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Incomplete 3D Motion Trajectory Segmentation and 2D-to-3D Label
Transfer for Dynamic Scene Analysis

Cansen Jiang1, Danda Pani Paudel2, Yohan Fougerolle1, David Fofi1 and Cédric Demonceaux1

Abstract— The knowledge of the static scene parts and the
moving objects in a dynamic scene plays a vital role for
scene modelling, understanding, and landmark-based robot
navigation. The key information for these tasks lies on semantic
labels of the scene parts and the motion trajectories of the
dynamic objects. In this work, we propose a method that
segments the 3D feature trajectories based on their motion
behaviours, and assigns them semantic labels using 2D-to-
3D label transfer. These feature trajectories are constructed
by using the proposed trajectory recovery algorithm which
takes the loss of feature tracking into account. We introduce
a complete framework for static-map and dynamic objects’
reconstruction, as well as semantic scene understanding for
a calibrated and moving 2D-3D camera setup. Our motion
segmentation approach is faster by two orders of magnitude,
while performing better than the state-of-the-art 3D motion
segmentation methods, and successfully handles the previously
discarded incomplete trajectory scenarios.

I. INTRODUCTION

The emergence of affordable 2D and 3D cameras allows us
to capture both 2D image and 3D point cloud data for a wide
range of computer vision and robotics applications, such as
large-scale city modelling [1] and autonomous driving [2].
The reliability of these applications mainly depends on the
accuracy of camera localization and scene understanding.

In literature, precise camera localization is achieved using
2D images [3] and 3D point clouds [4] serving for the 3D
scene reconstructions. Such methods make the assumption of
mostly static environments where only few moving objects
exist. For dynamic scenes, these methods suffer from many
difficulties in detecting and removing the dynamic objects,
followed by the localization accuracy degradation [5]. There-
fore, it is highly desirable to detect the moving objects prior
to the camera motion estimation [6]. Besides, the detection
of dynamic objects, along their trajectories, is a fundamental
task for scene understanding and object behaviour analy-
sis [8], [10]–[12].

Moving object detection, prior to camera localization, can
be performed by segmenting the features’ motion trajectories.
However, most segmentation methods either assume the
static camera [12] and/or work on 2D image space [8]. When
moving 2D-3D camera setups are given, e.g. RGB camera
and 3D laser scanner equipped robots, these methods turn
out to be inadequate due to such simplistic assumptions. In
our previous work [6], we proposed a method that performs
motion segmentation directly on the 3D motion trajectories.
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Despite of the appealing framework for dynamic scene
reconstruction, [6] suffers from three major limitations: (a)
high computational time, (b) inability to handle incomplete
feature trajectories, (c) lack of semantic labels for the scene
understanding. In this paper, we address these three limita-
tions with improved accuracy.

Although studies in Static Scene Modelling [1], [4],
Dynamic Object Analysis [10]–[13] and Semantic Scene
Understanding [14]–[16] have achieved adequate results in-
dependently, there exist very limited works in literature that
systematically address these problems altogether. Therefore,
this work offers a general scene understanding and modelling
framework of dynamic environments using a moving 2D-3D
camera platform. As illustrated in Fig. 1, the proposed system
fulfils the functionalities of: moving object detection and
segmentation, static-map and dynamic object reconstruction,
and semantic understanding of scenes.

For a moving camera setup, the detection and the tracking
of moving objects are very challenging due to the changes
of scene background, the objects’ independent motions, and
the variation in the number of moving objects. Therefore, it
is recommended to distinguish the dynamic and static scene
parts based on their motion trajectories. In such cases, the
objects that reciprocate the camera motion are considered to
be static. Elhamifar and Vidal [8] demonstrate that distinctive
motions can be identified by analysing their image feature
trajectories as a motion subspaces segmentation problem.
Considering each independent motion as a subspace, a fea-
ture trajectory can be approximated as a linear combination
of other feature trajectories from the same subspace, so-
called subspace self-expressive property. When 2D-3D cam-
era setup is given, [6] argue that motion segmentation (MS)
directly based on 3D space gives better performance.

Inspired by [6], [8], [9], we propose a more efficient
and effective subspace clustering approach, called 3D-based
SMooth Representation Clustering (3D-SMR). Different
from [9], our method performs the MS in 3D space using raw
motion trajectories, with spatial regularization constraints
(linear and angular motion consistency energy) to improve
the trajectory clustering performances. Alongside with the
subspace self-expressive property, the 3D-SMR algorithm
intends to separate the motion subspaces by enforcing the
grouping effects as well as the motion consistency of their
subspaces, and is detailed in Section III.

In many practical scenarios, many feature trajectories can
be incomplete (broken) due to the loss of tracking. To
overcome this issue, we present a novel feature trajectory
construction approach that jointly benefits from feature track-



Fig. 1: Dynamic scene analysis pipeline. Red block shows the incomplete feature trajectory construction supported by forward
and backward feature tracking and matching approach, and is detailed in Section IV. Green block depicts the moving object
detection using motion segmentation on 3D feature trajectories, and is detailed in Section III. Blue block illustrates the
2D-to-3D label transfer for automatic semantic labelling of a dynamic scene, and is detailed in Section V and VI.

ing and matching techniques, and is detailed in Section IV.
To associate the semantic labels with the segmented mo-

tion trajectories, we transfer the object labels obtained from
the corresponding images. The object labels on the images
are obtained by using the deep learning-based Yolo [16]
detector. Thanks to the recent advancement in deep learning
techniques, it is now possible to obtain faithful semantic
labels using image information. The transfer of these labels is
carried out by the max-pooling over multiple detections. We
argue that the semantic understanding of dynamic 3D scenes
has obtained very little attention in literature. In this context,
Geiger et al. [15] propose a 3D traffic scene understanding
framework which predicts the motions of vehicle tracklets by
fusing semantic (Sky, Road, and Traffic Lane) and 3D scene
flow information. Different from [15], our method results in
the motion trajectories of generic objects alongside with their
labels (e.g. pedestrian, cyclist, car), also the labels of static
parts (e.g. traffic lights).

To summarize, the major contributions of this work are:
– We propose an efficient algorithm for 3D motion segmen-
tation that enforces the motion consistency constraint within
the subspace. The proposed algorithm is faster by two orders
of magnitude, which also outperforms the state-of-the-art 3D
motion segmentation methods.
– We present a simple but effective method for incomplete
trajectory construction, serving for motion segmentation, to
handle the practical problem of lost tracking.
– We introduce a dynamic scene understanding framework
for simultaneous dynamic object extraction, static-map re-
construction, and objects’ semantic labels assignment for
the data acquired by a 2D-3D camera platform moving in
complex real-world environments.

II. RELATED WORK

Among the numerous works on image-based motion seg-
mentation (MS) for moving object detection, representative

approaches such as Generalized Principal Component Anal-
ysis [17], RANSAC-based MS [18], and Agglomerative Sub-
space Clustering (ASC) [19] are intensively studied in [20].
Although these methods provide great insight on the MS
problem, they are sensitive to noise/outliers or computa-
tionally expensive. ASC, a more robust method, combines
the techniques of lossy compression, rank minimization,
and sparse representation. A direct inspiration of ASC led
Elhamifar and Vidal [8] to develop the Sparse Subspace Clus-
tering (SSC) algorithm –a leading MS technique in present
days– which relies on self-expressive sparse representation
property of the data. Taking the advantage of self-expressive
property, Hu et al. [9] propose a Smooth Representation
Clustering model by enforcing the Grouping Effects of the
subspaces, which achieves the best accuracy and efficiency
in literatures. Apart from 2D-based MS, inspired by image
feature based SSC, Jiang et al. [6] propose a 3D-based Sparse
Subspace Clustering (3D-SSC) which achieves significantly
better performances with a slightly higher computational
complexity comparing to its 2D counterpart. Stuckler et
al. [21] perform dense 3D MS using nearly static RGB-D
cameras using Gaussian Mixture Models, which is not ap-
plicable for fast moving camera setups. Differently, Sofer et
al. [22] address the 3D MS problem by using Active Machine
Learning algorithm, while application specific training data
are required.

In the context of localization and mapping, Wang et
al. [23] propose simultaneous object tracking and map
building method (SLAM-MOT), using either their map prior
or the motion consistency assumption. However, for slow
motions and temporally stationary objects, these assumptions
are not valid. Pomerleau et al. [24] address the SLAM-MOT
problem by using ray-tracing techniques, assuming that the
dynamic parts have only a small scene coverage. Ambrus et
al. [25] propose to identify the dynamic scene parts based
on the difference between the observations and the reference



model. Yet, a clean reference model is required, which is
impractical for unknown environments.

In 3D scene understanding, Geiger et al. [15] propose
to predict vehicle motions using simple semantic informa-
tion which is quite insufficient for human-interactive scene
understanding. Kochanov et al. [26] build semantic maps
by propagating the scene flow of the map occupancy and
semantic belief. Menze et al. [27] detect the moving objects
using object scene flow analysis. Such methods are bounded
by the imprecise depth estimate and incapable to analyse the
object motion behaviours.

III. 3D MOTION SEGMENTATION

For a set of feature trajectories of multiple moving objects,
the motion segmentation (MS) aims to group the feature
trajectories into their corresponding motions by compar-
ing the similarities between the feature trajectories. Recent
studies focus on the subspace clustering-based methods [6],
[8], [9]. The principle of these methods is to construct
the affinity matrix which encodes the similarity between
the feature trajectories, followed by a spectral clustering
algorithm to group the trajectories into their corresponding
motion subspaces. The problem of MS can be framed as
a minimization problem with different regularization terms.
As a constrained optimization problem, the algorithm perfor-
mances are affected by different regularization constraints.
The following contents introduce the general MS model and
discuss the proposed regularization constraints to improve
the MS performances.

A. Background and Notations

Let Xn = [X1, · · · ,XF ]T be a vectorized 3D feature
trajectory of F frames, where Xi = [x, y, z] ∈ IR3 is a 3D
feature at frame i. Let X = {Xn}n=1,··· ,P be the assembly
of P feature trajectories belonging to different motions. The
general self-representation model of MS problem can be
defined as:

min
Z

‖X−D(X)Z‖l + Ω(X,Z), s.t. Z ∈ C, (1)

where D(X) is the dictionary learned from X, and ‖ · ‖l
denotes the proper norm. Ω(X,Z) is the regularization term
and C is the constraint set on Z. By solving Eq. (1), a
desired self-representation matrix Z∗ is obtained to construct
the affinity matrix. For instance, in [8], D(X) = X, and
l0−norm is applied to constrain the sparsity of Z∗. Here,
constraint set C = {Z|Zii = 0} is necessary to avoid the
trivial solution, so that Xi cannot be used to represent Xi
itself. Regularizer Ω(X,Z) is set to be zero. Once the sparse
representation matrix Z∗ is obtained, a symmetric affinity
matrix A = |Z∗|+|Z∗|T is used to perform spectral clustering
to separate the subspaces.

B. 3D based Smooth Representation Model

Inspired by [9], a 3D-based MS algorithm using SMooth
Representation clustering (3D-SMR) is proposed. Under the
framework of self-expressive subspace clustering, the 3D-
SMR enforces the Grouping Effect (GE) to facilitate the

feature trajectory clustering problem. Unlike [9], our GE con-
straint describes the feature trajectories’ closeness (distances)
in the 3D Euclidean space. Doing so, 3D-SMR avoids the
perspective effects that appear on the image measurements.
The GE constraint is enforced as a regularization term:

Ω(X,Z) =
1

2

P∑
i=1

P∑
j=1

wij‖Zi − Zj‖22

= tr(ZLZT),

(2)

where Z = [Zi, · · · ,ZP ] is the P × P square-sized self-
representation matrix. W = (wij) with wij = ‖Xi−Xj‖22 is
the weight matrix defined by the spatial closeness of feature
trajectories. L = D −W is the Laplacian matrix, in which
D is the diagonal matrix defined as Dii =

∑P
i=1 wij . To

construct the weight matrix W , a 0− 1 weighted k Nearest
Neighbour (kNN) graph is used. Combining Eq. (1) and
Eq. (2), the 3D-SMR model is obtained:

min
Z

‖X− XZ‖2F + tr(ZLZT), (3)

where ‖ · ‖2F denotes the square of Frobenius norm.

C. Motion Consistency Constraints
On top of the GE constraint on the spatial closeness of

feature trajectories, we also exploit the motion consistency.
We make the assumption that, for a short video sequence,
the observed motion trajectories are smooth. In other words,
the motion velocities and directions are locally consistent.

Let V = {Vi}i=1,··· ,P and θ = {ϑi}i=1,··· ,P be the motion
velocities and directions of feature trajectories, respectively.
To enforce the motion consistency constraint, we define a
combined regularization term as:

Ω(X,V, θ,Z) =
1

2

P∑
i=1

P∑
j=1

w̃ij‖Zi − Zj‖22

= tr(ZL̃ZT),

(4)

where w̃ij = E(Xi,Xj) + ϕ(Vi,Vj) + ψ(ϑi, ϑj), and L̃ =

D − W̃ . Recall Eq. (2), the weight component E(Xi,Xj) =
‖Xi − Xj‖22 describes the spatial closeness of the feature
trajectories. ϕ(Vi,Vj) = α‖v̄i − v̄j‖22 measures the consis-
tency of the motion velocity, where v̄i and v̄j are the median
speeds of the feature trajectories Vi and Vj in 3D space.
ψ(ϑi, ϑj) = βatan2(ϑi×ϑj , ϑi ·ϑj ) computes the directional
difference between the feature trajectories, where atan2(·)
function calculates the angle between the motion vectors
ϑi and ϑj with the appropriate quadrant. α and β are the
constant values controlling the weights of the regularization
terms. In our experiments, both α and β are set to be
1.5, which implies that the motion consistency regularization
terms have higher weight than the spatial closeness term.

The Laplacian matrix in Eq. (4) can be written as: L̃ =
D̃ − W̃ , where D̃ii =

∑P
i=1 w̃ij and the weight function

W̃ = (w̃ij). Replacing the regularization term of Eq. (3)
with Eq. (4), a more practical 3D-SMR model is proposed
as:

min
Z

α‖X− XZ‖2F + tr(ZL̃ZT). (5)



Fig. 2: Incomplete feature trajectories construction: the red,
green and blue dashed lines represent the trajectories of
the pedestrian and two cyclists, respectively. The green and
blue rectangles highlight the appearing of the two cyclists,
while the yellow rectangles highlight the pedestrian being
occluded and reappearing. The solid lines (on top) represent
the feature trajectories within two key frames, while the
connected dashed lines are the forward or backward extended
trajectories.

Since solving Eq. (5) is a smooth and convex problem,
the desired optimal solution Z∗ can be obtained by taking
the first order derivative, such that:

XTXZ∗ + Z∗L = XTX. (6)

Equation (6) is a Sylvester equation having a unique solu-
tion which can be solved efficiently by the Bartels-Stewart
algorithm [28] with computational complexity of O(n3).

Following [8] and [9], we employ two different affinity
matrices which are defined as W1 = |Z∗|+ |Z∗|T and

W2 =

(∣∣∣∣ Z∗i
TZ∗j

‖Xi‖2‖Xj‖2

∣∣∣∣γ), respectively. γ > 0 is a scale

factor to control the affinity variances. Finally, a spectral
clustering algorithm is applied to the affinity matrices W1

and W2 to segment the feature trajectories into their corre-
sponding motions.

IV. FEATURE TRAJECTORY CONSTRUCTION

Prior to motion segmentation, the feature trajectories are
acquired by feature tracking across multiple consecutive
frames. We use both 2D and 3D measurements to construct
the feature trajectories in 3D space. For a calibrated 2D-
3D camera setup, the 3D scene points are projected onto
the 2D image to establish the 2D-to-3D correspondences,
similar to [6]. These projections are considered as 2D feature
points and tracked across the sequence using a dense optical
flow method. To cover a wide range of speeds, a large
displacement dense optical flow [29] tracking algorithm has
been adopted. To reject the incorrectly tracked features, we
utilize the forward and backward validation of optical flow
tracking, similar to [30]. The 3D feature trajectories are then
retrieved thanks to the 2D-to-3D correspondences.

In practice, the feature trajectories can be categorized into
two sets: the complete and the incomplete trajectories. We
define a trajectory to be complete if its feature is detected
and tracked throughout the frames of interest (i.e. between
two key frames), whereas, an incomplete trajectory is only
partially detected and tracked between two key frames. The
incomplete trajectories mainly come from the failure of
feature tracking due to occlusions or object disappearances.
As a remark, [6] and [9] simply discard such incomplete
feature trajectories leaving some potential moving objects
undiscovered. To address this problem, We propose the
following simple but effective incomplete feature trajectory
completion approach.

Recall that Xn = [X1, · · · ,XF ]T with Xi = [x, y, z] ∈ IR3

is a complete 3D feature trajectory vector of F frames,
and X = {Xn}n=1,··· ,P is the combination of P complete
feature trajectories. Denote X̂n = [X1, · · · ,XF̂ ]T as an
incomplete feature trajectory of F̂ frames (F̂ < F ), and
X̂ = {X̂n}n=1,··· ,P̂ as the collection of P̂ incomplete
feature trajectories. To perform motion segmentation on both
complete X and incomplete X̂ trajectory sets simultaneously,
the incomplete trajectories should be extended so that the
length of X̂n is 3F (same as Xn), and the size of X̂ is 3F×P̂ .
In other words, the row dimensions (trajectory length) of X
and X̂ must be the same, while their column dimensions
(feature numbers) are unconstrained.

We divide the incomplete feature trajectories into four
different categories: new object appearance (+), tracked
object disappearance (−), object going under occlusion (o),
and previous object reappearance (++) as follows:

• Newly appearing objects are detected if new features
are tracked through a minimum number of required
frames for motion analysis.

• Disappearing tracked objects are detected using a
feature tracking failure detection method [30].

• Objects under occlusion refer to a partial occlusion,
where the object’s features have both complete and
incomplete trajectories.

• Reappearing objects are detected using the Deep-
matching [31] between the features in key frames.

If a feature is not tracked throughout two key frames,
a forward or backward tracking is activated to extend the
feature trajectories, which yields to the extended incomplete
trajectory having the same dimension as a complete trajec-
tory, denoted as dim(X̂n) = dim(Xn). A forward feature
tracking implies that the feature is tracked from frame t to
frame t + 1. On the contrary, the feature is tracked from
frame t to frame t − 1 is backward feature tracking. The
forward/backward feature tracking is carried out until the
extended incomplete feature trajectory has the same length
as the complete trajectories.

Figure 2 illustrates the architecture of our algorithm in
constructing the complete and incomplete trajectories. In
this figure, there are only two moving objects (i.e. walking
pedestrian and background) between key frames 1 and 2, and
two new objects (cyclists) appear in between key frames 3



Fig. 3: Feature trajectories’ completion for MS: left image shows the cyclist crossing the walking pedestrian. The green
trajectories in the middle image are tracked features between two key frames, while the red and blue trajectories are acquired
from backward and forward feature tracking, respectively. The right image shows the MS results.

and 4. Accordingly, the feature trajectories on the moving
objects between key frames 1 and 2 are complete, while
incomplete trajectories on moving objects occur due to the
newly appearing or occlusion between key frame 3 and
4. Note that, because the feature tracking starts from the
key frames, the objects not seen in the key frames (e.g.
the newly appeared objects) are not tracked. This leads to
some potential moving objects being omitted. Therefore, to
overcome such issue, the incomplete trajectory construction
is applied to re-tracked those neglected objects.

Figure 3 shows the constructed complete and incomplete
trajectories with MS results. In this figure, the walking
pedestrian was completely occluded by the passing cyclist,
leading to incomplete trajectories of the pedestrian. Thus,
the backward feature tracking is activated to extend the
incomplete trajectories, see the red trajectories of the middle
image. Besides, the newly appearing cyclist requires a for-
ward feature tracking to extend the incomplete trajectories,
see the blue trajectories of the middle image. Doing so,
both of the complete and extended incomplete trajectory
lengths have the same dimension, which allows the MS
to overcome the loss of feature tracking. Note that the
success of incomplete feature trajectory construction offers
the following advantages: (a) The lost tracked objects are
rediscovered and re-tracked. (b). The simultaneous motion
segmentation on complete and incomplete feature trajectories
now becomes possible.

V. STATIC-MAP AND DYNAMIC OBJECT
RECONSTRUCTION

Once the sparse set of segmented feature trajectories
is obtained from MS, we employ a 3D Region Growing
technique [32] on the complete 3D scene points to obtain
a dense segmentation of the point clouds. The multi-frame
point clouds assigned to static scene parts are then registered
together to incrementally build the static map, using minimal
3-point Random Sample Consensus (RANSAC) algorithm.
The 3-point RANSAC algorithm uses Cayley representation
of the rotation matrix, which allows to obtain rigid transfor-
mation between point clouds using linear solvers, similar to
[6]. In addition, an Iterative Closest Point algorithm [7] is
applied to refine the registration. Finally, the reconstruction
of the moving objects is also obtained, in a very similar
manner –by registering their observations from different
view-ports.

VI. 2D-TO-3D LABEL TRANSFER

We consider that semantic scene understanding should
answer two questions: What is the object? And what is it
doing? In other words, the object of interest (such as cars
and pedestrians) should be discovered and recognized with
semantic labels. Further, the object behaviour, such as a
moving or parked cars, should be understood. In this context,
semantic scene understanding has been partially addressed in
[15] for moving vehicle motion prediction. We focus on the
fusion of knowledge from 2D and 3D data to fully address
the semantic scene understanding problem.

Since 2D image-based semantic labelling achieves very
satisfactory performances [16], we propose to transfer the re-
trieved 2D object labels to their corresponding point clouds.
For this purpose, the 2D-3D correspondences are established
using a projective projection model: x ∼ KPX where x is the
2D projections of the 3D points X. K and P are the intrinsic
and extrinsic parameters obtained from camera calibration.
Thus, the label of x can be transferred to X. Let L be the
semantic label assigned to a 3D object. SL is the real-world-
averaged size of object class L, and Si is the object size
(volume) measured from its 3D point cloud. To accurately
transfer the 2D labels over m different observations, a max-
pooling strategy is applied to obtain the desired label L∗ for
the given 3D object, such that:

L∗ = argmax
L

ηiρi, i = 1, . . . ,m. (7)

Where ηi = 1
e|Si−SL|/SL

is the 3D size similarity, and
ρi ∈ [0, 1] is the confidence score of the 2D labels obtained
from the detector. Beside the objects labels, the motion status
are also assigned to them as either static or dynamic with
their motion trajectories. To sum up, there are two layers of
semantic understanding in our framework: 1). Precise object
localizations in both 2D image and 3D maps. 2). Motion
behaviour analysis of moving objects, serving for higher level
scene understanding.

VII. EXPERIMENTS

We conducted extensive experiments on the real-outdoor
KITTI benchmark [33] to evaluate the performances of
the proposed algorithms. Three representative state-of-the-
art methods, namely 3D Sparse Subspace Clustering (3D-
SSC) [6], SMooth Representation Clustering (2D-SMR) [9]
and Object Scene Flow (OSF) [27], are compared using
Sensitivity (Sens.) and Specificity (Spec.) metrics. To obtain
2D semantic labels, we selected the Yolo [16] object detector



Sub-seq. # Mot. # Feat.
η

Mot. State 3D-SSC 2D-SMR W1 2D-SMR W2 3D-SMR W1 3D-SMR W2

# Dyn. # Stat. + - o ++ Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

1 3 113 219 0.10 x x x x 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3 115 230 0.13 x x x x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 3 122 246 0.18 x x x x 1.000 0.988 1.000 0.996 1.000 1.000 0.992 1.000 1.000 0.996
4 3 78 251 0.07 x x x x 0.603 0.996 0.962 0.769 0.962 0.765 0.974 0.777 0.987 0.996
5 4 54 270 0.15 v x v x 0.593 0.685 0.611 0.696 0.685 0.689 0.667 0.704 1.000 0.993
6 4 82 271 0.27 v x x x 0.817 0.727 1.000 0.815 1.000 0.815 1.000 0.838 1.000 0.993
7 7 237 173 0.23 x x x x 0.873 0.983 1.000 0.526 1.000 0.526 1.000 0.711 1.000 0.838
8 7 255 156 0.20 x x v x 0.973 0.974 1.000 0.532 1.000 0.526 1.000 0.904 1.000 0.929
9 7 225 166 0.22 x x v v 0.964 0.994 0.996 0.801 0.996 0.801 0.987 0.982 0.996 0.994
10 8 206 167 0.19 v x x x 0.956 0.820 0.961 0.497 0.961 0.503 0.995 0.976 1.000 0.994
11 9 236 141 0.20 v x v v 0.932 0.986 1.000 0.532 1.000 0.532 1.000 0.745 0.996 0.979
12 9 247 139 0.22 x x x x 0.973 0.971 0.976 0.921 0.976 0.921 0.968 0.950 0.968 0.906
13 9 200 169 0.19 v v x x 0.810 0.781 1.000 0.793 1.000 0.793 1.000 0.817 1.000 0.988
14 8 233 175 0.26 x x v v 1 0.983 0.906 0.691 0.906 0.691 1.000 0.857 1.000 0.926

Average 6 172 198 0.18 / / / / 0.892 0.921 0.956 0.755 0.963 0.754 0.970 0.876 0.996 0.967
Time(s) / / / / / / / / 35.122 0.054 0.0378 0.613 0.608

TABLE I: Performance quantification on Pedestrian dataset. Columns |Sub-seq.|, |# Mot.|, and |# Feat.| show the
sub-sequences index, moving objects number, dynamic features number, and static features number, respectively. η =
# incomplete trajectories

# total features represents the percentage of extended incomplete trajectories. Columns |Mot. State| show the motion
states with symbols +,−, o,++ denoting new appearance, disappearance, occlusion, and reappearance scenarios discussed
in Section IV. Symbols v and x mean that the motion states occur or do NOT occur, respectively. The last columns compare
the Sensitivity and Specificity of algorithms 3D-SSC [6], 2D-SMR [9] and the proposed 3D-SMR.

which accurately detects and recognizes multi-class objects
using image information in real-time. All the experiments are
conducted on a computer with Intel Quad Core i7-2.7GHz,
32GB Memory using MATLAB.

A. Quantitative Evaluation
We select seven representative datasets, namely Campus,

Highway, Junction, Market, Pedestrian, Red Light and Sta-
tion, that have wide dynamic ranges regarding to frame
lengths, number of moving objects, number of feature trajec-
tories and status of motion changes. Note that the Highway,
Junction, Market and Station sequences are evaluated in [6]
by discarding some parts of the sequences where incomplete
feature trajectories occur. Thanks to the proposed incomplete
trajectory construction approach, those sequences are re-
evaluated by including the scenarios of incomplete feature
trajectories. Therefore, the sensitivity and specificity of 3D-
SSC reported in this paper is relatively lower than in [6].
Newly evaluated challenging sequences (Campus, Pedestrian
and Red Light), where incomplete trajectories occur very
often, are selected on purpose to show the effectiveness of
the proposed method.

Among all the tested sequences, we report the detailed
descriptions of Pedestrian dataset (as example) in Table I. In
this table, columns Mot. State show the changes of motion
status within the sub-sequences (interval of every 10 frames),
where symbols +,−, o,++ denote 4 different motion sce-
narios, namely new appearing, disappearing, occlusion, and
reappearing. The number of motions are changing during
the observations, resulting into mainly incomplete feature
trajectories. Accordingly, our complete and incomplete tra-
jectory construction architecture presented in Section IV is
essential to address such tracking failures. Table I shows that
the proposed 3D-SMR achieves significantly better perfor-
mance against 3D-SSC and 2D-SMR in both sensitivity and
specificity. Moreover, the computation time of 3D-SMR is

about 0.6 second per frame, which is two-order magnitude
faster than 3D-SSC.

The summary of evaluations on all representative datasets
is shown in Table II. Note that all seven datasets are
evaluated in the same manner as in Table I. In average, the
proposed 3D-SMR outperforms the state-of-the-art 3D-SSC
and 2D-SMR motion segmentation methods. Sacrificing the
sensitivity, the OSF [27] achieves slightly better specificity
than our 3D-SMR. Overall, the proposed 3D-SMR performs
better than the representative state-of-the-art methods.

The quantitative results of Table I and II show the ef-
fectiveness of the proposed 3D-SMR algorithm. Firstly, the
spatial closeness and motion consistency constraints of 3D-
SMR make the subspace representation more robust than
the 3D-SSC. Secondly, the spatial closeness constraint of
2D-SMR in image space under affine projection model
suffers from perspective effects, which makes it insensitive
to motions towards and outwards the camera. On the con-
trary, the direct MS on 3D Euclidean space of 3D-SMR
is free from perspective effects. Moreover, the additional
3D motion consistency regularization term improves the
robustness of the 3D-SMR. Thirdly, the proposed incomplete
feature trajectory completion approach effectively recovers
the loss of tracked objects, which tackles the challenges of
complicated uncontrolled outdoor environments. Lastly, the
computational efficiency of the 3D-SMR algorithm, which
takes 0.6 second with MATLAB implementation, provides
great potential of future real-time implementation.

B. Qualitative Evaluation

Thanks to the effectiveness of the proposed framework,
the static-maps of all sequences are correctly reconstructed.
The reconstructions for Junction and Campus sequences are
shown in Fig. 4. In Fig. 4a, the moving van is partially
occluded by a cyclist, which leads to the failure of pixel-
level feature tracking. Likewise, Fig. 4c contains new ap-



Sequence # Frms. # Objs. # Feats. η
OSF 3D-SSC 2D-SMR W1 2D-SMR W2 3D-SMR W1 3D-SMR W2

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Campus 60 4 341 0.23 0.404 0.988 0.920 0.888 0.944 0.658 0.947 0.621 0.987 0.816 0.970 0.997
Highway 50 2 392 0.24 0.579 0.994 0.978 0.625 0.609 0.963 0.613 0.962 0.825 0.999 0.962 0.995
Junction 90 3 416 0.24 0.613 0.966 0.892 0.943 0.968 0.998 0.971 0.997 0.973 0.999 0.976 0.997
Market 100 6 402 0.25 0.506 0.962 0.882 0.852 0.933 0.640 0.920 0.637 0.959 0.747 0.989 0.817

Pedestrian 140 6 370 0.18 0.519 0.983 0.892 0.921 0.956 0.755 0.963 0.754 0.970 0.876 0.996 0.967
Red Light 120 4 371 0.19 0.578 0.987 0.868 0.830 0.880 0.633 0.886 0.682 0.964 0.906 0.998 0.976

Station 50 5 417 0.28 0.164 0.996 0.901 0.631 0.942 0.486 0.958 0.437 0.918 0.703 0.929 0.875
Average 87 5 387 0.23 0.480 0.982 0.905 0.813 0.890 0.733 0.894 0.727 0.942 0.864 0.974 0.946.

TABLE II: Quantification of OSF [27], 3D-SSC [6] , 2D-SMR [9] and our 3D-SMR in motion segmentation: this table is
a summary of performances of the 7 representative datasets, and the dataset notations are detailed in Table I.

(a) Reconstructed Junction sequence static-map using [6]. (b) Finer Junction sequence static-map (our method).

(c) Reconstructed Campus sequence using [6]. (d) Finer Campus sequence static-scene (our method).

Fig. 4: Incomplete trajectory recovery assisted static maps reconstruction: (a) and (c) show that the reconstructed static maps
using [6] contain some neglected moving objects due to the loss of feature tracking. With the help of incomplete feature
trajectory completion, finer static maps of (b) and (d) are achieved by removing those loss-tracked moving objects.

pearing cyclist, which occludes the pedestrian (reappeared
after cyclist’s passing) during the observation (recall Fig. 2).
In such cases, the occurrence of incomplete trajectories leads
to the failure of [6]. Differently, rather than discarding those
incomplete feature trajectories, we extend them to have the
same length as of the complete feature trajectories, which
allows the concurrent MS on both complete and incomplete
trajectories. Fig. 4b and 4d show that higher quality static
maps are obtained taking into account the incomplete feature
trajectories recovery.

Qualitative results of moving object detection using the
state-of-the-art methods on Market sequence are illustrated
in Fig. 5. Figure shows that the OSF method is insensitive to
detect those slow motions of pedestrians. Besides, the pro-
posed 3D-SMR clearly achieves better motion segmentation
than 3D-SSC and 2D-SMR.

Figure 6 presents the automatically labelled 3D map of
Junction sequence with the proposed 2D-to-3D label transfer
strategy. In this figure, the semantic information of the 3D
objects are accurately discovered using the proposed max-

pooling strategy, which avoids multi-labelling from different
observations. Furthermore, the accurate object motion ve-
locities are estimated using 3-point RANSAC and ICP point
cloud registration. At first, objects are categorized as either
static or moving objects. Then the accurate online motion
information (e.g. motion direction, linear and angular speed,
etc.) is obtained thanks to the precisely recovered odometry
knowledge from the proposed framework.

VIII. CONCLUSION AND FUTURE WORK

We proposed a 3D-based Smooth Representation Cluster-
ing (3D-SMR) algorithm with motion consistency regular-
ization for motion segmentation and scene understanding.
The proposed 3D-SMR algorithm is proved to be more
efficient and accurate than the state-of-the-art methods using
comprehensive real-world KITTI datasets. The effectiveness
of the incomplete trajectory construction, which is essential
in many practical scenarios, is demonstrated. Finally, a com-
plete framework for dynamic scene analysis using 3D motion
segmentation and 2D-to-3D label transfer is proposed. The



Fig. 5: Illustration of moving object detection using OSF [27]
(top left), 3D-SSC [6] (top right), 2D-SMR (bottom left) and
our 3D-SMR (bottom right). The red boxes highlight the
undetected motions and incorrectly segmented motions.

knowledge of object motion behaviours and their semantic
information allows a high level 3D scene understanding. The
results show the prospects of the proposed 2D-to-3D label
transfer idea, yet, 3D labelling accuracy quantification is
remained as a future work.
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