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Iterative reconstruction methods in Computed Tomography (CT) are known to provide better image quality than analytical methods but they are not still applied in many fields because of their computational cost. In the last years, Graphical Processor Units (GPU) have emerged as powerful devices in order to parallelize calculations, but the efficiency of their use is conditionned on applying algorithms that can be massively parallelizable. Moreover, in non-destructive testing (NDT) applications, a segmentation of the reconstructed volume is often needed in order to have an accurate diagnosis on the material health, but performing a segmentation after the reconstruction introduces uncertainties in the diagnosis from both the reconstruction and the segmentation algorithms. In this paper, we propose an iterative reconstruction method for 3D CT that performs a joint reconstruction and segmentation of the controlled object in NDT for industrial applications. The method is based on a 3D Gauss-Markov-Potts prior model in Bayesian framework, which has shown its effective use in many image restoration and super-resolution problems. First, we briefly describe this model, before deriving the expression of the joint posterior distribution of all the unknowns. Next, an effective maximization of this distribution is presented. We use a ray-driven projector and a voxel-driven backprojector implemented on GPU. The algorithm is developed so it can be massively parallelized.

Introduction

Computed tomography (CT) is a powerful imaging technique to see the interior of a three dimensional object and has a wide field of applications. In particular, in medicine and industry, X-rays are used to pass through the object to image, which makes their intensity decrease depending on the density they encounter in the interior. Thanks to the measurement of this intensity at the output of the acquisition process, the interior of the object is retrieved by applying what is called a reconstruction algorithm.

Many reconstruction algorithms have been developed for the last decades and can be divided in two categories. The first are analytical reconstruction methods and are based on the use of Radon transform [START_REF] Radon | 1.1 Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten[END_REF][START_REF] Smith | Mathematical foundations of computed tomography[END_REF][START_REF] Rodet | Algorithmes rapides de reconstruction en tomographie par compression des calculs: application à la tomofluoroscopie 3D[END_REF]. In 1984, Feldkamp, Davis and Kress proposed a filtered back-projection (FBP) algorithm [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF] for cone-beam CT. This algorithm is now known as FDK algorithm and is the most widely used in industry for non-destructive testing. More recently, Katsevich proposed an exact inversion algorithm for spiral cone-beam CT [START_REF] Katsevich | Theoretically exact filtered backprojection-type inversion algorithm for spiral CT[END_REF][START_REF] Katsevich | Analysis of an exact inversion algorithm for spiral cone-beam CT[END_REF], detailed in [START_REF] Kudo | Exact and approximate algorithms for helical cone-beam CT[END_REF]. Other CT analytical algorithms use Fourier slice theorem [START_REF] De Rosier | Reconstruction of three dimensional structures from electron micrographs[END_REF] to achieve reconstruction but have to deal with a tricky interpolation from circular to cartesian gridding in Fourier space [START_REF] Rodet | Algorithmes rapides de reconstruction en tomographie par compression des calculs: application à la tomofluoroscopie 3D[END_REF]. To overcome this difficulty, several convolutions of Fourier transform of the projections by a filter have been studied [START_REF] Jackson | Selection of a convolution function for Fourier inversion using gridding [computerized tomography application[END_REF]. However, all these analytical reconstruction methods suffer from artifacts due to approximations and give poor results with limited-angle projections. From this standpoint, algebraic reconstruction techniques (ART) have been developed since the first one by Gordon, Bender and Herman [START_REF] Gordon | Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and X-ray photography[END_REF]. These methods consider a linearized discretized model

g = Hf + ( 1 
)
where f is the object to retrieve. This is typically an ill-posed problem [START_REF] Idier | Approche bayésienne pour les problèmes inverses[END_REF]. First ART like SIRT [START_REF] Gilbert | Iterative methods for the three-dimensional reconstruction of an object from projections[END_REF] or SART [START_REF] Andersen | Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm[END_REF] focus on minimizing the distance between the real and estimated projections g -Hf 2 , which is a data-matching criterion. However, this does not give entirely satisfactory results, because it does not take into account any information a priori [14]. These priors can be enforced by adding a regularization term to data-matching term in the criterion to minimize. Many choices are possible for this regularizarion term, depending on the priors. For instance, some methods favour solutions with minimum L 2 -norm, like in [START_REF] Gac | GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction[END_REF]. Another famous prior is to enforce solutions which can be clearly divided in quite homogeneous regions. DART algorithm [START_REF] Batenburg | DART: a practical reconstruction algorithm for discrete tomography[END_REF] precisely favours this type of solution by focusing on the estimation of the contours. An improvement of DART has been proposed in [START_REF] Bleichrodt | Improving robustness of tomographic reconstruction methods[END_REF]. However, DART can be only applied for objects with finite sets of gray level. Otherwise, total variation (TV) regularization is widely used in imaging and have been successfully applied to CT in [START_REF] Sidky | Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle & Pock algorithm[END_REF], by applying Chambolle and Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. Other functionals exist to enforce compact regions, like piecewise-constant Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. Another noteworthy model is Potts model [START_REF] Storath | Joint image reconstruction and segmentation using the Potts model[END_REF], of which the greatest interest is to perform joint reconstruction and segmentation of the object to reconstruct.

Among algebraic reconstruction techniques, we may emphasize Bayesian methods, which make the user able to take into account the errors and to estimate the uncertainty on each pixel (2D) or voxel (3D). This is a great advantage compared to non-Bayesian algebraic methods. Moreover, Bayesian framework gives a high understanding of the parameters, making their tuning easier, while it is rather tedious with non-Bayesian ART. In Bayesian framework, Gauss-Markov-Potts (GMP) model has been applied successfully in microwave imaging [START_REF] Féron | Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data[END_REF][START_REF] Féron | Champs de Markov cachés pour les problèmes inverses[END_REF] and image restoration [START_REF] Ayasso | Une approche bayésienne de l'inversion. Application à l'imagerie de diffraction dans les domaines micro-onde et optique[END_REF][START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF]. It enables to reconstruct an image or an object with finite number of materials, mapped in several compact regions.

For each material, pixels (in 2D) or voxels (in 3D) of this material may vary around a mean value, but these variations can be controlled thanks to the hyperparameters tuning. This quite appealing simple idea has led us to implement a 3D Gauss-Markov-Potts model for CT for non-destructive testing (NDT) applications, typically in industry, based on the works done in [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF]. In order to comply with industrial needs which require to obtain a high reconstruction speed, in this paper, we propose a fast and massively parallelizable algorithm. Because we know all the priors, for such models as GMP, a Gibbs sampler has been often used to perform Expectation A Posteriori (EAP) or Maximization A Posteriori (MAP) [START_REF] Ayasso | Bayesian inversion for optical diffraction tomography[END_REF][START_REF] Ayasso | Une approche bayésienne de l'inversion. Application à l'imagerie de diffraction dans les domaines micro-onde et optique[END_REF]. However, Gibbs sampling requires more iterations as the dimension grows, and one iteration for GMP model would require to sample a Potts model, which would require thousands of iterations too. Hence, because it would require thousands of iterations which would be much longer as the dimension grows, and because industrial applications deal with very huge size volume, we show a Gibbs sampler would not be affordable in order to match industrial needs. Variational Bayesian Approach (VBA) [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF] would require much more memory to keep each parameter of the approaching distribution of each unknown. All these considerations have led us to perform a joint maximization a posteriori (JMAP) for 3D Gauss-Markov-Potts model, which make able to jointly retrieve :

a high quality estimation of the object to reconstruct a segmentation of the reconstructed object in compact and well-distinguishable regions an estimation of the means and the variances for each of these regions

In our knowledge, this has never been done before for general linear inverse problems such as CT. Moreover, Gauss-Markov-Potts prior model has been used very often in segmentation or image restoration with small size point spread function (PSF), but never in 3D for general inverse problems with real industrial number of voxels. In addition, the proposed method has the great advantage to perform the reconstruction and a segmentation of this object at the same time. Using other reconstruction methods, the segmentation has to be done after the reconstruction, which leads to cumulate two different sources of uncertainties on the classification of the voxels, i.e. the reconstruction algorithm and the segmentation algorithm, and can be a drawback for the control.

Moreover, we have noticed many papers presenting new reconstruction algorithms only qualitatively compare the gain of their methods with respect to other classical methods. Here, we take advantage of the fact that our method retrieves both a reconstruction and a segmentation to introduce quantitative reconstruction quality indicators, when comparing our results with FDK and TV methods.

The rest of the paper is organized as follows. First, we briefly describe the main prior model given in [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF]. Then, the expression of the joint posterior distribution of all the unknowns is obtained. Then, we propose a joint maximization a posteriori (JMAP) algorithm to estimate the unknowns. We justify our choice of the algorithm by the huge dimension of the data. Next, we present several reconstruction quality indicators before showing our results on simulated and real phantoms.

Proposed models and method

Forward model

As we said, we are concerned with NDT applications of CT. Figure 1 shows the basics of the 3D reconstruction in CT, with a cone-beam acquisition process. X-rays are sended from a source and are projected on an array of detectors. Before reaching the detectors, X-rays go through an object (some industrial part) of which we want to control the interior. In order to obtain several perspectives, the object is rotated around z-axis, with an angle φ, as shown in figure 1. By passing through the object, the intensity of X-rays decreases depending on the density of the material which compose the object, according to Beer-Lambert's law. Measurements of this intensity by the detectors at the ouput enable the tomograph to estimate the interior of the object thanks to some reconstruction algorithm (for instance, FDK algorithm [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF], which is the most popular in industry). Thanks to such a process, the absence of defects in the industrial part can be controlled. We denote by g the vector of the M line projections, and by f the vectorized density in the object space to reconstruct. The object is divided in N voxels to be estimated in order to perform the reconstruction. By discretization of Radon transform [START_REF] Smith | Mathematical foundations of computed tomography[END_REF][START_REF] Rodet | Algorithmes rapides de reconstruction en tomographie par compression des calculs: application à la tomofluoroscopie 3D[END_REF] and accounting for the errors, we have the following model for the projections :

g = Hf + (2)
where H ij is the length of voxel j crossed by X-ray i. The errors are modeled as Gaussian

p( i |v i ) = N ( i |0, v i ), ∀i, (3) 
which gives the likelihood p(g|f , v ) = N (g|Hf , V )

where

V = diag [v ], v = (v 1 , . . . , v M ).
For all measure i, the variance v i of the uncertainty is modeled as following an Inverse Gamma distribution :

p(v i |α 0 , β 0 ) = IG(v i |α 0 , β 0 ) ∝ v -α 0 -1 i exp - β 0 v i , ∀i (5) 
where α 0 and β 0 are fixed hyperparameters. With these assignments, we see that in fact, we are assuming i follows a generalized Student-t distribution [START_REF] Dumitru | Approche bayésienne de l'estimation des composantes périodiques des signaux en chronobiologie[END_REF] :

St( i |α 0 , β 0 ) = +∞ 0 N ( i |0, v i )IG(v i |α 0 , β 0 )dv i (6)

Gauss-Markov-Potts model

In NDT application, industrial parts are composed of several materials, each material filling one or several compact regions. In order to take into account this prior information, we need to introduce common characteristic for the voxels which represent the same material (we assume that one voxel represents only one material, i.e. the resolution is sufficiently high). To do so, we use a Gauss-Markov-Potts model [START_REF] Ayasso | Une approche bayésienne de l'inversion. Application à l'imagerie de diffraction dans les domaines micro-onde et optique[END_REF][START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF][START_REF] Féron | Champs de Markov cachés pour les problèmes inverses[END_REF]. This model first consists in labeling each voxel by the material it represents : that leads to introduce a hidden field z so that z j = k if the voxel j represents material k.

In NDT applications, the number of materials in a volume to control is known : we denote it by K.

In order to enforce a certain homogeneity, the gray values of the voxels of a same material k are distributed around a mean value m k , with variance It gives the following prior for f , depending on the labels z, the means of the classes m and the variances of the classes v:

v k p(f j |z j = k, m k , v k ) = N (f j |m k , v k ) if z j = k. (7) 
p(f |z, m, v) ∝ det (V z ) -1/2 exp - 1 2 f -m z 2 Vz ( 8 
)
where

V z = diag [v z ],
with m z and v z the vectors of size N which correspond to m and v (of size K) distributed over the voxels according to the segmentation z: ∀j and ∀k, m zj = m k and v zj = v k if z j = k. Concerning the prior on the means and variances of the classes, we choose to model the means as gaussian

p(m k |m 0 , v 0 ) = N (m k |m 0 , v 0 ) (9) 
and the variances as following an Inverse Gamma distribution :

p(v k |α 0 , β 0 ) = IG(v k |α 0 , β 0 ) (10) 
where m 0 , v 0 , α 0 and β 0 are fixed parameters, depending on the object to control.

The next step is to enforce compactness, using a Markov-Potts model for hidden field z:

p(z) ∝ exp   j Φ(z j ) + γ 0 i∈V(j) δ(z j -z i )   (11) 
where V(j) is the neighbourhood of voxel j. The parameter γ 0 is called the granularity coefficient, because it has a huge influence on the granularity of the field z. In fact, there exists a critical value γ c for Potts coefficient γ 0 so that the regions are compact if γ 0 ≥ γ c [START_REF] Onsager | Crystal statistics. I. A two-dimensional model with an order-disorder transition[END_REF][START_REF] Huang | Statistical mechanics[END_REF]. This critical value γ c can be computed for Ising field (K = 2 classes) in the 2D-case [START_REF] Giovannelli | Estimation of the Ising field parameter thanks to the exact partition function[END_REF]. To illustrate this influence, figure 2 shows the influence of γ 0 the middle slices of generated 64 × 64 × 64 Potts fields with K = 5 classes, for different values of γ 0 . As we see, the granularity of the field sharply changes when we increase γ 0 from 0.7 to 0.8.

Concerning the energy of singleton cliques,

Φ(z j ) = K k=1 α k δ(z j -k), ∀j (12) 
where α is related to the proportions of each class in the hidden field z, which leads to the constraint, given by [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF]:

K k=1 exp [α k ] = 1 (13) 
So, the prior for hidden Markov-Potts field (HMPF) z reads

p(z|α, γ 0 ) ∝ exp   j   K k=1 α k δ(z j -k) + γ 0 i∈V(j) δ(z j -z i )     (14)

Bayesian methods for estimation

Given the prior model we have detailed in sections 2.1 and 2.2, many Bayesian methods exist in order to retrieve an estimation of the unknowns f , z, v , m and v, using the joint posterior distribution of the unknowns p(f , z, v , m, v|g; M)

given the data g and the model M. In our case, this posterior distribution is not available. As it can be found in [START_REF] Mohammad-Djafari | Variational Bayes and mean field approximations for Markov field unsupervised estimation[END_REF], we shall consider numerical or analytical approximations.

Analytical approximations, such as Variational Bayesian Approach (VBA), computes an approximation of the posterior distribution, which is maximized when a chosen divergence, such as Kullback-Leibler divergence, does not change significantly. A completely factored distribution is often used to approximate the true posterior distribution but can lead to too gross approximations [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF], since it overlooks the correlation between each variables by the mean-field approximation (MFA) [START_REF] Zhang | The mean field theory in EM procedures for Markov random fields[END_REF][START_REF] Zhang | The mean field theory in EM procedures for blind Markov random field image restoration[END_REF]. Moreover, VBA requires much memory in order to keep each parameter of each approaching distribution in the fully factored model.

On the opposite, numerical methods try to deal with the true posterior distribution, by Monte Carlo Markov Chain (MCMC) methods, or Joint Maximization A Posteriori (JMAP). JMAP try to maximize the posterior distribution with respect to each unknown iteratively, as it is done in equation ( 25) in section 3. MCMC methods aim at computing MMSE (Minimum Mean Square Error) or MAP (Maximum A Posteriori) estimators by generating samples of the posterior distribution. When all the priors are known, this often consists in a Gibbs sampler. These methods are more reliable than JMAP but have to pick many samples of the conditional distributions of each unknown given the others. In addition, they require more samples as the dimension grows. In our case, the very huge size of the controlled volume result in thousands of iterations of which each one would be very long.

In the sequel, in section 3, we emphasize how a Gibbs sampling would be very costly in terms of computation time compared with JMAP. This huge cost makes MCMC methods unaffordable for our industrial NDT application and leads us to consider JMAP in order to estimate all the unknowns by maximizing their joint posterior distribution.

Joint maximization of the posterior distribution

Algorithm for the estimation of the unknowns

Our model is summarized in figure 3. By applying Bayes's rule, the posterior distribution of all the unknowns f , z, v , m and v reads

p(f , z, v , m, v|g; M) = p(g, f , z, v , m, v|M) p(g|M) . ( 15 
)
Our prior model appears in

p(g, f , z, v , m, v|M) = p(g|f , v ) p(f |z, m, v) p(v |α 0 , β 0 ) p(z|α; γ 0 ) p(m|m 0 , v 0 ) p(v|α 0 , β 0 ) (16) 
with

p(g|f , v ) ∝ det (V ) -1/2 exp - 1 2 g -Hf 2 V , (17) 
p(f |z, m, v) ∝ det (V z ) -1/2 exp - 1 2 f -m z 2 Vz , (18) 
p(v |α 0 , β 0 ) ∝ exp - i (α 0 + 1) ln(v i ) + β 0 v i , (19) α 
- γ 0 ? z n - α 0 , β 0 ? v n m 0 , v 0 ? m n ? α 0 , β 0 ? v n f n ? H g n Figure 3: Hierarchical Gauss-Markov-Potts prior model p(z|α, γ 0 ) ∝ exp   j   K k=1 α k δ(z j -k) + γ 0 i∈V(j) δ(z j -z i )     (20) p(m|m 0 , v 0 ) ∝ v 0 -K 2 exp - 1 2v 0 K k=1 (m k -m 0 ) 2 , (21) 
p(v|α 0 , β 0 ) ∝ exp - K k=1 (α 0 + 1) ln v k + β 0 v k . ( 22 
)
To estimate the unknowns f , z, v , m and v, which such a prior model, it is common to use a Gibbs sampler, which consists in, at the t th global iteration :

               f (t) ∼ p(f |z (t-1) , v (t-1) , m (t-1) , v (t-1) ; g, M) z (t) ∼ p(z|f (t) , v (t-1) , m (t-1) , v (t-1) ; g, M) v (t) ∼ p(v |f (t) , z (t) , m (t-1) , v (t-1) ; g, M) m (t) ∼ p(m|f (t) , z (t) , v (t) , v (t-1) ; g, M) v (t) ∼ p(v|f (t) , z (t) , v (t) , m (t) ; g, M) (23) 
This has been done, for instance, in microwave imaging [START_REF] Féron | Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data[END_REF], diffraction imaging [START_REF] Ayasso | Bayesian inversion for optical diffraction tomography[END_REF] and ultrasound imaging [START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF] : after a heating time, the algorithm [START_REF] Féron | Champs de Markov cachés pour les problèmes inverses[END_REF] generates samples that can be used to compute MAP or MMSE estimators. The problem of Gibbs sampling is that it requires more samples as the dimension grows. In our application in 3D, the controlled volumes have very huge sizes : in section 5.3, we show results on volumes with 256 3 and 512 × 512 × 256 voxels, but we are eager to use our algorithm on volumes with 1024 3 or 2048 3 voxels when it will be fully parallelized. So, Gibbs sampling would require thousands of cycles (i.e. global iterations) to converge.

Moreover, only one cycle would take very long time too. Indeed, sampling f with respect to its posterior distribution given the other unknpwns leads to sampling a Gaussian field (because of the conjugate priors) in very huge dimension. To do that in an efficient way, a perturbation-optimization method [START_REF] Féron | Echantillonnage de champs gaussiens de grande dimension[END_REF][START_REF] Orieux | Sampling high-dimensional Gaussian distributions for general linear inverse problems[END_REF] has been proposed to compute one sample f by solving a linear system, in which the data and the prior mean have been perturbed. The problem is this technique makes the quality of the sample dependent on the number of iterations of the gradient descent to solve the system. To take into account this approximation, an accept-reject strategy is developed in [START_REF] Gilavert | Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF], but the use of this strategy to sample f would increase the computation time. In addition, sampling z with respect to p(z|f , v , m, v; g, M) would require thousands of iterations. For instance, in [START_REF] Pereyra | Segmentation of skin lesions in 2-D and 3-D ultrasound images using a spatially coherent generalized Rayleigh mixture model[END_REF], by applying the method of [START_REF] Gonzalez | Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees[END_REF] for a little volume of about 100 3 voxels, the burn-in period to sample correct labels with respect to the conditional distribution given all the other unknowns represents nearly 1000 iterations. In [START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF], Gibbs sampling is applied for a similar Potts model in ultrasound imaging and z is sampled as it is done in [START_REF] Ayasso | Bayesian inversion for optical diffraction tomography[END_REF] : the computational complexity for sampling z in one cycle is estimated to be of the order O(KN ). In our application, N is very huge (256 3 , 512 3 , 1024 3 , 2048 3 , . . . ). Thereby, in our case, this step in one cycle of Gibbs sampling cannot be achieved in reasonable time.

As we have seen, one cycle of a Gibbs sampling would take very much time. Given that we would need thousands of these cycles in order to obtain correct samples of the joint posterior distribution of the unknowns f , z, v , m and v, a Gibbs sampling would be infinitely long. Hence, a Gibbs sampling is not affordable in our industrial application, which needs fast reconstruction algorithms. That is why we chose to perform a joint maximization of the posterior distribution of all the unknowns :

( f , ẑ, v , m, v) = arg max (f ,z,v ,m,v) {p(f , z, v , m, v|g, M)} (24) 
by doing the approximate algorithm : 1) , m (t-1) , v (t-1) ; g, M)

                   f (t) ← arg max f p(f |z (t-1) , v (t-
z (t) ← arg max z p(z|f (t) , v (t-1) , m (t-1) , v (t-1) ; g, M) v (t) ← arg max v p(v |f (t) , z (t) , m (t-1) , v (t-1) ; g, M) m (t) ← arg max m p(m|f (t) , z (t) , v (t) , v (t-1) ; g, M) v (t) ← arg max v p(v|f (t) , z (t) , v (t) , m (t) ; g, M) (25) 
This joint maximization a posteriori (JMAP) requires less computation time than a Gibbs sampler. The other side of the coin is the algorithm is dependent on the initialization, which has to be sufficiently good. This matter is discussed in section 5.2. In the rest of this section, we describe each step of this algorithm. After having defined reconstruction quality indicators using the estimated volume f and the estimated labels z, we present results obtained on simulated and real data in section 5.3.

Estimation of the object f

The posterior distribution for the object f

p(f |z, v , m, v; g, M) ∝ p(g|f , v ) p(f |z, m, v) (26) 
gives the criterion to minimize in order to retrieve the estimation of the object, given all the other unknowns :

J(f ) = g -Hf 2 V + f -m z 2 Vz ( 27 
)
The gradient reads

∇J(f ) = 2 H T V -1 H + V -1 z f -2 V -1 z m z + H T V -1 g . ( 28 
)
It gives the analytical expression of the optimal object which minimizes the criterion :

f * = H T V -1 H + V -1 z -1 H T V -1 g + V -1 z m z (29) 
Because of the huge dimension, this expression is not suitable for our application : that is why we decide to minimize the criterion by a simple gradient descent. We give details about this algorithm in appendix A.

Estimation of the hidden Potts field z

As for the object, we compute the posterior distribution of the Potts field z given all the other unknowns p(z|f , v , m, v; g, M) ∝ p(f |z, m, v)p(z|α; γ 0 ) (30) p(z|α, γ 0 ) is given by equation ( 14). The likelihood is

ln (p(f |z, m, v)) ∝ - 1 2 K k=1 j∈R k (f j -m k ) 2 v k + ln (v k ) ∝ - 1 2 j K k=1 δ(z j -k) (f j -m k ) 2 v k + ln (v k ) (31) 
So, we need to maximize Potts energy with respect to z in order to estimate the segmentation

J(z) = j   K k=1 α k - (f j -m k ) 2 2v k - 1 2 ln (v k ) δ(z j -k) + γ 0 i∈V(j) δ(z j -z i )   (32) 
By denoting

α jk = α k - (f j -m k ) 2 2v k - 1 2 ln (v k ), (33) 
we can rewrite this energy

J(z) = j   K k=1 α jk δ(z j -k) + γ 0 i∈V(j) δ(z j -z i )   . (34) 
We now have to choose an algorithm to estimate the labels z, which are markovian. Because we deal with huge size data, again, the chosen algorithm has to be fast and massively parallelizable.

The maximization of Potts energy has been dealt with in [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] using a graph-cut method. In this algorithm, the possible labels and the classes of the voxels are gathered in a same graph. Each voxel j and label k are linked by an edge weighted by the term α jk and each neighboring voxels by an edge weighted by the term γ 0 . When assigning a class to the voxels, the graph is cut to link only a voxel and its class, and neighboring voxels which have the same class. Potts energy of the segmentation corresponds to the sum of the weights of the cut. Hence, as it is done in [START_REF] Greig | Exact maximum a posteriori estimation for binary images[END_REF], finding the optimum of Potts energy leads to finding the optimal cut, which corresponds to the graph with maximum flow. This can be done by using, for instance, the algorithm proposed by Ford and Fulkerson [START_REF] Ford | Flow in networks[END_REF]. To move from one segmentation to another, Boykov et al. propose αβ-swaps and α-expansion [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. Unfortunately, memory is a limiting factor of maximum flow algorithms [START_REF] Strandmark | Parallel and distributed graph cuts by dual decomposition[END_REF]. Moreover, although parallel implementations of graph-cut have been proposed (see [START_REF] Strandmark | Parallel and distributed graph cuts by dual decomposition[END_REF] for instance), a fast implementation of maximum flow algorithms is probably not possible [START_REF] Goldschlager | The maximum flow problem is log space complete for P[END_REF].

Another well-known segmentation algorithm is Iterated Conditional Modes (ICM) [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF], which has obtained good results in the past decades [START_REF] Held | Markov random field segmentation of brain MR images[END_REF][START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF][START_REF] Huang | A Fast Iterated Conditional Modes Algorithm for Water-Fat Decomposition in MRI[END_REF]. This algorithm has been often compared with Simulated Annealing (SA) [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF] which reaches global optimum but requires too much computing time [START_REF] Held | Markov random field segmentation of brain MR images[END_REF]. The idea of ICM is to divide the voxels into two subsets, called "black" voxels and "white" voxels. These subsets are such that the neighbours of a "white" voxel are only "black" voxels, and vice versa. Figure 4, taken from [START_REF] Ayasso | Une approche bayésienne de l'inversion. Application à l'imagerie de diffraction dans les domaines micro-onde et optique[END_REF], illustrates this subdivision. We denote by z N the segmentation for "black" voxels, and by z B the segmentation for "white" voxels. After having done this subdivision, it is obvious that, given the "white" voxels, "black" voxels are independent from each other, and this is the same for "white" voxels given the "black" voxels. The labellings for "white" voxels and "black" voxels are performed one after the other, as shown in figure 5. This algorithm is clearly massively parallelizable because "white" voxels (respectively "black" voxels) in figure 4 can be labelled at the same time. Its main disadvantage is its local nature, which make the initial segmentation crucial. Its highly-parallelizable nature is the main reason why we have chosen to apply ICM in order to estimate z given the other unknowns, although α-expansion and αβ-swap both dominate it [START_REF] Schmidt | Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves[END_REF]. We repeat ICM as long as Potts energy in equation ( 32) changes significantly. 

Estimation of the other unknowns

Thanks to conjugate prior, the estimation of the other unknowns v , m and v is very straightforward and we obtain the following formulas. Concerning the variances of the noise v ,

p(v i |f , z, m, v; g, M) = IG(v i |α 0 i , β 0 i ), ∀i (35) 
with

α 0 i = α 0 + 1 2 β 0 i = β 0 + 1 2 (g i -[Hf ] i ) 2 , ∀i (36) 
which gives the estimation v i of the variance of the i th measurement, by maximizing the posterior distribution p(v i |f , z, m, v; g, M)

v i = β 0 + 1 2 (g i -[Hf ] i ) 2 α 0 + 3 2 , ∀i. (37) 
Then, we estimate the means of the classes. We compute the expression of their posterior distribution

p(m k |f , z, v , v; m 0 , v 0 ) = N (m k | m0 k , v0 k ), (38) 
∀k ∈ {1, . . . , K}, with

     m0 k = 1 v k j∈R k fj + m 0 v 0 N k v k + 1 v 0 v0 k = 1 N k v k + 1 v 0 , ∀k ∈ {1, . . . , K} (39) 
where R k denotes the set of voxels which are in class k and N k = |R k | the number of voxels in class k. So we have

mk = m0 k = m 0 + v0 v k j∈R k f j 1 + N k v0 v k , ∀k ∈ {1, . . . , K} . (40) 
The last step is the estimation of the variances of the classes. Their posterior distribution is

p(v k |f , z, v , m; α 0 , β 0 ) = IG(v k |α 0 k , β0 k ) (41) with      α0 k = α 0 + N k 2 β0 k = β 0 + 1 2 j∈R k (f j -m k ) 2 , ∀k ∈ {1, . . . , K} (42) 
So,

vk = β 0 + 1 2 j∈R k (f j -m k ) 2 α 0 + N k 2 + 1
, ∀k ∈ {1, . . . , K} .

Summary of the algorithm

We now have all the ingredients to perform JMAP algorithm of equation [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational bayesian computation[END_REF]. After having obtained a first estimation of the volume f (0) , the variances of the noise v (0) are estimated and a segmentation of the initial volume f (0) is performed, which gives z (0) . Using f (0) and z (0) , the initial means m (0) and variances v (0) of the classes are computed. As we said, because the algorithm, which is detailed by algorithm 1, finds a local optimum, the initial volume and segmentation has to be good enough. This point is discussed in section 5.2.

Indicators to evaluate the quality of the reconstruction

In order to evaluate the performances of the reconstruction algorithm, we define some indicators for evaluating the quality of the reconstruction. To our mind, a good reconstruction quality indicator should agree with the judgement we make when just looking at the reconstruction. In our knowledge, this matter has not been far-investigated. Here, we define four indicators.

A common indicator is the relative L p -difference between the actual and the estimated projections :

∆ p g = g -Hf p p g p p (44) 
Here, we use p = 2. Because CT is an ill-posed problem, it is known that ∆ p g is not an optimal reconstruction quality indicator.

In order to investigate this matter further, we here define three indicators which do not need reference in order to apply it in real-life applications. These indicators use the segmentation estimated by our algorithm. Since the segmentation is estimated jointly with the reconstructed object (i.e. the quality of the reconstruction depends on the quality of the reconstruction and vice versa), a good reconstruction implies a good segmentation and vice versa. The first indicator we define is a compactness indicator which computes for each voxel j in class k the percentage of its neighbours which are in the same class

1 N V i∈V(j) δ(k -z i )
where N V denotes the number of neighbours. Here, N V = 6. Then, we compute the average of this percentage over all the voxels of class k and then over all the classes. Finally, it gives the compactness indicator

C omp = 1 K K k=1 1 N k j∈R k 1 N V i∈V(j) δ(k -z i ) (45) 
When computing a reconstruction, we are eager to obtain regions as compact as possible. So, in our sense, a good reconstruction has a high C omp . Notice that we always have C omp ≤ 1. On the Algorithm 1 Detailed JMAP algorithm Initialize the algorithm with f (0) , z (0) , v (0) , m (0) , v (0)

Fix parameters K, α, γ 0 , m 0 , v 0 , α 0 , β 0 , α 0 and β 0 {start the iterations} ∆E ← 10 × tol t ← 1 while t ≤ T and ∆E > tol do m (t)

z : distribute m (t-1) over the voxels with respect to z (t-1) v (t) z : distribute v (t-1) over the voxels with respect to z (t-1)

f (t) ← argmin f g -Hf 2 V (t-1) + f -m (t) z 2 V (t-1) z {initial object : f (t-1) } z (t)
← segmentation of f (t) obtained as explained in section 3.3 (initial field :

z (t-1) ) for j ∈ {1, . . . , M } do v (t) i ← β 0 + 1 2 g i -[Hf (t) ] i 2 / α 0 + 3 2 end for for k ∈ {1, . . . , K} do N (t) k ← |R (t) k | m (t) k ← m 0 + v 0 v (t-1) k j∈R (t) k f (t) j / 1 + N (t) k v 0 v (t) k v (t) k ← β 0 + 1 2 j∈R (t) k f (t) j -m (t) k 2 / α 0 + N (t) k 2 + 1 end for {variation of Potts energy} E (t) ← E(f (t) , z (t) , m (t) , v (t) ) ∆E ← | E (t) -E (t-1) E (t-1)
| end while opposite, no compact classes are seen as defaults due to the reconstruction algorithm. That is why in the formula of C omp , an uniform average over the classes is performed, so that no compact classes strongly penalize the reconstruction.

Next, once we have compact classes, one may be interested to focus on the contours of the regions : on the contours, do we have different classes's voxels well-distinguishable ? To take into account this requirement, for one voxel j in class k and one of its neighbours i not in the same class as it, we compute a penalization term

exp -(f j -f i ) 2
which is low if the classes of j and i are well-distinguishable, and high (i.e. close to 1) if not. We next compute the average of this term over all the neighbours of j which are not in the class as i

( dist ) j =    i∈V(j) exp(-(fj -fi) 2 )(1-δ(k-zi)) i∈V(j) (1-δ(k-zi))
if j is on a contour (z j = k) 0 otherwise [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF] Like for compactness indicator, we next perform the average over class k and over the classes, and we define the distinguishability indicator as [START_REF] Held | Markov random field segmentation of brain MR images[END_REF] in order to have an indicator which is high for good reconstructions : the higher d ist is, the better the reconstruction is. This indicator d ist favours reconstructions with well-distinguishable contours. Still, we compute an uniform average over the classes to penalize the classes which are not distinguishable from the others.

d ist = 1 - 1 K K k=1 1 N k j∈R k ( dist ) j ( 
At last, we are eager to see if voxels in the same class have near gray levels. That is what we aim at when defining the homogeneity indicator

h omo = 1 K K k=1 1 N k j∈R k ( ĥomo ) j (48) 
with, if z j = k :

( ĥomo ) j =    i∈V(j) exp(-(fj -fi) 2 )δ(k-zi) i∈V(j) δ(k-zi) if i∈V(j) δ(k -z i ) = 0 0 otherwise (49)
Once again, h omo is such that the higher h omo is, the better the reconstruction is.

In total, we have defined three new reconstruction quality indicators which exploits the segmentation estimated jointly with the volume. In section 5, when comparing our method with others, we calculate these indicators for each reconstruction, in order to see if they agree with visual judgement.

Results

Here, we test our method on simulated and real volumes. The simulated volume is a Shepp-Logan phantom [START_REF] Shepp | The Fourier reconstruction of a head section[END_REF] in 3D, with 256 3 voxels, shown in figure 8, with its corresponding segmentation in K = 5 classes. For this volume, 64 projections are used to do the reconstruction.

The real volume volume is a 3D IQI phantom [START_REF] Gay | Fantôme destiné à être utilisé pour le contrôle de la qualité d'images tomographiques[END_REF], with size 512 × 512 × 256 voxels. 300 uniformlydistributed projections have been acquired. Each projection is an image with 512×512 pixels, like the ones in figure 15. The real volume is shown in figure 14 : it has been obtained by FDK reconstruction method [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF] from 2400 projections.

Details of implementation

Because we deal with huge dimension object, matrix H is impossible to keep in memory. Consequently, we need to implement a projection operator (operator H) and a backprojection operator (operator H T ) to perform the object estimation step in JMAP algorithm (in section 3.2). Here, speed of these two operators arises as a key point for the efficiency of the algorithm.

The core of algorithm speed up consists in implementing forward projection and backprojection on GPU hardware, using CUDA to have high computing performances [START_REF] Gac | GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction[END_REF]. Details about types of projector and backprojector and their implementation can be found in [START_REF] Gac | GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction[END_REF][START_REF] Gac | High speed 3D tomography on CPU, GPU, and FPGA[END_REF][START_REF] Peters | Algorithms for fast back-and re-projection in computed tomography[END_REF][START_REF] Joseph | An improved algorithm for reprojecting rays through pixel images[END_REF][START_REF] Siddon | Fast calculation of the exact radiological path for a three-dimensional CT array[END_REF][START_REF] Jacobs | A fast algorithm to calculate the exact radiological path through a pixel or voxel space[END_REF][START_REF] Zeng | Unmatched projector/backprojector pairs in an iterative reconstruction algorithm[END_REF].

As in [START_REF] Gac | GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction[END_REF], the projector we use here is ray-driven, i.e. one thread on GPU handles the ray-tracing of one ray. In one thread, the considered ray is regularly sampled in the volume in n k points. At each point on the ray, the value of the volume is calculated by a trilinear interpolation. Then, this computed value multiplicated by the step-size between two consecutive sample points is added to the value of the projection, according to the discretized Beer-Lambert law. A scheme of this ray-driven projector is shown in figure 6, in 2D for the sake of readability. Concerning the backprojector, once again as in [START_REF] Gac | GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction[END_REF], it is voxel-driven, i.e. one thread handles one voxel. In one thread, as it is presented in figure 7 in 2D, for each projection angle φ, we trace a ray between the source and the considered voxel and we project it on the plan of detectors. The value of the obtained projection is computed by a bilinear interpolation. This value is added to the backprojected volume for the considered voxel. As we see, in our implementation, projector and backprojector are unmatched, i.e. backprojection operator is not exactly H T . This can be a problem to well-estimate the object [START_REF] Zeng | Unmatched projector/backprojector pairs in an iterative reconstruction algorithm[END_REF], but we did not notice troubles due to that.

We may underline that the segmentation step is done on CPU. A good way to speed up the algorithm would be to implement this step on GPU too. This will be done in future works.

Strategies for the initialization of the algorithm and choice of the parameters

The initialization is a key step when applying a local optimization algorithm. Here, JMAP algorithm needs an initial volume and an initial segmentation.

To have an initial volume, FDK algorithm [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF] can be used. Another way is to minimize the squared L 2 -norm between the true and the estimated projections :

f (0) = arg min f g -Hf 2 . ( 50 
)
Concerning the initial labels, as in [START_REF] Ayasso | Une approche bayésienne de l'inversion. Application à l'imagerie de diffraction dans les domaines micro-onde et optique[END_REF], K-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] can be applied to the initial volume. This is what we did for the test on simulated Shepp-Logan phantom. On the opposite, it gave very bad results for real IQI phantom. That is why, for IQI phantom, we performed a non-uniform thresholding of the initial volume. To determine the thresholds, we use the histogram of the initial volume, and we apply the peak-picking algorithm explained in [START_REF] Kurugollu | Color image segmentation using histogram multithresholding and fusion[END_REF] and originally developped for non-parametric clustering [START_REF] Koontz | A graph-theoretic approach to nonparametric cluster analysis[END_REF]. For each bin in the histogram, we seek the nearest peak in its neighbourhood : this peak is called the parent-bin of the current bin, which is so called a child-bin of this peak. Each parent-bin and its children are seen as a class, i.e. the voxels in the children-bins of parent-bin k are assigned the initial class k. When we know the number of classes, each parent-bin is assigned as the child-bin of a higher parent-bin in its neighbourhood until there are only K parents-bins. Now, we present how to fix each parameter of the algorithm. An important one is the number of materials K. In industry, the number of materials in the controlled volume is known. For the simulated Shepp-Logan phantom, we can compute K by using the true segmentation in figure 8 : that gives K = 5. For the real IQI phantom, the volume is composed of nylon, polytetrafluoroethylene (PTFE), polyamide and air : we fix K = 4.

Next, the initialization can be used to fix several parameters thanks to their clear meaning. First, the initial volume is used to initialize the variances of the noise according to equation [START_REF] Orieux | Sampling high-dimensional Gaussian distributions for general linear inverse problems[END_REF]. In the initial segmentation, we compute the number of voxels N

k in each class k. We fix the singleton energy by

α k = ln N (0) k N (51) 
Moreover, on the initial segmentation, initial means m (0) and variances v (0) of the classes are computed.

The parameter m 0 for the means of the prior on m is fixed so that it corresponds to an approximation of the median gray level in the volume

m 0 = 1 2 max j f (0) j + min j f (0) j (52) 
By this way, and fixing v 0 sufficiently large, we are ensured that all possible values for m k , k ∈ {1, . . . , K} can be selected by the algorithm. For the same reason, parameters α 0 and α 0 are chosen sufficiently large, and β 0 and β 0 sufficiently small, so that all possible values for v k , k ∈ {1, . . . , K} and v i , i ∈ {1, . . . , M } are allowed. Concerning parameter β 0 , there is a way to fix it more precisely by using a prior on signal-to-noise ratio (SNR), and using the formula

β 0 = α 0 -1 M × g 2 × 10 -SN R 10 1 + 10 -SN R 10 . (53) 
explained in appendix B. Here, we assume SN R = 20 db.

The next parameter to fix is the granularity coefficient γ 0 . Fixing this coefficient enforces our prior that classes in the volume are compact. So, it has to be chosen greater than the critical value γ c . Because γ c is unkonwn, based on the results in figure 2, γ 0 is fixed greater than 1 if we want to enforce compact classes. The more compact we think the classes in the volume are, the farther from 1 γ 0 has to be fixed : here, we take γ 0 = 3. An improvement would be to fix this parameter automatically based on the initial segmentation, or at each iteration. There exist MCMC methods, like in [START_REF] Pereyra | Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm[END_REF] and [START_REF] Pereyra | Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm[END_REF], that estimate γ 0 based on a segmentation, without dealing with the untractable normalizing constant of p(z|f , v , m, v; g, M) but, once again, a MCMC method would be too costly for our industrial application.

Tables 1 and2 summarize the values of most of the parameters we fixed to apply our method, for reconstruction of respectively Shepp-Logan and IQI phantoms. We first test our method on simulated Shepp-Logan phantom. Because we are in simulation, the projections are noisy such that SNR=20 db.

Parameters α 0 K γ 0 v 0 α 0 β 0 Fixed values 2.1 5 3 1 5 0.01
The initial volume is obtained by simple least-squares minimization. K-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] is applied on this volume to obtain the initial segmentation. JMAP algorithm gives the volume and the segmentation shown in figure 9. The evolution of Potts energy during the reconstruction is shown in figure 10.

These results are compared to FDK [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF] and TV minimization. To perform TV minimization, we use the algorithm described in [START_REF] Goldstein | The split Bregman method for L1-regularized problems[END_REF], based on Bregman iterations [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF]. The segmentation of FDK and TV reconstructions in figures 11 and 12 are obtained thanks to what we call a posterior Potts segmentation. This posterior Potts segmentation consider the same Gauss-Markov-Potts model we have presented here above, but with no projection operation (H=I, which is the identity matrix), on which we have performed JMAP. This model for segmentation is presented in [START_REF] Rosu | Potts model parameter estimation in Bayesian segmentation of piecewise constant images[END_REF].

Because there are too few projections compared to the size of the volume, FDK obtains very bad results. JMAP and TV reconstruct good quality volumes. The boarder between the bone and the interior of the head is sharper for TV than JMAP. On the opposite, we notice JMAP reconstruction has a high contrast while TV reconstruction is more blurred. In figure 13, we have zoomed on the above part of the middle slice of the phantom for the original and the three reconstructions. Still, we see that JMAP gives the most contrasted reconstruction, while FDK reconstruction is very noisy and TV is blurred.

In table 3, we compute the reconstruction quality indicators presented in section 4. Because, for this phantom, the actual volume is known, we also compute

∆ 2 f = f -f 0 2 f 0 2 , ( 54 
)
where f 0 is the true volume. 

Test on real data

We now apply our method on an IQI phantom [START_REF] Gay | Fantôme destiné à être utilisé pour le contrôle de la qualité d'images tomographiques[END_REF] with the parameters fixed in section 5.2. We obtain the reconstruction and the segmentation shown in figures 20 and 21. In figure 22, we show the evolution of Potts energy during the reconstruction, which converges to a maximum.

As in section 5.3.1, we compare our results on the real phantom with FDK and TV minimization.

Concerning FDK, we show the reconstruction in figure 16. The corresponding segmentation is shown in figure 17. To obtain this segmentation, we performed the non-uniform thresholding based on the histogram of the volume and described in section 5.2.

These FDK reconstruction and segmentation are used as initial volume and labels for JMAP algorithm. FDK reconstruction is also used as initial volume for TV minimization algorithm. The results for this algorithm on the IQI phantom are shown in figures 18 for the reconstruction and 19 for the corresponding posterior Potts segmentation.

As we see, JMAP obtains a better quality in terms of contrast compared with both FDK and TV reconstructions. This better contrast is emphasized when in figure 23, we plot the profiles of the little holes in the bottom of the object : the profile of JMAP reconstruction is sharper than the ones of FDK and TV reconstructions. Moreover, when comparing figure 20 and 14, we can see that JMAP achieves a quality comparable to FDK reconstruction with 8 times less projections, which is a gain of time for the acquisition process.

In 

Conclusion and perspectives

In this paper, we have presented a Bayesian reconstruction algorithm for 3D Computed Tomography. Developing this algorithm, the goal was to propose an enforcement of a Gauss-Markov-Potts prior model. The algorithm needed to be fast for industrial applications : that made MCMC methods unaffordable and led us to prefer JMAP algorithm.

We were also eager to propose a massively parallelizable algorithm, due to the very huge size of the volumes we are dealing with. This consideration has led us to make choices, that we have fully explained, for the estimation of each unknown in one global iteration of our method. Thanks to the prior model enforced by the algorithm, we have shown with simulated and real phantoms that our method achieves high quality reconstructions which outperform FDK and Total Variation minimization. Another great advantage is our method returns labels of voxels jointly with the reconstructed volume. Moreover, thanks to the fact that the prior model is clearly expressed in terms of probability distributions, tuning the parameters of our algorithm is very straightforward, based on the strategy we have detailed in section 5.2. For Total Variation minimization algorithm, this step has been more difficult, because the meaning of its parameters is not so clear.

In addition, we have investigated some reconstruction quality indicators in order to quatitatively compare FDK, TV and JMAP algorithms. These indicators have been useful to fully analyze our results in terms of compacity, homogeneity and distinguishability of the regions in the reconstructed volumes.

A future work would be to implement a full-GPU version of the method. A proof of convergence of the algorithm, with conditions on the initialization and the parameters, would be also valuable. A work on Variational Bayesian Approach on this model in the same context is also currently underway.

A. Simple Gradient descent to estimate the object f in JMAP algorithm

In section 3.2, the criterion to minimize in order to estimate the object in one iteration of JMAP is

J(f ) = g -Hf 2 V + f -m z 2 Vz . (55) 
We do that by a simple gradient descent, that we detail in this section.

At iteration (k + 1) of simple gradient descent, we update the object as follows :

f (k+1) = f (k) -λ k ∇J f (k) (56) 
where

λ k = arg min λ>0 J(f (k+1) ) (57) 
is the optimal step of the descent. The gradient reads

∇J(f ) = 2 H T V -1 H + V -1 z f -2 V -1 z m z + H T V -1 g ⇒ ∇J(f ) = 2H T V -1 (Hf -g) + 2V -1 z (f -m z ) . (58) 
As we see, the computation of the gradient requires one projection (H operator), which is already done when we compute the criterion (see ( 27)), and one backprojection (H T operator).

To find the optimal step λ k , we compute

J(f (k+1) ) = J(f (k) ) + λ 2 k ∇J(f (k) ) T V -1 z + H T V -1 H ∇J(f (k) ) +2λ k g -Hf (k) T V -1 H -f (k) -m z T V -1 z ∇J(f (k) )
and we solve dJ(f (k+1) ) dλ k = 0 which leads to :

λ k = ∇J(f (k) ) 2 2∇J(f (k) ) T V -1 z + H T V -1 H ∇J(f (k) )
which can be rewritten :

λ k = ∇J(f (k) ) 2 2 V -1 2 z ∇J(f (k) ) 2 + V -1 2 H∇J(f (k) ) 2 (59) 
The computation of λ k requires one projection of the gradient ∇J(f (k) ). As stop criterion, we use the relative evolution of the criterion J(f ) between two iterations :

J(f (k+1) ) -J(f (k) ) J(f (k) ) = 1 2 
∇J(f (k) ) 2 |λ k | J(f (k) ) (60) 
B. Parameters for the prior of the variances of the noise

The prior of the variances of the noise is

p(v i |α 0 , β 0 ) = IG(v i |α 0 , β 0 ), ∀i (61) 
We fix α 0 . Next, we want to fix β 0 with respect to α 0 and SNR, in order to perform reconstruction using JMAP algorithm explained in section 3. SNR (Signal-to-Noise Ratio) is defined by

SN R = 10 log g 0 2 2 ( 62 
)
where log is the logarithm to the base 10, and g 0 the unnoisy projections of the object. Because we do not know these unnoisy projections, we make the common assumption that the noise and the unnoisy projections g 0 are orthogonal :

g 2 = g 0 2 + 2 (63) 
That leads to SN R = 10 log g 2 2 -1 (64) We approximate 2 by its expectation, which gives :

2 ≈ E T = Tr E( T ) = Tr E E T |V = Tr [E (V )] = E (Tr [V ]) = E M i=1 v i = M i=1 E (v i ) = M × β 0 (α 0 -1)
Using the definition of SNR in equation [START_REF] Koontz | A graph-theoretic approach to nonparametric cluster analysis[END_REF], we find the expression given in equation [START_REF] Gay | Fantôme destiné à être utilisé pour le contrôle de la qualité d'images tomographiques[END_REF] to fix β 0 : 

β 0 = α 0 -1 M × g 2 × 10 -SN R
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 1 Figure 1: 3D Computed Tomography (CT) for NDT applications
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 67 Figure 6: Ray-driven projector
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 8 Figure 8: Shepp-Logan phantom (a) and its segmentation in K = 5 classes (b) (middle slice)
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 9 Figure 9: Jointly retrieved reconstruction (a) and segmentation in K = 5 classes (b) of Shepp-Logan phantom (middle slice)
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 1011 Figure 10: Evolution of Potts energy during JMAP reconstruction of Shepp-Logen phantom
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 12131516 Figure 12: TV reconstruction (a) and posterior segmentation in K = 5 classes (b) of Shepp-Logan phantom (middle slice)
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 1718 Figure 17: Segmentation of FDK reconstruction (bottom and top) with 300 projections
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 1920 Figure 19: Segmentation of TV reconstruction (bottom and top) with 300 projections
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 21922 Figure 21: Segmentation obtained by JMAP (bottom and top) from 300 projections
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 23 Figure 23: Profiles of holes for FDK (a), TV (b) and JMAP (c) reconstructions of real IQI phantom from 300 projections

Table 1 :

 1 Parameters of JMAP for simulated Shepp-Logan phantom reconstruction

	Parameters	α 0	K	γ 0	v 0	α 0	β 0
	Fixed values	2.1	4	3	1	5	0.01

Table 2 :

 2 Parameters of JMAP for 3D IQI phantom reconstruction

	5.3. Application of the algorithm and comparison with other methods
	5.3.1. Test on simulated data

Table 3 :

 3 Once again, the failure of FDK with few projections is highlighted. JMAP obtains the best ∆ 2 f thanks to a comprehensive prior on the volume. Concerning C omp , d ist and h omo , TV reconstruction achieves the highest values. Comparison FDK, TV and JMAP reconstruction of real IQI phantom using quality indicators defined in section 4

	Indicator	∆ 2 g	∆ 2 f	C omp	d ist	h omo
	FDK	167.6 %	103.1 %	84.0 %	50.4 %	49.9 %
	TV	13.5 %	26.1 %	94.2 %	81.2 %	81.0 %
	JMAP	1.35 %	18.1 %	88.7 %	68.4 %	66.8 %

table 4

 4 

	Indicator	∆ 2 g	C omp	d ist	h omo
	FDK	0.26 %	94.4 %	78.4 %	78.3 %
	TV	0.13 %	94.5 %	77.5 %	77.5 %
	JMAP	1.61 %	94.3 %	79.0 %	78.8 %

, we compute the reconstruction quality indicators we have defined in section 4. Because the labels for the three reconstructions are very similar, C omp is practically the same for FDK, TV and JMAP. For d ist and h omo , JMAP achieves the highest values, which is in accordance with our visual evaluation.
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 4 Comparison FDK, TV and JMAP reconstruction of real IQI phantom using quality indicators defined in section 4