionals.

Parameters. In this experiment we choose γ = 0.99 and the sampling to be uniform, i.e. p i = 1/n. The number of subsets are either n = 1 in the deterministic case or n = 2 in the stochastic case. The (initial) step size parameters are

• PDHG, PA-PDHG, Pesquet&Repetti: σ

(0) i = τ (0) = γ/ A ≈ 0.35 • SPDHG, PA-SPDHG: σ (0) i = γ/ A i ≈ 0.50, τ (0) = γ/(n max i A i ) ≈ 0.25
The step sizes for acceleration vary with the iteration with the primal step size τ (k) getting smaller and the dual step size σ (k) getting larger. The extrapolation factor θ is chosen to be 1 for non-accelerated and converging to 1 for accelerated algorithms.

Results. The quantitative results in Figure 3 show that the accelerated algorithms are much faster than the non-accelerated versions. Moreover, it can be seen that the stochastic variant of the accelerated PA-PDHG is even faster than its deterministic variant. In addition, the results show that the accelerated SPDHG indeed converges as 1/K 2 in the norm of the primal part. Visual assessment of the denoised images in Figure 4 confirms these conclusions.

7.3. Huber-TV Deblurring (Dual Acceleration). In the third example we consider deblurring with known convolution kernel where the forward operator A 1 resembles the convolution of images in X = R d1×d2 , d 1 = 408, d 2 = 544 with a motion blur of size 15×15. The noise is modeled to be Poisson with a constant background of 200 compared to the approximate data mean of 694.3. We further assume to have the knowledge that the reconstructed image should be non-negative and upper-bounded by 100. By the nature of the forward operator Ax ≥ 0 whenever x ≥ 0. Therefore the solution to (1) with the Kullback-Leibler divergence [START_REF] Qu | Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity[END_REF] remains the same if we replace the Kullback-Leibler divergence by the differentiable

f 1 (y) = N i=1    y i + r i -b i + b i log bi yi+ri if y i ≥ 0 bi 2r 2 i y 2 i + 1 -bi ri y i + r i -b i + b i log bi ri else (40) 
which has a max i b i /r 2 i Lipschitz continuous gradient. The Lipschitz constant is well-defined and non-zero as both the data b i as well as the background r i are positive. In our numerically example it is approximately 0.31.

Prior smoothness information is represented by the anisotropic TV with Huberized norm 

f i (A i x) = α j |y j | if |y j | > η
f * 1 (z) = N i=1        r 2 i 2bi z 2 i + r i - r 2 i bi z i + r 2 i 2bi + 3bi 2 -2r i -b i log bi ri if z i < 1 -bi ri -r i z i -b i log(1 -z i ) if 1 -bi ri ≤ z i < 1 ∞ if z i ≥ 1 which is min i r 2 i /b i -strongly convex with proximal operator prox σ f * 1 (z) i =    bizi-σribi+σr 2 i bi+σr 2 i if z i < 1 -bi ri 1 2 z i + σr i + 1 -(z i + σr i -1) 2 + 4σb i else .
Parameters. In this experiment we choose γ = 0.99 and consider uniform sampling, i.e. p i = 1/n. The number of subsets are either n = 1 in the deterministic case or n = 3 in the stochastic case. The (initial) step size parameters are chosen to be

• PDHG: • DA-PDHG: σ(0

σ i = τ = γ/ A ≈ 0.095
) i = µ f / A ≈ 0.096 , τ (0) = γ/ A ≈ 0.095 • DA-SPDHG: σ(0) = min i µip 2 i τ 0 Ai 2 +2µipi(1-pi) ≈ 0.073, τ (0) = 1/(n max i A i ) ≈ 0.032
Results. The quantitative results in Figure 5 show that the algorithm converges indeed with rate O(1/K 2 ) as proven in Theorem 5.1. Moreover, they also show that randomization and acceleration can be used in conjunction for further speed-ups. Some example images are shown in Figure 6 which show that randomization may lead to sharper images with the same number of epochs.

7.4. PET Reconstruction (Linear Rate). For the final example we turn back to PET reconstruction but this time with linear convergence rate. This means we want to solve the same minimization problem as in the first example, but now we replace the Kullback-Leibler functional by its modified version as in the previous example. We note again that this does not change the solution of the minimization problem. Moreover, to make TV strongly convex we add another regularization term µ/2 x 2 2 to g. Note that the proximal operator of TV (indeed any functional) with Parameters. In this experiment we choose ρ = 0.99 and the sampling to be uniform as the operators A i all have similar norms. The step size parameters are chosen as derived in subsection 6.1, in particular, we choose Results. The quantitative results in Figure 7 in terms of both distance to saddle point and objective value show that randomization speeds up the convergence so that both SPDHG and the algorithm of Pesquet&Repetti are faster than the deterministic PDHG. Interestingly, while more subsets make SPDHG faster, this does not hold for the algorithm of Pesquet&Repetti where the speed seems to be constant with respect to the number of subsets. Moreover, the plot on the left confirms the linear convergence as proven in Theorem 6.1. The visual results in Figure 8 confirm these observations as SPDHG with 50 subsets and 10 epochs is (in contrast to PDHG) visually already very close to the saddle point.

• PDHG: σ ≈ 3.8 • 10 -4 , τ ≈ 4.8 • 10 -3 , θ ≈ 0.995 • Pesquet&Repetti: σ i = τ = γ/ A ≈ 1.4 • 10 -3 • SPDHG (n = 10 subsets): σ i ≈ 1.2 • 10 -3 , τ ≈ 1.5 • 10 -3 , θ n ≈ 0.985 • SPDHG (n = 50): σ i ≈ 2.4 • 10 -3 , τ ≈ 
8. Conclusions and Future Work. We proposed a natural stochastic generalization of the deterministic PDHG algorithm to convex-concave saddle point problems that are separable in the dual variable. The analysis was carried out in the context of arbitrary samplings which enabled us to obtain known deterministic convergence results as special cases. We proposed optimal choices of the step size parameters with which the proposed algorithm showed superior empirical performance on a variety of optimization problems in imaging.

In the future, we would like to extend the analysis to include iteration dependent (adaptive) probabilities [START_REF] Csiba | Stochastic Dual Coordinate Ascent with Adaptive Probabilities[END_REF] and strong convexity parameters to further exploit the structure of many relevant problems. Moreover, the present optimal sampling strategies are only for scalar-valued step sizes and serial sampling. In the future, we wish to extend this to other sampling strategies such as multi-block or parallel sampling.

Appendix A. Postponed Proofs.

Proof of Lemma 4.2. With the definition of y + and Q we have by completing the norm for any x ∈ X that 2 QAx, y + -y = 2 x, i∈S

A * i p -1 i (ŷ i -y i ) = 2 c 1/2 T -1/2 x, c -1/2 i∈S C * i p -1 i S -1/2 i (ŷ i -y i ) ≥ -c x 2 T -1 - 1 c i∈S C * i z i 2 . ( 41 
)
where we used z i := p -1 i S -1/2 i (ŷ i -y i ). Moreover, the expectation of the second term of the right hand side of (41) can be estimated as

E S i∈S C * i z i 2 ≤ n i=1 p i v i z i 2 ≤ max i v i p i n i=1 p 2 i z i 2 (42) 
where the first inequality is due to the ESO inequality (4). Inserting z leads to

n i=1 p 2 i z i 2 = n i=1 p i ŷi -y i 2 p -1 i S -1 i = E S y + -y 2 QS -1 (43) 
where the last equation holds true by the definition of the expectation. Combining the expected value of inequality ( 41) with ( 42) and ( 43) yields the assertion.

Proof of Lemma 4.4. By the definition of the proximal operator, for any (x, y) ∈ W it holds that g(x) ≥ g(x (k+1) ) + T -1 (k) (x (k) -x (k+1) ) -A * y (k) , x -x (k+1) + where we used the definition of the inner product and the norm on the product space Y. It now suffices to complete the generalized distances G(x (k+1) |w) and F(ŷ (k+1) |w).

µ g 2 x -x (k+1) 2 f * i (y i ) ≥ f * i (ŷ (k+1) i ) + (S i (k) ) -1 (y (k) i - ŷ (k+1) 
Proof of Lemma 5.2. We follow a similar line of arguments as in the proof of Theorem 4.3. Note that for any saddle point w = (x , y ) we have 2H(x (k+1) , ŷ(k+1) |w ) = 2D q h (x (k+1) , ŷ(k+1) , w ) ≥ x (k+1) -x 2 µg + ŷ(k+1) -y 2

M

such that the estimate of Lemma 4.4 can be written with w = w as

x (k) -x 2 T -1 (k) 
+ y (k) -y 2

S -1 (k) ≥ x (k+1) -x 2 T -1 (k) +2µgI + ŷ(k+1) -y 2 S -1 (k) +2M -2 A(x (k+1) -x ), ŷ(k+1) -y (k) + x (k+1) -x (k) 2 T -1 (k) 
+ ŷ(k+1) -y (k) 2

S -1 (k)
using the rule [START_REF] Chambolle | An Introduction to Continuous Optimization for Imaging[END_REF]. With [START_REF] Bredies | A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics[END_REF] and [START_REF] Chambolle | An Algorithm for Total Variation Minimization and Applications[END_REF] and again ( 14) we arrive at + y (k+1) -y (k) 2

QS -1 (k) . ( 44 
)
Inserting the extrapolation [START_REF] Estellers | Adaptive Regularization With the Structure Tensor[END_REF] into the inner product yields -θ (k-1) QA(x (k) -x ), y (k) -y (k-1) ≥ E (k+1) θ (k-1) QA(x (k+1) -x (k) ), y (k) -y (k-1) -QA(x (k+1) -x ), y (k+1) -y (k) . [START_REF] Schmidt | Minimizing Finite Sums with the Stochastic Average Gradient[END_REF] The assertion is shown by taking the expectations E (k,k-1) := E (k) E (k-1) on (44), using [START_REF] Schmidt | Minimizing Finite Sums with the Stochastic Average Gradient[END_REF] and estimating the last inner product by Lemma 4.2 as 2θ (k-1) E (k+1) QA(x (k+1) -x (k) ), y (k) -y (k-1)

≥ -E (k+1) x (k+1) -x (k) 2

T -1 (k)
+ (γθ (k-1) ) 2 y (k) -y (k-1) 2 QS -1

(k)

.

Remark 4 .

 4 The meaning of the convergence (6) in Bregman distance depends on the properties of the function h. If h is a Legendre/Bregman function as defined in [4, definition 5.2], then (6) implies convergence in norm. In detail, Bregman distances of Legendre/Bregman functions are coercive in the first argument [4, theorem 3.7], thus x (k) is bounded a.s. The convergence then follows from BL3 [4, definition 5.2] which is equivalent to B5 [4, definition 4.1].

Figure 1 .

 1 Figure 1. PET reconstruction with TV solved as a non-strongly convex problem. Left: As proven in Theorem 4.3, the ergodic Bregman distances converge indeed with rate O(1/K). Right: Speed comparison measured in terms of relative objective [Φ(x (K) ) -Φ(x )]/[Φ(x (0) ) -Φ(x )]. The proposed algorithm SPDHG converges faster than the algorithm of Pesquet&Repetti [35] and the deterministic PDHG.

Figure 2 .

 2 Figure 2. PET reconstruction results after 5 epochs with uniform sampling of 50 subsets.From left to right: approximate primal part of saddle point, PDHG, Pesquet&Repetti[START_REF] Pesquet | A Class of Randomized Primal-Dual Algorithms for Distributed Optimization[END_REF] and SPDHG. With the same number of operator evaluations both stochastic algorithms make much more progress towards the saddle point.

Figure 3 .

 3 Figure 3. Primal acceleration for TV denoising. Left: Primal distance to saddle point x (K)x 2 Right: Relative objective [Φ(x (K) ) -Φ(x )]/[Φ(x (0) ) -Φ(x )].

Figure 4 .

 4 Figure 4. TV denoised images. Left: Approximate primal part of saddle point x after 2000 PDHG iterations. Right: PDHG and primal accelerated SPDHG (PA-SPDHG) after 20 epochs.

1 2η |y j | 2 + η 2 else

 12 for i = 2, 3 where y j = ∇ i-1 x j are finite differences, η = 1 and regularization parameter α = 0.1. The constraints on the image are enforced by the indicator functiong = ı B with B = {x ∈ X | 0 ≤ x j ≤ 100}.The convex conjugate of the modified Kullback-Leibler divergence (40) is

Figure 5 .

 5 Figure 5. Dual acceleration for Huber-TV deblurring. Acceleration speeds up the convergence of both the dual variable (left) and the primal variable (right). Randomization in conjunction with acceleration yields even faster convergence. The accelerated algorithms converge with O(1/K 2 ) in the dual distance (dashed line).

Figure 6 .

 6 Figure 6. Results after 50 epochs for deblurring with Huber-TV. From left to right: Blurry and noisy data with kernel (magnified), PDHG and DA-SPDHG.

Figure 7 .

 7 Figure 7. PET reconstruction with a strongly convex TV prior. Both the distance to the saddle point (left) and the objective value (right) show the speed-up by randomization over the deterministic PDHG. Moreover, for 50 subsets SPDHG is much faster than the algorithm proposed by Pesquet&Repetti. Also note the linear convergence on the left as proven in Theorem 6.1.

Figure 8 .

 8 Figure 8. PET reconstruction results after 10 epochs. Left: Approximate primal part of saddle point computed by 2000 iterations of PDHG. Right: PDHG and SPDHG (50 subsets).

5 . 8 •

 58 10 -4 , θ n ≈ 0.971 Note that the contraction rates of one epoch θ n already indicate that SPDHG (n = 50) may be faster than PDHG and SPDHG (n = 10).

i)++ µ i 2 y-x 2 T - 1 (+ 2

 2212 A i x (k+1) , y i -ŷ(k+1) i -ŷ(k+1) 2for i = 1, . . . , n. Summing twice all inequalities and exploiting the identity2 B(a -b), c -b = a -b 2 B + b -c 2 B -a -c 2 k) +µgI + ŷ(k+1) -y 2 S -1 (k) +M + 2 g(x (k+1) ) -g(x) + f * (ŷ (k+1) ) -f * (y) Ax (k+1) , y -ŷ(k+1) -A(x -x (k+1) ), y(k)+ x (k+1) -x (k) 2

x (k) -x 2 T - 1 (k) + y (k) -y 2 QS - 1 2 T - 1 (

 212121 (k) +2M(Q-I) ≥ E (k+1) x (k+1) -x k) +2µgI + ŷ(k+1) -y 2 QS -1 (k) +2MQ -2 A(x (k+1) -x ), Q(y (k+1) -y (k) ) + y (k) -y (k) + x (k+1) -x (k) 2

In contrast to our work, they have an extrapolation on both primal and dual variables. However, both extrapolations are related as our extrapolation factor is the product of their extrapolation factors.
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