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STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT ALGORITHM
WITH ARBITRARY SAMPLING AND IMAGING APPLICATIONS∗

ANTONIN CHAMBOLLE† , MATTHIAS J. EHRHARDT‡ , PETER RICHTÁRIK§ , AND

CAROLA-BIBIANE SCHÖNLIEB‡

Abstract. We propose a stochastic extension of the primal-dual hybrid gradient algorithm
studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual
variable. The analysis is carried out for general convex-concave saddle point problems and problems
that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform
the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a
special case. Several variants of our stochastic method significantly outperform the deterministic
variant on a variety of imaging tasks.

Key words. convex optimization, primal-dual algorithms, saddle point problems, stochastic
optimization, imaging
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1. Introduction. Many modern problems in a variety of disciplines (imaging,
machine learning, statistics, etc.) can be formulated as convex optimization prob-
lems. Instead of solving the optimization problems directly, it is often advantageous
to reformulate the problem as a saddle point problem. A very popular algorithm
to solve such saddle point problems is the primal-dual hybrid gradient (PDHG)1

algorithm [37, 21, 13, 36, 14, 15]. It has been used to solve a vast amount of state-
of-the-art problems—to name a few examples in imaging: image denoising with the
structure tensor [22], total generalized variation denoising [11], dynamic regularization
[7], multi-modal medical imaging [27], multi-spectral medical imaging [43], computa-
tion of non-linear eigenfunctions [26], regularization with directional total generalized
variation [29]. Its popularity stems from two facts: First, it is very simple and there-
fore easy to implement. Second, it involves only simple operations like matrix-vector
multiplications and evaluations of proximal operators which are for many problems
of interest simple and in closed-form or easy to compute iteratively, cf. e.g. [33].
However, for large problems that are encountered in many real world applications,
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even these simple operations might be still too costly to perform too often.
We propose a stochastic extension of the PDHG for saddle point problems that

are separable in the dual variable (cf. e.g. [18, 52, 54, 34]) where not all but only a
few of these operations are performed in every iteration. Moreover, as in incremental
optimization algorithms [47, 31, 10, 9, 8, 45, 19] over the course of the iterations
we continuously build up information from previous iterations which reduces variance
and thereby negative effects of stochasticity. Non-uniform samplings [40, 38, 52, 39, 2]
have been proven very efficient for stochastic optimization. In this work we use the
expected separable overapproximation framework of [38, 39, 41] to prove all statements
for all non-trivial and iteration-independent samplings.

Related Work. The proposed algorithm can be seen as a generalization of the
algorithm of [18, 54, 52] to arbitrary blocks and a much wider class of samplings.
Moreover, in contrast to their results, our results generalize the deterministic case
considered in [37, 13, 36, 15]. Fercoq and Bianchi [23] proposed a stochastic primal-
dual algorithm with explicit gradient steps that allows for larger step sizes by averaging
over previous iterates, however, this comes at the cost of prohibitively large memory
requirements. Similar memory issues are encountered by a primal-dual algorithm
of [3]. It is related to forward-backward splitting [30] and averaged gradient descent
[10, 20] and therefore suffers the same memory issues as the averaged gradient descent.
Moreover, Valkonen proposed a stochastic primal-dual algorithm that can exploit
partial strong convexity of the saddle point functional [48]. Randomized versions of
the alternating direction method of multipliers are discussed for instance in [53, 25].
In contrast to other works on stochastic primal-dual algorithms [35, 51], our analysis
is not based on Fejér monotonicity [16]. We therefore do not prove almost sure
convergence of the sequence but prove a variety of convergence rates depending on
strong convexity assumptions instead.

As a word of warning, our contribution should not be mistaken by other “stochas-
tic” primal-dual algorithms, where errors in the computation of matrix-vector prod-
ucts and evaluation of proximal operators are modeled by random variables, cf. e.g.
[35, 16, 44]. In our work we deliberately choose to compute only a subset of a whole
iteration to save computational cost. These two notations are related but are certainly
not the same.

1.1. Contributions. We briefly mention the main contributions of our work.
Generalization of Deterministic Case. The proposed stochastic algorithm is a di-

rect generalization of the deterministic setting [37, 13, 36, 14, 15]. In the degenerate
case where in every iteration all computations are performed, our algorithm coincides
with the original deterministic algorithm. Moreover, the same holds true for our anal-
ysis of the stochastic algorithm where we recover almost all deterministic statements
[13, 36] in this degenerate case. Therefore, the theorems for both the deterministic
and the stochastic case can be combined by a single proof.

Better Rates. Our analysis extends the simple setting of [52] such that the strong
convexity assumptions and the sampling do not have to be uniform. Even in the
special case of uniform strong convexity and uniform sampling, the proven convergence
rates are slightly better than the ones proven in [52].

Arbitrary Sampling. The proposed algorithm is guaranteed to converge under a
very general class of samplings [38, 39, 41] and thereby generalizes also the algorithm of
[52] which has only been analyzed for two specific samplings. As long as the sampling
is independent and identically distributed over the iterations and all computations
have non-zero probability to be carried out, the theory holds and the algorithm will
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converge with the proven convergence rates.
Acceleration. We propose an acceleration of the stochastic primal-dual algorithm

which accelerates the convergence from O(1/K) to O(1/K2) if parts of the saddle
point functional are strongly convex and thereby results in a significantly faster algo-
rithm.

Scaling Invariance. In the strongly convex case, we propose parameters for several
serial samplings (uniform, importance, optimal), all based on the condition numbers
of the problem and thereby independent of scaling.

2. General Problem. Let X,Yi, i = 1, . . . , n be real Hilbert spaces of any di-
mension and define the product space Y :=

∏n
i=1 Yi. For y ∈ Y, we shall write

y = (y1, y2, . . . , yn), where yi ∈ Yi. Further, we consider the natural inner product
on the product space Y given by 〈y, z〉 =

∑n
i=1〈yi, zi〉, where yi, zi ∈ Yi. This in-

ner product induces the norm ‖y‖2 =
∑n
i=1 ‖yi‖2. Moreover, for simplicity we will

consider the space W := X× Y that combines both primal and dual variables.
Let A : X → Y be a bounded linear operator. Due to the product space nature

of Y, we have (Ax)i = Aix, where Ai : X → Yi are linear operators. The adjoint
of A is given by A∗y =

∑n
i=1 A

∗
i yi. Moreover, let f : Y → R∞ := R ∪ {+∞} and

g : X → R∞ be convex functions. In particular, we assume that f is separable, i.e.
f(y) =

∑n
i=1 fi(yi).

Given the setup described above, we consider the optimization problem

min
x∈X

{
Φ(x) :=

n∑
i=1

fi(Aix) + g(x)

}
.(1)

Instead of solving (1) directly, it is often desirable to reformulate the problem as a
saddle point problem with the help of the Fenchel conjugate. If f is proper, convex,
and lower semi-continuous, then f(y) = f∗∗(y) = supz∈Y〈z, y〉 − f∗(z) where f∗ :
Y→ R ∪ {−∞,+∞}, f∗(y) =

∑n
i=1 f

∗
i (yi) is the Fenchel conjugate of f (and f∗∗ its

biconjugate defined as the conjugate of the conjugate). Then solving (1) is equivalent
to finding the primal part x of a solution to the saddle point problem (called a saddle
point)

min
x∈X

sup
y∈Y

{
Ψ(x, y) :=

n∑
i=1

〈Aix, yi〉 − f∗i (yi) + g(x)

}
.(2)

We will assume that the saddle point problem (2) has a solution. For conditions for
existence and uniqueness, we refer the reader to [5]. A saddle point w] = (x], y]) =

(x], y]1, . . . , y
]
n) ∈W satisfies the optimality conditions

Aix
] ∈ ∂f∗i (y]i ) i = 1, . . . , n, −A∗y] ∈ ∂g(x]) .

An important notion in this work is strong convexity. A functional g is called µg-
convex if g − µg

2 ‖ · ‖
2 is convex. In general, we assume that g is µg-convex, f∗i

is µi-convex with non-negative strong convexity parameters µg, µi ≥ 0. The con-
vergence results in this contribution cover three different cases of regularity: i) no
strong convexity µg, µi = 0, ii) semi strong convexity µg > 0 or µi > 0 and iii) full
strong convexity µg, µi > 0. For notational convenience we make use of the operator
M := diag(µ1I, . . . , µnI).

A very popular algorithm to solve the saddle point problem (2) is the Primal-
Dual Hybrid Gradient (PDHG) algorithm [37, 21, 13, 36, 14, 15]. It reads (with
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extrapolation on y)

x(k+1) = proxτg

(
x(k) − τA∗y(k)

)
y(k+1) = proxσf∗

(
y(k) + σAx(k+1)

)
y(k+1) = y(k+1) + θ

(
y(k+1) − y(k)

)
,

where the proximal operator (or proximity / resolvent operator) is defined as

proxτf (y) := arg min
x∈X

{
1

2
‖x− y‖2τ−1 + f(x)

}
and the weighted norm by ‖x‖2τ−1 = 〈τ−1x, x〉. Its convergence is guaranteed if the
step size parameters σ, τ are positive and satisfy στ‖A‖2 < 1, θ = 1 [13]. Note that
the definition of the proximal operator is well-defined for an operator-valued step size
τ . In the case of a separable function f and with operator-valued step sizes the PDHG
algorithm takes the form

x(k+1) = proxT
g

(
x(k) −TA∗y(k)

)
(3a)

y
(k+1)
i = proxSi

f∗
i

(
y
(k)
i + SiAix

(k+1)
)

i = 1, . . . , n(3b)

y(k+1) = y(k+1) + θ
(
y(k+1) − y(k)

)
.(3c)

Here the step size parameters S = diag(S1, . . . ,Sn) (a block diagonal operator),
S1, . . . ,Sn and T are symmetric and positive definite. The algorithm is guaranteed
to converge if ‖S1/2AT1/2‖ < 1 and θ = 1 [36].

3. Algorithm. In this work we extend the PDHG algorithm to a stochastic set-
ting where in each iteration we update a random subset S of the dual variables (3b).
This subset is sampled in an i.i.d. fashion from a fixed but otherwise arbitrary distri-
bution, whence the name “arbitrary sampling”. In order to guarantee convergence, it
is necessary to assume that the sampling is “proper” [42, 39]. A sampling is proper
if for each dual variable i we have i ∈ S with a positive probability pi > 0. Examples
of proper samplings include the full sampling where S = {1, . . . , n} with probability
1 and serial sampling where S = {i} is chosen with probability pi. It is important to
note that also other samplings are admissible. For instance for n = 3, consider the
sampling that selects S = {1, 2} with probability 1/3 and S = {2, 3} with probability
2/3. Then the probabilities for the three blocks are p1 = 1/3, p2 = 1 and p3 = 2/3
which makes it a proper sampling. However, if only S = {1, 2} is chosen with proba-
bility 1, then this sampling is not proper as the probability for the third block is zero:
p3 = 0.

The algorithm we propose is formalized as Algorithm 1. As in the original PDHG,
the step size parameters T,Si have to be self-adjoint and positive definite operators
for the updates to be well-defined. The extrapolation is performed with a scalar θ > 0
and an operator Q := diag(p−11 I, . . . , p−1n I) of probabilities pi that an index is selected
in each iteration.

Remark 1. Both, the primal and dual iterates x(k) and y(k) are random variables
but only the dual iterate y(k) depends on the sampling S(k). However, x(k) depends of
course on all previous samplings S(i), i < k.
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Algorithm 1 Stochastic Primal-Dual Hybrid Gradient algorithm (SPDHG).
Input: x(0), y(0), S = diag(S1, . . . ,Sn), T, θ, S(k), K. Initialize: y(0) = y(0)

for k = 0, . . . ,K − 1 do
x(k+1) = proxT

g

(
x(k) −TA∗y(k)

)
Select S(k+1) ⊂ {1, . . . , n}.

y
(k+1)
i =

{
proxSi

f∗
i

(
y
(k)
i + SiAix

(k+1)
)

if i ∈ S(k+1)

y
(k)
i else

y(k+1) = y(k+1) + θQ
(
y(k+1) − y(k)

)
end for

Remark 2. Due to the sampling each iteration requires both Ai and A∗i to be
evaluated only for each selected index i ∈ S(k+1). To see this, note that

A∗y(k+1) = A∗y(k) +
∑

i∈S(k+1)

(
1 +

θ

pi

)
A∗i

(
y
(k+1)
i − y(k)i

)

where A∗y(k) can be stored from the previous iteration (needs the same memory as
the primal variable x) and the operators A∗i are evaluated only for i ∈ S(k+1).

4. General Convex Case. We first analyze the convergence of Algorithm 1 in
the general convex case without making use of any strong convexity or smoothness
assumptions. In order to analyze the convergence for the large class of samplings
described in the previous section we make use of the expected separable overapproxi-
mation (ESO) inequality [39].

Definition 4.1 (Expected Separable Overapproximation). Let S ⊂ {1, . . . , n} be
a random set and pi := P(i ∈ S) the probability that an index i is in the random set
S. Moreover, let Ci : X → Yi be bounded linear operators and define C : X → Y =∏n
i=1 Yi as (Cx)i := Cix. Note that its adjoint is given by C∗z =

∑n
i=1 C

∗
i zi. We

say that {vi} ⊂ Rn fulfill the ESO inequality if for all z ∈ Y it holds that

ES

∥∥∥∥∥∑
i∈S

C∗i zi

∥∥∥∥∥
2

≤
n∑
i=1

pivi‖zi‖2 .(4)

Such parameters {vi} are called ESO parameters of C and S.

Remark 3. Note that for any bounded linear operator C such parameters always
exist but are obviously not unique. For the efficiency of the algorithm it is desirable
to find ESO parameters such that (4) is as tight as possible; i.e., we want the ESO
parameters {vi} to be small. As we shall see, the ESO parameters influence the choice
of the extrapolation parameter θ in the strongly convex case.

The ESO inequality was first proposed by Richtárik and Takáč [42] to study
parallel coordinate descent methods in the context of uniform samplings, which are
samplings for which pi = pj for all i, j. Improved bounds for ESO parameters were
obtained in [24] and used in the context of accelerated coordinate descent. Qu et
al. [39] perform an in-depth study of ESO parameters. The ESO inequality is also
critical in the study mini-batch stochastic gradient descent with [28] or without [46]
variance reduction.
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Example 1 (Full Sampling). Let S = {1, . . . , n} with probability 1 such that pi =

P(i ∈ S) = 1 and Ci = S
1/2
i AiT

1/2. Then some ESO parameters are given by
vi = ‖C‖2. Thus, the deterministic condition on convergence, ‖S1/2AT1/2‖ < 1,
implies a bound on some ESO parameters vi < pi.

Example 2 (Serial Sampling). Let S = {i} be chosen with probability pi > 0 and

Ci = S
1/2
i AiT

1/2. Then some ESO parameters are given by vi = ‖Ci‖2. Note that
obviously ‖Ci‖ ≤ ‖C‖ such that the ESO parameters for serial sampling are smaller
than the ones for full sampling.

We will frequently need to estimate the expected value of inner products which
we will do by means of ESO parameters. Recall that we defined weighted norms as
‖x‖2T−1 := 〈T−1x, x〉. The proof of this lemma can be found in the appendix.

Lemma 4.2. Let S ⊂ {1, . . . , n} be a random set and y+i = ŷi if i ∈ S and yi
otherwise. Moreover, let {vi} be some ESO parameters of S1/2AT1/2 and pi = P(i ∈
S). Then for any x ∈ X and c > 0

2ES〈QAx, y+ − y〉 ≥ −ES

{
1

c
‖x‖2T−1 + cmax

i

vi
pi
‖y+ − y‖2QS−1

}
.

The analysis for the general convex case will use the notation of Bregman distance
which is defined for any function f : X → R∞, x, y ∈ X and q ∈ ∂f(y) in the
subdifferential of f at y as

Dq
f (x, y) := f(x)− f(y)− 〈q, x− y〉 .

Next to Bregman distances, one can measure optimality by the partial primal-dual
gap. Let B1 × B2 ⊂W = X× Y, then we define the partial primal-dual gap as

GB1×B2(x, y) := sup
ỹ∈B2

Ψ(x, ỹ)− inf
x̃∈B1

Ψ(x̃, y) .

It is convenient to define B := B1 × B2 ⊂ W and to denote the gap as GB(w) :=
GB1×B2

(x, y). Note that if B contains a saddle point w] = (x], y]), then we have that

GB(w) ≥ Ψ(x, y])−Ψ(x], y) = D−A
∗y]

g (x, x]) +DAx]

f∗ (y, y]) = Dq
h(w,w]) ≥ 0

where the first equality is obtained by adding a zero and we used h(w) := g(x)+f∗(y)
and q := (−A∗y],Ax]) ∈ ∂h(w]) for the last equality. The non-negativity stems from
the fact that Bregman distances of convex functionals are non-negative and h is convex
indeed.

We will make frequent use of the following “distance functions”

Fi(yi|x̃, ỹi) := f∗i (yi)− f∗i (ỹi)− 〈Aix̃, yi − ỹi〉

and F(y|w̃) :=
∑n
i=1 Fi(yi|x̃, ỹi) . Note that these are strongly related to Bregman

distances; if w] is a saddle point, then F(y|w]) = DAx]

f∗ (y, y]) is the Bregman distance

of f∗ between y and y]. Similarly, we make use of the weighted distance

Fp(y|w̃) :=

n∑
i=1

(
1

pi
− 1

)
Fi(yi|x̃, ỹi)
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and the distance for the primal functional G(x|w̃) := g(x) − g(x̃) − 〈−A∗ỹ, x − x̃〉.
We note that these distances are also related to the partial primal-dual gap as with
H(w|w̃) := G(x|w̃) + F(y|w̃) we have

GB(w) = sup
w̃∈B
H(w|w̃) .

Theorem 4.3. Let θ = 1 and T,S be chosen so that there exist ESO parameters
{vi} of S1/2AT1/2 with

vi < pi i = 1, . . . , n .(5)

Then, the Bregman distance between iterates of Algorithm 1 w(k) = (x(k), y(k)) ∈
W and any saddle point w] ∈W converges to zero almost surely,

Dq
h(w(k), w])→ 0 a.s.(6)

Moreover, the ergodic sequence w(K) := 1
K

∑K
k=1 w

(k) converges with rate 1/K in
an expected partial primal-dual gap sense, i.e. for any set B := B1 × B2 ⊂W it holds

EGB(w(K)) ≤
CB

K
(7)

where the constant is given by

CB := sup
x∈B1

1

2
‖x(0) − x‖2T−1 + sup

y∈B2

1

2
‖y(0) − y‖2QS−1 + sup

w∈B
Fp(y(0)|w) .(8)

The same rate holds for the expected Bregman distance, EDq
h(w(K), w

]) ≤ C{w]}/K.

Remark 4. The meaning of the convergence (6) in Bregman distance depends on
the properties of the function h. If h is a Legendre/Bregman function as defined in [4,
definition 5.2], then (6) implies convergence in norm. In detail, Bregman distances of
Legendre/Bregman functions are coercive in the first argument [4, theorem 3.7], thus
x(k) is bounded a.s. The convergence then follows from BL3 [4, definition 5.2] which
is equivalent to B5 [4, definition 4.1].

In the case that h is merely strictly convex, then (6) implies that if {w(k)} con-
verges a.s., then it converges a.s. to w]. In detail, if {w(k)} (or any subsequence)
converges a.s. to w and (6) holds, then by the lower semi-continuity of Dq

h it is clear
that Dq

h(w,w]) = 0, thus w = w] by the strict convexity of Dq
h.

If h is not strictly convex, then (6) has to be seen in a more generalized sense. For
example, if h is a `1-norm (and thus not strictly convex), then the Bregman distance
between w(k) and w] is zero if and only if they have the same support and sign. Thus,
the convergence statement is related to the support and sign of w]. In the extreme
case h ≡ 0, then Dq

h(·, w]) ≡ 0 and the convergence statement has no meaning.

The proof of this theorem utilizes a standard inequality for which we provide the
proof in the appendix for completeness.

Lemma 4.4. Consider the deterministic updates

x(k+1) = prox
T(k)
g

(
x(k) −T(k)A

∗y(k)
)

ŷ
(k+1)
i = prox

Si
(k)

f∗
i

(
y
(k)
i + Si(k)Aix

(k+1)
)

i = 1, . . . , n



8 A. CHAMBOLLE, M. J. EHRHARDT, P. RICHTÁRIK AND C.-B. SCHÖNLIEB

with iteration varying step sizes T(k) and S(k) = diag(S1
(k), . . . ,S

n
(k)). Then for any

(x, y) ∈W it holds that

‖x(k) − x‖2
T−1

(k)

+ ‖y(k) − y‖2
S−1

(k)

≥ ‖x(k+1) − x‖2
T−1

(k)
+µgI

+ ‖ŷ(k+1) − y‖2
S−1

(k)
+M

+ 2
(
G(x(k+1)|w) + F(ŷ(k+1)|w)

)
− 2〈A(x(k+1) − x), ŷ(k+1) − y(k)〉

+ ‖x(k+1) − x(k)‖2
T−1

(k)

+ ‖ŷ(k+1) − y(k)‖2
S−1

(k)

.

Proof of Theorem 4.3. The result of Lemma 4.4 (with constant step sizes) has to
be adapted to the stochastic setting as the dual iterate is updated only with a certain
probability. First, a trivial observation is that for any mapping ϕ it holds that

ϕ(ŷ
(k+1)
i ) =

1

pi
E(k+1)ϕ(y

(k+1)
i )−

(
1

pi
− 1

)
ϕ(y

(k)
i )

=

(
1

pi
− 1

)
E(k+1)ϕ(y

(k+1)
i )−

(
1

pi
− 1

)
ϕ(y

(k)
i ) + E(k+1)ϕ(y

(k+1)
i ) .(9)

Thus, for the generalized distance of f∗ we arrive at

F(ŷ(k+1)|w) = E(k+1)Fp(y(k+1)|w)−Fp(y(k)|w) + E(k+1)F(y(k+1)|w) .(10)

and for any block diagonal matrix B = diag(B1, . . . ,Bn)

‖ŷ(k+1) − ·‖2B = E(k+1)‖y(k+1) − ·‖2QB − ‖y(k) − ·‖2(Q−I)B ,(11)

ŷ(k+1) = QE(k+1)y(k+1) − (Q− I)y(k) .(12)

Using (10)–(12), we can rewrite the estimate of Lemma 4.4 as

‖x(k) − x‖2T−1 + ‖y(k) − y‖2QS−1 + 2Fp(y(k)|w)

≥ E(k+1)

{
‖x(k+1) − x‖2T−1 + ‖y(k+1) − y‖2QS−1 + 2Fp(y(k+1)|w)

+ 2H(w(k+1)|w)− 2〈A(x(k+1) − x),Q(y(k+1) − y(k)) + y(k) − y(k)〉

+ ‖x(k+1) − x(k)‖2T−1 + ‖y(k+1) − y(k)‖2QS−1

}
.(13)

where we have used the identity

‖ · ‖2B + ‖ · ‖2D = ‖ · ‖2B+D(14)

to simplify the expression. With the extrapolation y(k) = y(k) +Q(y(k)− y(k−1)), the
inner product term can be reformulated as

− 〈A(x(k+1) − x),Q(y(k+1) − y(k)) + y(k) − y(k)〉
= −〈QA(x(k+1) − x), y(k+1) − y(k)〉+ 〈QA(x(k+1) − x), y(k) − y(k−1)〉
= −〈QA(x(k+1) − x), y(k+1) − y(k)〉+ 〈QA(x(k) − x), y(k) − y(k−1)〉

+ 〈QA(x(k+1) − x(k)), y(k) − y(k−1)〉(15)
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and with Lemma 4.2 and γ2 := maxi vi/pi it holds that

2E(k)〈QA(x(k+1) − x(k)), y(k) − y(k−1)〉

≥ −E(k)
{
γ2‖x(k+1) − x(k)‖2T−1 + ‖y(k) − y(k−1)‖2QS−1

}
.(16)

Taking expectations with respect to S1, . . . ,SK (denoted by E) on (13), using the
estimates (15) and (16) and denoting

∆(k) := E
{
‖x(k) − x‖2T−1 + ‖y(k) − y‖2QS−1 + 2Fp(y(k)|w)

+ ‖y(k) − y(k−1)‖2QS−1 − 2〈QA(x(k) − x), y(k) − y(k−1)〉
}

leads with γ < 1 (follows directly from (5)) to

∆(k) ≥ ∆(k+1) + E
(

2H(w(k+1)|w) + (1− γ2)‖x(k+1) − x(k)‖2T−1

)
≥ ∆(k+1) + 2EH(w(k+1)|w) .(17)

Summing (17) over k = 0, . . . ,K − 1 (note that y(−1) = y(0)) and using the estimate
(follows directly from Lemma 4.2)

∆(K) ≥ E
{

(1− γ2)‖x(K) − x‖2T−1 + ‖y(K) − y‖2QS−1 + 2Fp(y(K)|w)
}

≥ 2EFp(y(K)|w)

yields

E

{
Fp(y(K)|w) +

K∑
k=1

H(w(k)|w)

}
≤ ∆(0)

2
.(18)

All assertions of the theorem follow from inequality (18). Inserting a saddle point
w = w] and taking the limit K →∞, it follows from (18) that E

∑∞
k=1D

q
h(w(k), w]) <

∞ which implies almost surely
∑∞
k=1D

q
h(w(k), w]) <∞ and thus (6).

To see (7), note first that

Fp(y(0)|w)−Fp(y(K)|w) = Fp(y(0)|x, y(K)) ≤ sup
w∈B
Fp(y(0)|w)

and ∆(0)/2 − Fp(y(K)|w) ≤ CB if w ∈ B with CB as defined in (8). Moreover, the
generalized distance H(·|w) is convex, thus, dividing (18) by K yields

EH(w(K)|w) ≤ 1

K
E

K∑
k=1

H(w(k)|w) ≤ CB

K

for any w ∈ B. Taking the supremum over w ∈ B yields (7). Noting that Dq
h(w,w]) =

G{w]}(w) completes the proof.



10 A. CHAMBOLLE, M. J. EHRHARDT, P. RICHTÁRIK AND C.-B. SCHÖNLIEB

Algorithm 2 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration
on the dual variable (DA-SPDHG).
Input: x(0), y(0), τ(0) ∈ R, σ̃(0) ∈ R, S(k), K. Initialize: y(0) = y(0)

1: for k = 0, . . . ,K − 1 do
2: x(k+1) = prox

τ(k)
g

(
xk − τ(k)A∗y(k)

)
3: Select S(k+1) ⊂ {1, . . . , n}.
4: σ

(k)
i =

σ̃(k)

µi[pi−2(1−pi)σ̃(k)]
, i ∈ S(k+1)

5: y
(k+1)
i =

prox
σ
(k)
i

f∗
i

(
y
(k)
i + σ

(k)
i Aix

(k+1)
)

if i ∈ S(k+1)

y
(k)
i else

6: θ(k) = (1 + 2σ̃(k))
−1/2 , τ(k+1) = τ(k)/θ(k) , σ̃(k+1) = θ(k)σ̃(k)

7: y(k+1) = y(k+1) + θ(k)Q
(
y(k+1) − y(k)

)
8: end for

5. Semi-Strongly Convex Case. In this section we propose randomized and
accelerated algorithms which can exploit strong convexity in either f∗i or g. Algo-
rithm 2 converges in the dual variable with rate O(1/K2) if the convex conjugate f∗i
is strongly convex. Similarly, Algorithm 3 converges with the same accelerated rate
O(1/K2) in the primal variable if g is strongly convex. For simplicity we restrict
ourselves from now on to scalar-valued step sizes, i.e. T = τI and Si = σiI. However,
large parts of what follows holds true for operator-valued step sizes, too.

Theorem 5.1 (Dual Strong Convexity). Let f∗i be strongly convex with constants
µi > 0, i = 1, . . . , n. Consider Algorithm 2 and let the initial step sizes σ̃(0), τ(0) be
chosen such that

σ̃(0) < min
i

pi
2(1− pi)

(19)

and for the ESO parameters {vi} of S
1/2
(0) Aτ

1/2
(0) it holds that

vi ≤ pi i = 1, . . . , n(20)

with [S(k)]i = σ
(k)
i I and

σ
(k)
i =

σ̃(k)

µi[pi − 2(1− pi)σ̃(k)]
.(21)

Then there exists K̃ ∈ N such that for all K ≥ K̃ it holds

E‖y(K) − y]‖2Y(0)
≤ 2

K2

(
‖x(0) − x]‖2

τ−1
(0)

+ ‖y(0) − y]‖2Y(0)

)
where the metric on Y is defined by Y(k) := QS−1(k) + 2M(Q− I).

Remark 5. As already noted in [13], K̃ is usually fairly small so that the estimate
in Theorem 5.1 has practical relevance.

Remark 6. For serial sampling the condition on the ESO parameters (20) is
equivalent to

σ̃(0) ≤ min
i

µip
2
i

τ(0)‖Ai‖2 + 2µipi(1− pi)
.
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In particular, it implies condition (19) on σ̃(0).

This theorem requires an estimate on the expected contraction similar to the
proof of Theorem 4.3 and shown in the appendix.

Lemma 5.2. Let x(k+1), ŷ(k+1) be defined as in Lemma 4.4 and y
(k+1)
i = ŷ

(k+1)
i

with probability pi > 0 and unchanged else. Moreover, let

y(k+1) = y(k+1) + θ(k)Q
(
y(k+1) − y(k)

)
(22)

and {vi} be some ESO parameters of S
1/2
(k)Aτ

1/2
(k) . Then with γ2 = maxi

vi
pi

it holds

E(k,k−1)
{
‖x(k) − x]‖2

τ−1
(k)

+ ‖y(k) − y]‖2
QS−1

(k)
+2M(Q−I)

− 2θ(k−1)〈QA(x(k) − x]), y(k) − y(k−1)〉+ (γθ(k−1))
2‖y(k) − y(k−1)‖2

QS−1
(k)

}
≥ E(k+1,k)

{
‖x(k+1) − x]‖2

τ−1
(k)

+2µgI
+ ‖y(k+1) − y]‖2

QS−1
(k)

+2MQ

− 2〈QA(x(k+1) − x]), y(k+1) − y(k)〉+ ‖y(k+1) − y(k)‖2
QS−1

(k)

}
.

Proof of Theorem 5.1. The update on the step sizes in Algorithm 2 imply that

θ(k)
1

τ(k)
≥ 1

τ(k+1)
,

θ(k)

(
1

piσ
(k)
i

+
2µi
pi

)
≥ 1

piσ
(k+1)
i

+
2(1− pi)µi

pi
(23)

for all i = 1, . . . , n and therefore

θ(k)‖ · ‖2τ−1
(k)

≥ ‖ · ‖2
τ−1
(k+1)

,(24)

θ(k)‖ · ‖2QS−1
(k)

+2MQ
≥ ‖ · ‖2

QS−1
(k+1)

+2M(Q−I) = ‖ · ‖2Y(k+1)
.(25)

To see (23), the auxiliary sequence σ̃(k) satisfies

σ̃(k) =
piµiσ

(k)
i

1 + 2(1− pi)µiσ(k)
i

such that (23) is satisfied as soon as

θ(k)
1 + 2σ̃(k)

σ̃(k)
≥ 1

σ̃(k+1)
.(26)

Note that the transformation from σ̃(k) to σ
(k)
i is well-defined if σ̃(k) < mini

pi
2(1−pi)

which is the case as σ̃(k) is monotonically non-increasing and σ̃(0) satisfies the condi-
tion. By construction of the sequence σ̃(k+1) = θ(k)σ̃(k), (26) is solved with equality

by θ(k) = (1 + 2σ̃(k))
−1/2. Moreover, the sequence σ

(k)
i is also non-increasing as

σ
(k+1)
i =

θ(k)σ
(k)
i

1 + 2(1− θ(k))(1− pi)µiσ
(k)
i

≤ θ(k)σ
(k)
i ,
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thus, with (20) we see that the ESO parameters of S
1/2
(k)Aτ

1/2
(k) are also bounded by pi.

For the actual proof of the theorem, note that the inequalities (24) and (25) imply

θ(k)E
{
‖x(k+1) − x]‖2

τ−1
(k)

+ ‖y(k+1) − y]‖2
QS−1

(k)
+2MQ

− 2〈QA(x(k+1) − x]), y(k+1) − y(k)〉
}
≥ E∆(k+1)(27)

with

∆(k) := ‖x(k) − x]‖2
τ−1
(k)

+ ‖y(k) − y]‖2Y(k)
− 2θ(k−1)〈QA(x(k) − x]), y(k) − y(k−1)〉 .

Thus, combining Lemma 5.2 (µg = 0) and (27) yields

θ(k)E
{

∆(k) + (γθ(k−1))
2‖y(k) − y(k−1)‖2

QS−1
(k)

}
≥ θ(k)E

{
‖x(k+1) − x]‖2

τ−1
(k)

+ ‖y(k+1) − y]‖2
QS−1

(k)
+2MQ

− 2〈QA(x(k+1) − x]), y(k+1) − y(k)〉+ ‖y(k+1) − y(k)‖2
QS−1

(k)

}
≥ E

{
∆(k+1) + θ(k)‖y(k+1) − y(k)‖2

QS−1
(k)

}
.

With γθ(k−1) ≤ 1,S(k+1) ≤ θ(k)S(k) and ∆̄(k) := E
{

∆(k) + ‖y(k) − y(k−1)‖2
QS−1

(k)

}
we

derive the recursion

θ(k)∆̄
(k) ≥ θ(k)E

{
∆(k) + (γθ(k−1))

2‖y(k) − y(k−1)‖2
QS−1

(k)

}
≥ E

{
∆(k+1) + θ(k)‖y(k+1) − y(k)‖2

QS−1
(k)

}
≥ ∆̄(k+1) .

Using this inequality recursively, y(−1) = y(0), we arrive at

K−1∏
k=0

θ(k)∆̄
(0) ≥ ∆̄(K) ≥ E

{
(1− γ2)‖x(K) − x]‖2

τ−1
(K)

+ ‖y(K) − y]‖2Y(K)

}
≥ E‖y(K) − y]‖2Y(K)

where the second estimated follows directly from Lemma 4.2 and the third inequality
from γ ≤ 1 which holds by assumption (20).

As ∆̄(0) = ‖x(0) − x]‖2
τ−1
(0)

+ ‖y(0) − y]‖2Y(0)
, θ(k) =

σ̃(k+1)

σ̃(k)
and

‖ · ‖2Y(K)
=

1

σ̃(K)
‖ · ‖2M =

σ̃(0)

σ̃(K)
‖ · ‖2Y(0)

which holds by the definition of σ̃(k), it holds that

E‖y(K) − y]‖2Y(0)
≤
(
σ̃(K)

σ̃(0)

)2{
‖x(0) − x]‖2

τ−1
(0)

+ ‖y(0) − y]‖2Y(0)

}
.

Finally, the assertion follows by Corollary 1 of [13].
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Remark 7. If g is strongly convex, then the primal variable can be accelerated,
see Algorithm 3. Its convergence can be analyzed similar to the deterministic case, cf.
Appendix C.2 of [14], and omitted here for brevity. It converges with rate O(1/K2)
in the primal variable if the ESO parameters satisfy vi < pi.

Algorithm 3 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration
on the primal variable (PA-SPDHG).
Input: x(0), y(0), τ(0) ∈ R, σ(0) ∈ Rn, S(k), K. Initialize: y(0) = y(0)

1: for k = 0, . . . ,K − 1 do
2: x(k+1) = prox

τ(k)
g

(
x(k) − τ(k)A∗y(k)

)
3: Select S(k+1) ⊂ {1, . . . , n}.

4: y
(k+1)
i =

prox
σ
(k)
i

f∗
i

(
y
(k)
i + σ

(k)
i Aix

(k+1)
)

if i ∈ S(k+1)

y
(k)
i else

5: θ(k) = (1 + 2µgτ(k))
−1/2 , τ(k+1) = θ(k)τ(k) , σ(k+1) = σ(k)/θ(k)

6: y(k+1) = y(k+1) + θ(k)Q
(
y(k+1) − y(k)

)
7: end for

6. Strongly Convex Case. If both f∗i and g are strongly convex, we may find
step size parameters such that the Algorithm 1 converges linearly.

Theorem 6.1. Let (x], y]) ∈ W be a saddle point and g, f∗i be strongly convex
with constants µg, µi > 0, i = 1, . . . , n. Let the step sizes τ, σ1, . . . , σn, 0 < θ < 1 be
chosen such that the ESO parameters {vi} of S1/2Aτ1/2 can be estimated as

vi <
pi
θ

i = 1, . . . , n,(28)

and the extrapolation θ satisfies the lower bounds

θ ≥ 1

1 + 2µgτ
, θ ≥ 1 + 2(1− pi)µiσi

1 + 2µiσi
i = 1, . . . , n .(29)

Then the iterates of Algorithm 1 converge linearly to the saddle point, in particular

E
{

(1− γ2θ)‖x(K) − x]‖2X + ‖y(K) − y]‖2Y
}
≤ θK

{
‖x(0) − x]‖2X + ‖y(0) − y]‖2Y

}
holds where the metrics are given by X := (τ−1 + 2µg)I, Y := (S−1 + 2M)Q and
γ2 = maxi vi/pi.

Proof. The requirements (29) on the step sizes τ, σ1, . . . , σn and θ imply θ‖ ·‖2X ≥
‖ · ‖2τ−1 and θ‖ · ‖2Y ≥ ‖ · ‖2QS−1+2M(Q−I). Thus, we directly get

θE∆(k) ≥ E
{
‖x(k) − x]‖2τ−1 + ‖y(k) − y]‖2QS−1+2M(Q−I)

− 2θ〈QA(x(k) − x]), y(k) − y(k−1)〉
}

(30)

where we denoted

∆(k) := ‖x(k) − x]‖2X + ‖y(k) − y]‖2Y − 2〈QA(x(k) − x]), y(k) − y(k−1)〉 .
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Combining (30) and Lemma 5.2 with constant step sizes yields

θE∆(k) ≥ E
{

∆(k+1) + ‖y(k+1) − y(k)‖2QS−1 − (γθ)2‖y(k) − y(k−1)‖2QS−1

}
.

Multiplying both sides by θ−(k+1) and summing over k = 0, . . . ,K − 1 yields

∆(0) ≥ θ−KE
{

∆(K) + ‖y(K) − y(K−1)‖2QS−1

}
+ (1− γ2θ)E

K−1∑
k=1

θ−k‖y(k) − y(k−1)‖2QS−1

≥ θ−KE
{
‖x(K) − x]‖2X + ‖y(K) − y]‖2Y + ‖y(K) − y(K−1)‖2QS−1

− 2〈QA(x(K) − x]), y(K) − y(K−1)〉
}

≥ θ−KE
{
‖x(K) − x]‖2X − γ2‖x(K) − x]‖2τ−1 + ‖y(K) − y]‖2Y

}
≥ θ−KE

{
(1− γ2θ)‖x(K) − x]‖2X + ‖y(K) − y]‖2Y

}
where we used again Lemma 4.2 and the non-negativity of norms for the second
inequality. Thus, the assertion is proven.

6.1. Optimal Parameters for Serial Sampling. This analysis is to optimize
the convergence rate θ of Theorem 6.1 for three different serial sampling options where
exactly one block is chosen in each iteration. Other sampling strategies, including
multi-block, parallel, etc. [39] will be subject of future work.

We will derive the rates and parameters in terms of the condition numbers κi :=
‖Ai‖2/(µgµi) as these are scaling invariant, thus we cannot improve the rates by
simple rescaling of the problem. This can be seen as follows. If we rewrite problem
(2) in terms of the scaled variables x := αx and yi := βiyi, then the corresponding
operators Ai := Ai/(αβi) have norm ‖Ai‖ = ‖Ai‖/(αβi), the function g(x) := g(x/α)

is µg := µg/α
2 strongly convex and the functions f

∗
i (yi) := f∗i (yi/βi) are µi := µi/β

2
i

strongly convex. Thus the condition numbers are scaling invariant as

κi =
‖Ai‖2

µgµi
=

1
(αβi)2

‖Ai‖2
1
α2µg

1
β2
i
µi

=
‖Ai‖2

µgµi
= κi .

With σ̄i := σiµi and τ̄ := τµg, the conditions on the step sizes (29) become

θ ≥ 1

1 + 2τ̄
, θ ≥ max

i
1− 2

σ̄ipi
1 + 2σ̄i

, and max
i
τ̄ σ̄iκiθ ≤ ρ2pi(31)

for some ρ < 1. The last condition arises from the ESO parameters of serial sampling
which are vi = σiτ‖Ai‖2, see Example 2. Finding optimal parameters is equivalent
to equating the above inequalities. Note that the first two conditions (with equality)
are equivalent to θτ̄ = (1 − θ)/2 and σ̄i = 1−θ

2(pi−(1−θ)) . With these choices, the third

condition in (31) reads

(1− θ)2κ ≤ 4ρ2pi(pi − (1− θ)) i = 1, . . . , n .(32)

It follows from (32) that with κ̃ = 1 + κ/ρ2 it holds

θ ≥ max
i

1− 2pi

1 +
√
κ̃i

(33)
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Example 3 (Serial Uniform Sampling). We first consider uniform sampling, i.e.
every block is sampled with the same probability pi = 1/n. Then it is easy to see that
the smallest achievable rate is given by

θuni = 1− 2

n+ nmaxj
√
κ̃j

(34)

and the step sizes become

σi =
µ−1i

maxj
√
κ̃j − 1

, τ =
µ−1g

n− 2 + nmaxj
√
κ̃j
.

Example 4 (Serial Importance Sampling). Instead of uniform sampling we may
sample “important blocks” more often, i.e. we sample every block with a probability
proportional to the square root of its condition number pi =

√
κi/
∑
j

√
κj. Then the

smallest rate that achieves (33) is given by

θimp = 1− 2ν∑n
j=1

√
κj

(35)

with ν := minj
√
κj/(1 +

√
κ̃j) and the step sizes are

σi =
νµ−1i√
κi − 2ν

, τ =
νµ−1g∑n

j=1

√
κj − 2ν

.

Example 5 (Serial Optimal Sampling). Instead of a predefined probability we
will seek for an “optimal sampling” that minimizes the linear convergence rate θ. The
optimal sampling can be found by equating condition (33) for i = 1, . . . , n

θ
(

1 +
√
κ̃i

)
= 1 +

√
κ̃i − 2pi .(36)

Summing (36) from 1 to n and using that for serial sampling
∑n
i=1 pi = 1 leads to

θopt = 1− 2

n+
∑n
j=1

√
κ̃j

(37)

with step size parameters

σi =
µ−1i√
κ̃i − 1

, τ =
µ−1g

n− 2 +
∑n
j=1

√
κ̃j

and probabilities

pi =
1 +
√
κ̃i

n+
∑n
j=1

√
κ̃j
.

Remark 8 (Minibatches). All arguments above can readily be extended to sam-
plings where at each iteration not only one but a fixed number of blocks are chosen.

Remark 9 (Better Sampling). It is easy to see that optimal sampling is better
than uniform sampling: if all condition numbers are the same, then the rates for
uniform sampling (34) and optimal sampling (37) are equal but if they are not, then
the rate of optimal sampling is strictly smaller and thus better.
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Moreover, optimal sampling is better than importance sampling. To see this, note
that due to the monotonicity of

√
x/(1 +

√
1 + x) we get

θimp = 1−min
i

2(
1 +
√
κ̃i
)∑n

j=1

√
κj/ρ2/

√
κi/ρ2

≥ 1−min
i

2(
1 +
√
κ̃i
)∑n

j=1(1 +
√
κ̃j)/(1 +

√
κ̃i)

= θopt .

Remark 10 (Comparison to Zhang and Xiao [52]). The algorithm of Zhang and
Xiao [52] is (almost2) a special case of the proposed algorithm where each block is
picked with probability pi = 1/n. Here m denotes the size of each block to be processed
at every iteration and n the number of blocks. Moreover, they only consider the
strongly convex case where g is µg-strongly convex and all f∗i are µf -strongly convex.
Then with R being the largest norm of the rows in A they achieve

θZX = 1− 1

n+ n
√
mR√
µgµf

.

If the minibatch size is m = 1, the blocks are chosen to be single rows and the proba-
bilities are uniform, then their rate is slightly worse than ours

θZX = 1− 1

n+ nmaxj
√
κj
≥ 1− 2

2n+ nmaxj
√
κj/ρ2

≥ 1− 2

2n+ n(maxj
√

1 + κj/ρ2 − 1)
= θuni

for any ρ ≥ 1
2 . For m > 1, the rates differ even more as the condition numbers

are conservatively estimated. Similarly, the rates can be improved by non-uniform
sampling if the row norms are not equal.

7. Numerical Results. All numerical examples are implemented in python us-
ing numpy and the operator discretization library (ODL) [1]. The python code and all
example data will be made available on github upon acceptance of this manuscript.

7.1. Non-Strongly Convex PET Reconstruction. In this example we con-
sider positron emission tomography (PET) reconstruction with a total variation (TV)
prior. The goal in PET imaging is to reconstruct the distribution of a radioactive
tracer from its line integrals [32]. Let X = Rd1×d2 , d1 = d2 = 250 be the space of tracer
distributions (images) and Yi = R|Bi| the data spaces where Bi ⊂ {1, . . . , N}, N =
200 · 250 (200 views around the object) are subsets of indices with Bi ∩Bj = ∅ if i 6= j
and ∪ni=1Bi = {1, . . . , N}. All samplings in this example divide the views equidis-
tantly. It is standard that PET reconstruction can be posed as the optimization
problem (1) where the data fidelity term is given by the Kullback–Leibler divergence

fi(y) =

{∑
j∈Bi

yj + rj − bj + bj log
(

bj
yj+rj

)
if yj + rj > 0

∞ else
(38)

2In contrast to our work, they have an extrapolation on both primal and dual variables. However,
both extrapolations are related as our extrapolation factor is the product of their extrapolation
factors.
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Figure 1. PET reconstruction with TV solved as a non-strongly convex problem. Left: As
proven in Theorem 4.3, the ergodic Bregman distances converge indeed with rate O(1/K). Right:
Speed comparison measured in terms of relative objective [Φ(x(K))−Φ(x])]/[Φ(x(0))−Φ(x])]. The
proposed algorithm SPDHG converges faster than the algorithm of Pesquet&Repetti [35] and the
deterministic PDHG.

Figure 2. PET reconstruction results after 5 epochs with uniform sampling of 50 subsets.
From left to right: approximate primal part of saddle point, PDHG, Pesquet&Repetti [35] and
SPDHG. With the same number of operator evaluations both stochastic algorithms make much more
progress towards the saddle point.

where it is convention that 0 log 0 := 0. The operator A is a scaled X-ray trans-
form where in each of 200 directions 250 line integrals are computed with the as-
tra toolbox [50, 49]. The prior is the TV of x with non-negativity constraint, i.e.
g(x) = α‖∇x‖2,1 + ı≥0(x), with regularization parameter α = 0.2 and the gradi-
ent operator ∇x = (∇1x,∇2x) ∈ Rd1·d2×2 is discretized by forward differences in
horizontal and vertical direction, cf. [12] for details. The 2, 1-norm of these gradi-
ents is defined as ‖x‖2,1 :=

∑
j

√
(∇1xj)2 + (∇2xj)2. The Fenchel conjugate of the

Kullback–Leibler divergence (38) is

f∗i (z) =
∑
j∈Bi

{
−zjrj − bj log(1− zj) if zj ≤ 1 and (bj = 0 or zj < 1)

∞ else
,(39)

its proximal operator given by[
proxσi

f∗
i

(z)
]
j

=
1

2

(
zj + 1 + σirj −

√
(zj − 1 + σirj)2 + 4σibj

)
.

The proximal operator for g is approximated with 20 iterations of the fast gradient
projection method (FGP) [6] with a warm start applied to the dual problem.

Parameters. In this experiment we choose γ = 0.99, θ = 1 and all samplings are
uniform, i.e. pi = 1/n. The number of subsets varies between n = 1 (deterministic
case), 50 and 250. The other step size parameters are chosen as
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Figure 3. Primal acceleration for TV denoising. Left: Primal distance to saddle point ‖x(K)−
x]‖2 Right: Relative objective [Φ(x(K))− Φ(x])]/[Φ(x(0))− Φ(x])].

Figure 4. TV denoised images. Left: Approximate primal part of saddle point x] after 2000
PDHG iterations. Right: PDHG and primal accelerated SPDHG (PA-SPDHG) after 20 epochs.

• PDHG, Pesquet&Repetti [35]: σi = τ = γ/‖A‖ ≈ 6.9 · 10−4

• SPDHG: σi = γ/‖Ai‖ ≈ 2.2 · 10−3, τ = γ/(nmaxi ‖Ai‖) ≈ 2.2 · 10−4

Results. Figure 1 on the left shows that the ergodic Bregman distance converges
with rate 1/k as proven in Theorem 4.3. On the right we compare the deterministic
PDHG with the randomized SPDHG and the algorithm of Pesquet&Repetti. It can be
clearly seen that the proposed SPDHG converges much faster than both the algorithm
of Pesquet&Repetti and the deterministic PDHG. Some example images are found in
Figure 2 after 5 epochs which again highlight the speed-up gained by randomization.

7.2. TV denoising with Gaussian Noise (Primal Acceleration). In the
second example we consider denoising of an image that is degraded by Gaussian
noise with the help of the anisotropic TV. This can be achieved by solving (1) with
X = Rd1×d2 , d1 = 442, d2 = 331, the data fit g(x) = 1/(2α)‖x − b‖22 is the squared
Euclidean norm and the prior the (anisotropic) TV fi(yi) = ‖yi‖1,Ai = ∇i and n = 2.
Instead of the isotropic TV as in the previous example we consider here the anisotropic
version as it is separable in the direction of the gradient. The regularization parameter
is chosen to be α = 0.12. See e.g. [13] for details on convex conjugates and proximal
operators of these functionals.

Parameters. In this experiment we choose γ = 0.99 and the sampling to be
uniform, i.e. pi = 1/n. The number of subsets are either n = 1 in the deterministic
case or n = 2 in the stochastic case. The (initial) step size parameters are

• PDHG, PA-PDHG, Pesquet&Repetti: σ
(0)
i = τ (0) = γ/‖A‖ ≈ 0.35

• SPDHG, PA-SPDHG: σ
(0)
i = γ/‖Ai‖ ≈ 0.50, τ (0) = γ/(nmaxi ‖Ai‖) ≈ 0.25

The step sizes for acceleration vary with the iteration with the primal step size τ(k)
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getting smaller and the dual step size σ(k) getting larger. The extrapolation factor θ
is chosen to be 1 for non-accelerated and converging to 1 for accelerated algorithms.

Results. The quantitative results in Figure 3 show that the accelerated algorithms
are much faster than the non-accelerated versions. Moreover, it can be seen that the
stochastic variant of the accelerated PA-PDHG is even faster than its deterministic
variant. In addition, the results show that the accelerated SPDHG indeed converges
as 1/K2 in the norm of the primal part. Visual assessment of the denoised images in
Figure 4 confirms these conclusions.

7.3. Huber-TV Deblurring (Dual Acceleration). In the third example we
consider deblurring with known convolution kernel where the forward operator A1

resembles the convolution of images in X = Rd1×d2 , d1 = 408, d2 = 544 with a motion
blur of size 15×15. The noise is modeled to be Poisson with a constant background of
200 compared to the approximate data mean of 694.3. We further assume to have the
knowledge that the reconstructed image should be non-negative and upper-bounded
by 100. By the nature of the forward operator Ax ≥ 0 whenever x ≥ 0. Therefore
the solution to (1) with the Kullback–Leibler divergence (38) remains the same if we
replace the Kullback–Leibler divergence by the differentiable

f1(y) =

N∑
i=1

yi + ri − bi + bi log
(

bi
yi+ri

)
if yi ≥ 0

bi
2r2i
y2i +

(
1− bi

ri

)
yi + ri − bi + bi log

(
bi
ri

)
else

(40)

which has a
(
maxi bi/r

2
i

)
Lipschitz continuous gradient. The Lipschitz constant is

well-defined and non-zero as both the data bi as well as the background ri are positive.
In our numerically example it is approximately 0.31.

Prior smoothness information is represented by the anisotropic TV with Huber-
ized norm

fi(Aix) = α
∑
j

{
|yj | if |yj | > η
1
2η |yj |

2 + η
2 else

for i = 2, 3 where yj = ∇i−1xj are finite differences, η = 1 and regularization param-
eter α = 0.1. The constraints on the image are enforced by the indicator function
g = ıB with B = {x ∈ X | 0 ≤ xj ≤ 100}.

The convex conjugate of the modified Kullback–Leibler divergence (40) is

f∗1 (z) =

N∑
i=1


r2i
2bi
z2i +

(
ri − r2i

bi

)
zi +

r2i
2bi

+ 3bi
2 − 2ri − bi log

(
bi
ri

)
if zi < 1− bi

ri

−rizi − bi log(1− zi) if 1− bi
ri
≤ zi < 1

∞ if zi ≥ 1

which is
(
mini r

2
i /bi

)
-strongly convex with proximal operator

[
proxσf∗

1
(z)
]
i

=


bizi−σribi+σr2i

bi+σr2i
if zi < 1− bi

ri

1
2

{
zi + σri + 1−

√
(zi + σri − 1)2 + 4σbi

}
else

.

Parameters. In this experiment we choose γ = 0.99 and consider uniform sam-
pling, i.e. pi = 1/n. The number of subsets are either n = 1 in the deterministic case
or n = 3 in the stochastic case. The (initial) step size parameters are chosen to be

• PDHG: σi = τ = γ/‖A‖ ≈ 0.095
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Figure 5. Dual acceleration for Huber-TV deblurring. Acceleration speeds up the convergence
of both the dual variable (left) and the primal variable (right). Randomization in conjunction with
acceleration yields even faster convergence. The accelerated algorithms converge with O(1/K2) in
the dual distance (dashed line).

Figure 6. Results after 50 epochs for deblurring with Huber-TV. From left to right: Blurry
and noisy data with kernel (magnified), PDHG and DA-SPDHG.

• DA-PDHG: σ̃
(0)
i = µf/‖A‖ ≈ 0.096 , τ (0) = γ/‖A‖ ≈ 0.095

• DA-SPDHG: σ̃(0) = mini
µip

2
i

τ0‖Ai‖2+2µipi(1−pi) ≈ 0.073,

τ (0) = 1/(nmaxi ‖Ai‖) ≈ 0.032
Results. The quantitative results in Figure 5 show that the algorithm converges

indeed with rate O(1/K2) as proven in Theorem 5.1. Moreover, they also show that
randomization and acceleration can be used in conjunction for further speed-ups.
Some example images are shown in Figure 6 which show that randomization may
lead to sharper images with the same number of epochs.

7.4. PET Reconstruction (Linear Rate). For the final example we turn
back to PET reconstruction but this time with linear convergence rate. This means
we want to solve the same minimization problem as in the first example, but now
we replace the Kullback–Leibler functional by its modified version as in the previous
example. We note again that this does not change the solution of the minimization
problem. Moreover, to make TV strongly convex we add another regularization term
µ/2‖x‖22 to g. Note that the proximal operator of TV (indeed any functional) with
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Figure 7. PET reconstruction with a strongly convex TV prior. Both the distance to the
saddle point (left) and the objective value (right) show the speed-up by randomization over the
deterministic PDHG. Moreover, for 50 subsets SPDHG is much faster than the algorithm proposed
by Pesquet&Repetti. Also note the linear convergence on the left as proven in Theorem 6.1.

Figure 8. PET reconstruction results after 10 epochs. Left: Approximate primal part of saddle
point computed by 2000 iterations of PDHG. Right: PDHG and SPDHG (50 subsets).

added squared `2-norm, i.e. g(x) = αTV(x) + µ/2‖x‖22, can be solved by means of

the original proximal operator proxσg (z) = prox
σα/(1+σµ)
TV (z/(1 + σµ)). The regular-

ization parameters are chosen as α = 0.05 and µ = 0.5.
Parameters. In this experiment we choose ρ = 0.99 and the sampling to be

uniform as the operators Ai all have similar norms. The step size parameters are
chosen as derived in subsection 6.1, in particular, we choose

• PDHG: σ ≈ 3.8 · 10−4, τ ≈ 4.8 · 10−3, θ ≈ 0.995
• Pesquet&Repetti: σi = τ = γ/‖A‖ ≈ 1.4 · 10−3

• SPDHG (n = 10 subsets): σi ≈ 1.2 · 10−3, τ ≈ 1.5 · 10−3, θn ≈ 0.985
• SPDHG (n = 50): σi ≈ 2.4 · 10−3, τ ≈ 5.8 · 10−4, θn ≈ 0.971

Note that the contraction rates of one epoch θn already indicate that SPDHG (n = 50)
may be faster than PDHG and SPDHG (n = 10).

Results. The quantitative results in Figure 7 in terms of both distance to saddle
point and objective value show that randomization speeds up the convergence so that
both SPDHG and the algorithm of Pesquet&Repetti are faster than the deterministic
PDHG. Interestingly, while more subsets make SPDHG faster, this does not hold
for the algorithm of Pesquet&Repetti where the speed seems to be constant with
respect to the number of subsets. Moreover, the plot on the left confirms the linear
convergence as proven in Theorem 6.1. The visual results in Figure 8 confirm these
observations as SPDHG with 50 subsets and 10 epochs is (in contrast to PDHG)
visually already very close to the saddle point.
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8. Conclusions and Future Work. We proposed a natural stochastic general-
ization of the deterministic PDHG algorithm to convex-concave saddle point problems
that are separable in the dual variable. The analysis was carried out in the context
of arbitrary samplings which enabled us to obtain known deterministic convergence
results as special cases. We proposed optimal choices of the step size parameters with
which the proposed algorithm showed superior empirical performance on a variety of
optimization problems in imaging.

In the future, we would like to extend the analysis to include iteration dependent
(adaptive) probabilities [17] and strong convexity parameters to further exploit the
structure of many relevant problems. Moreover, the present optimal sampling strate-
gies are only for scalar-valued step sizes and serial sampling. In the future, we wish
to extend this to other sampling strategies such as multi-block or parallel sampling.

Appendix A. Postponed Proofs.

Proof of Lemma 4.2. With the definition of y+ and Q we have by completing the
norm for any x ∈ X that

2〈QAx, y+ − y〉 = 2

〈
x,
∑
i∈S

A∗i p
−1
i (ŷi − yi)

〉

= 2

〈
c1/2T−1/2x, c−1/2

∑
i∈S

C∗i p
−1
i S

−1/2
i (ŷi − yi)

〉

≥ −c‖x‖2T−1 −
1

c

∥∥∥∥∥∑
i∈S

C∗i zi

∥∥∥∥∥
2

.(41)

where we used zi := p−1i S
−1/2
i (ŷi− yi). Moreover, the expectation of the second term

of the right hand side of (41) can be estimated as

ES

∥∥∥∥∥∑
i∈S

C∗i zi

∥∥∥∥∥
2

≤
n∑
i=1

pivi‖zi‖2 ≤
(

max
i

vi
pi

) n∑
i=1

p2i ‖zi‖2(42)

where the first inequality is due to the ESO inequality (4). Inserting z leads to

n∑
i=1

p2i ‖zi‖2 =

n∑
i=1

pi‖ŷi − yi‖2p−1
i S−1

i

= ES‖y+ − y‖2QS−1(43)

where the last equation holds true by the definition of the expectation. Combining
the expected value of inequality (41) with (42) and (43) yields the assertion.

Proof of Lemma 4.4. By the definition of the proximal operator, for any (x, y) ∈
W it holds that

g(x) ≥ g(x(k+1)) + 〈T−1(k)(x
(k) − x(k+1))−A∗y(k), x− x(k+1)〉+

µg
2
‖x− x(k+1)‖2

f∗i (yi) ≥ f∗i (ŷ
(k+1)
i ) + 〈(Si(k))

−1(y
(k)
i − ŷ

(k+1)
i ) + Aix

(k+1), yi − ŷ(k+1)
i 〉+

µi
2
‖y − ŷ(k+1)‖2

for i = 1, . . . , n. Summing twice all inequalities and exploiting the identity

2〈B(a− b), c− b〉 = ‖a− b‖2B + ‖b− c‖2B − ‖a− c‖2B
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yields

‖x(k) − x‖2
T−1

(k)

+ ‖y(k) − y‖2
S−1

(k)

≥ ‖x(k+1) − x‖2
T−1

(k)
+µgI

+ ‖ŷ(k+1) − y‖2
S−1

(k)
+M

+ 2
(
g(x(k+1))− g(x) + f∗(ŷ(k+1))− f∗(y)

)
+ 2

(
〈Ax(k+1), y − ŷ(k+1)〉 − 〈A(x− x(k+1)), y(k)〉

)
+ ‖x(k+1) − x(k)‖2

T−1
(k)

+ ‖ŷ(k+1) − y(k)‖2
S−1

(k)

where we used the definition of the inner product and the norm on the product space
Y. It now suffices to complete the generalized distances G(x(k+1)|w) and F(ŷ(k+1)|w).

Proof of Lemma 5.2. We follow a similar line of arguments as in the proof of
Theorem 4.3. Note that for any saddle point w] = (x], y]) we have

2H(x(k+1), ŷ(k+1)|w]) = 2Dq
h(x(k+1), ŷ(k+1), w]) ≥ ‖x(k+1) − x]‖2µg

+ ‖ŷ(k+1) − y]‖2M

such that the estimate of Lemma 4.4 can be written with w = w] as

‖x(k) − x]‖2
T−1

(k)

+ ‖y(k) − y]‖2
S−1

(k)

≥ ‖x(k+1) − x]‖2
T−1

(k)
+2µgI

+ ‖ŷ(k+1) − y]‖2
S−1

(k)
+2M

− 2〈A(x(k+1) − x]), ŷ(k+1) − y(k)〉
+ ‖x(k+1) − x(k)‖2

T−1
(k)

+ ‖ŷ(k+1) − y(k)‖2
S−1

(k)

using the rule (14). With (11) and (12) and again (14) we arrive at

‖x(k) − x]‖2
T−1

(k)

+ ‖y(k) − y]‖2
QS−1

(k)
+2M(Q−I)

≥ E(k+1)

{
‖x(k+1) − x]‖2

T−1
(k)

+2µgI
+ ‖ŷ(k+1) − y]‖2

QS−1
(k)

+2MQ

− 2〈A(x(k+1) − x]),Q(y(k+1) − y(k)) + y(k) − y(k)〉

+ ‖x(k+1) − x(k)‖2
T−1

(k)

+ ‖y(k+1) − y(k)‖2
QS−1

(k)

}
.(44)

Inserting the extrapolation (22) into the inner product yields

− θ(k−1)〈QA(x(k) − x]), y(k) − y(k−1)〉

≥ E(k+1)

{
θ(k−1)〈QA(x(k+1) − x(k)), y(k) − y(k−1)〉

− 〈QA(x(k+1) − x]), y(k+1) − y(k)〉
}
.(45)

The assertion is shown by taking the expectations E(k,k−1) := E(k)E(k−1) on (44),
using (45) and estimating the last inner product by Lemma 4.2 as

2θ(k−1)E(k+1)〈QA(x(k+1) − x(k)), y(k) − y(k−1)〉

≥ −E(k+1)

{
‖x(k+1) − x(k)‖2

T−1
(k)

+ (γθ(k−1))
2‖y(k) − y(k−1)‖2

QS−1
(k)

}
.
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