
HAL Id: hal-01569320
https://hal.science/hal-01569320

Submitted on 18 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Tomography parallelization on FPGAs via HLS tools
Maxime Martelli, Nicolas Gac, Alain Mérigot, Cyrille Enderli

To cite this version:
Maxime Martelli, Nicolas Gac, Alain Mérigot, Cyrille Enderli. 3D Tomography parallelization on
FPGAs via HLS tools. DASIP, Sep 2017, dresden, Germany. pp.1-6, �10.1109/DASIP.2017.8122119�.
�hal-01569320�

https://hal.science/hal-01569320
https://hal.archives-ouvertes.fr


3D Tomography back-projection parallelization on
FPGAs using OpenCL

Maxime MARTELLI∗†‡, Nicolas GAC∗, Alain MÉRIGOT†, Cyrille ENDERLI‡
∗Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRS, Université Paris Sud,

Université Paris-Saclay, FRANCE
†Laboratoire des Systèmes et Applications des Technologies de l’Information et de l’Énergie,

ENS Cachan, CNRS, Université Paris Sud, Université Paris-Saclay, FRANCE
‡Thales Systèmes Aéroportés S.A., Elancourt, FRANCE

Abstract—This paper deals with the evaluation of FPGAs
resurgence for hardware acceleration applied to computed to-
mography on the back-projection operator used in iterative
reconstruction algorithms. We focus our attention on the tools
developed by FPGAs manufacturers, in particular the Intel
FPGA SDK for OpenCL, that promises a new level of hardware
abstraction from the developer’s perspective, allowing a software-
like programming of FPGAs. For this purpose, we start with eval-
uating different custom OpenCL implementations of the back-
projection algorithm. With some clues on memory fetching and
coalescing, we then further tune designs to improve performance.
Finally, a comparison is made with GPU implementations, and a
preliminary conclusion is drawn on FPGAs future in computed
tomography.

Index Terms—High-Level Synthesis, FPGA, OpenCL, Opti-
mization, GPU.

I. INTRODUCTION

Moore’s law is the observation that the number of transistors
in a dense integrated circuit doubles approximately every
two years. More like a roadmap, the current tendency shows
its pace seizing up, a fact officially acknowledged by the
industry. It was common knowledge that physical limitations
would eventually block the circuit miniaturization, and the
Semiconductor Industry Association announced the effective
end of Moores law for 2021 [1]. Circuits miniaturization (up
to 10 nanometres thin today) should soon tip over micro-
processors from the realm of traditional physics to quantum
physics, which governs the probability behaviour of atoms.
This technological shift is due to happen at the start of next
decade. Until then, traditional chip thickness is expected to
reach a ceiling of around 10 nm, stabilizing a high-cadenced
progression over the years.

The processor industry, which already dealt in the past with
other issues regarding Moores law, like the increase of heat
generation correlated with miniaturization, is now facing what
looks like a deadlock. However, by considering performance
instead of circuit density, the law can be transcended, and a
logical evolution is to rethink commonly used architectures.
One possible solution is for future computer chips to rely on
a granular hardware specialization with reconfigurable fabric
at their core, allowing processors to offload specific processing
to a suited architecture.

With this in mind, Field Programmable Gate Array (FPGA)
is a key technology for the post Moore era. Since the creation
of the first mask-programmed gate array with Motorolas
XC157 in 1969, FPGAs are widely used for specific needs
like embedded [2] and critical [3] systems. Aware of their
technological potential, the two main FPGA manufacturers
(Xilinx and Altera1) developed tools (called SDAccel and Intel
FPGA SDK for OpenCL, respectively) for the use of FPGA
in software co-processing, in a similar approach as Graphics
Processing Units (GPUs) manufacturers did with OpenCL and
CUDA toolkits.

Their main advantage is, for programmers, usage of well-
known software languages. OpenCL is commonly used for
GPU programming, and Intel FPGA SDK for OpenCL claims
to allow program optimization by having little to no FPGA
experience. This assertion is a potential game changer in
the computing field and the mainstream adoption of FPGAs
is now at stake. Over the last few years, many research
work focused on FPGA implementations with OpenCL in
various fields like lossless data compression [4], stencil codes
[5], but also on proposing some clues about OpenCL code
tuning for FPGAs [6] [7]. In their continuum, our approach
is focused on characterizing possible bottlenecks for FPGAs
implementations, and memory optimization.

As a use case, we consider the back-projection (BP) algo-
rithm used in iterative reconstruction[8]. Computed Tomogra-
phy (CT) is used in multiple domains such as medical imaging
[9], quality control [10], or even food characterization[11], and
its primary mission is to reconstruct a 3D cartography of an
object’s parameter. Even though GPUs can solve problems
with multiple dimensions and large-scale data thanks to their
Single Instruction on Multiple Data (SIMD) architecture, there
are some specific algorithmic limitations in tomography like
memory bottlenecks that have been unlocked with FPGAs [12]
[9]. Therefore, there is an interest to estimate if new FPGA
improvements make them competitive relative to GPUs for
Computed Tomography.

In this paper our contributions consist firstly in evaluating
the impact of new FPGAs tools in tomography, and secondly,

1Now Intel FPGA, since Altera’s acquisition in December 28th, 2015



in assessing OpenCL code optimization from a software en-
gineer’s perspective.

The remainder of this paper is organized as follows: in
Section II, we present the BP algorithm to be implemented
via OpenCL on FPGAs. Then, we introduce in Section III
relevant concepts of the Intel FPGA SDK for OpenCL. Section
IV deals with the different optimization implementations, and
results are provided and discussed in Section V.

II. 3D TOMOGRAPHY ALGORITHM

Computed Tomography relies on the analysis of a known
radiation stream through the considered object to recover
said physical characteristic by reversing the matter transport
equation, and its algorithm includes a BP that accounts in
iterative reconstruction for 50% of the Computed Tomography
execution time[13].

Fig. 1. 3D Computed Tomography Projection.

An X-ray source (Fig.1) revolves around the ϕ axis at
z = constant. Radiation emitted from it is attenuated de-
pending on the object local density, and a two-dimensional
sensor array records intensity values, for each elementary ϕ
angle. Those values are stored in a 3D matrix along (u,v,ϕ) in
what is called a sinogram sCT (u, v, ϕ). The BP consists, for a
given voxel2 ~c = (x, y, z), in summing up the contribution of
every elementary detector (u, v) in line with the source and
the considered voxel for every ϕ value. We then obtain the
density d(~c) given as follows :

d(~c) =

∫ 2π

0

sCT (u(ϕ,~c), v(ϕ,~c), ϕ).w(ϕ,~c)
2dϕ (1)

where (u(ϕ0,~c), v(ϕ0,~c)) are the values on the sinogram
of the beam passing through ~c for ϕ = ϕ0, and w(ϕ0,~c) is
the distance weight[14].

The sensors distribution being discrete, the integral trans-
forms in a sum for all ϕ values. This algorithm is particularly
suited for SIMD cores, because this sum has to be computed
for every voxel of the object, and is best executed on massively

2Stands for VOlume piXEL.

parallel architectures. However, for a given voxel, the gather-
ing of sinogram values for each ϕ iteration follows an irregular
pattern, and a way to improve the algorithm is by grouping
density computation per localx∗ localy voxel rectangle to take
advantage of memory coalescing. This particular point will be
discussed in Section IV-B.

III. INTEL FPGA SDK FOR OPENCL

A. Architecture

OpenCL is an abstract programming model and the Intel
FPGAs corresponding basic architecture is showcased in Fig.2.
Adapted to a co-processing implementation on heterogeneous
architectures, the framework is designed to easily abstract most
hardware considerations. As so, the host program is written
in standard C, and communicates with Compute Devices via
library routines that handle communication between the host
processor and devices kernels3.

Fig. 2. Intel FPGA SDK for OpenCL Memory architecture.

Each kernel instruction is transformed by the Altera Offline
Compiler in a sequence of logic blocks, creating elementary
pipelines that are then aggregated to form the kernel pipeline,
which we refer to as Compute Unit (CU). There are two
OpenCL kernel categories : NDRange (ND) and single work-
item (SWI), detailed in Section IV. Generally, Intel FPGA
SDK for OpenCL Guides[15] [16] recommends implementing
a single work-item kernel in case of loop or memory depen-
dencies, and a NDrange kernel otherwise.

Given the 3-dimensional BP problem, with a dimension of
(dimX , dimY , dimZ) voxels, we can use the OpenCL work-
group and work-item partitioning to handle its computation.
In this case, a work-item, that is the elementary instantiation
of a kernel, is the computation of the volume density of a
given (x0, y0, z0) voxel, that is a sum of dimϕ sinogram
values as explained in Section II. Multiple work-items can
be aggregated as shown in Fig. 3, creating a work-group
(equivalent of CUDA blocks). This repartition allows effective

3A function implemented on an accelerator device is called a kernel



internal communication and data synchronization between
work-items of the same work-group.

Fig. 3. OpenCL work-group enqueueing mechanism.

B. Memory model

The OpenCL implementation has four memory types :
global, constant, local, and private. Their manual handling
is a lead for effectively tuning the algorithms. In order to
benchmark the different memory latency, we implement a
routine program (experiment setup in V-B) executing multiple
random reads in the four memory structures. Results are shown
in Table I and discussed further on (code on Gitlab [17]).

TABLE I
MEMORY STRUCTURE LATENCY ON AN ALTERA CYCLONE V.

Memory structure Mean latency (cycles)
Global 178

Constant 45
Local 13

Private 3

1) Global memory: Despite having the highest access
latency amongst memory structures, global memory storage
within the Intel FPGA SDK for OpenCL can still be efficient,
thanks to automatic embedded on-chip caches implementation
in Load-Store Units (LSUs) [15]. In case of repetitive global
memory access, data will be stored in embedded caches4

guaranteeing a high memory bandwith and a shorter latency
compared to global memory, provided that memory access
is not too large. A coalescent memory access through LSU
embedded caches are the best way to optimize global memory
bandwith.

2) Constant, local, and private memory: Constant memory
is equivalent to on-chip global read-only memory. Access port
allocation size and width can be manually tuned to a maxi-
mum defined by the hardware manufacturer. However, latency
improves substantially with the number of ports accessing the
constant memory, thus simultaneous constant memory access
per work-item must be narrowed to the strict minimum.

The main difference between local and private memory is
their accessibility within a work-group. A private variable
is stored in registers, and accessible only to one work-item,
whereas a local one is visible to all work-items of a work-
group. Altera Offline Compiler automatically implements local

4Direct-mapped 64 bytes cache with a 12 cycles mean latency.

and private memories depending on the underlying access
patterns, but users can also allocate and use those two memory
types.

IV. OPENCL 3D BACK-PROJECTION IMPLEMENTATIONS

The main FPGA advantage is its ability to be programmed
for task or data parallelism. The Intel FPGA SDK for OpenCL
allows both programming models, whose implementations are
showcased further on (code on Gitlab [17]).

A. Task parallelism - Single Work-Item

Single work-item is referred to as Task Parallel Program-
ming. Similar to the sequential model of a mono-threaded CPU
program, there is no data repartition across work-items5. The
Altera Offline Compiler optimization for this programming
model is based on two core concepts : memory handling,
and Shif-Register Pattern (SRP). Because the kernel is mono-
threaded, the high-throughput is achieved by ensuring that
at any moment, multiple instructions of the same kernel are
processed concurrently at every pipeline step.

A key difficulty for single work-item implementations are
loop handling, because the Altera Offline Compiler default
behaviour is to have each loop iteration executed sequentially,
thus drastically reducing the kernel throughput.

The baseline model for this article is the basic translation
of the equation described in Section II as a single kernel on
FPGAs, in a sequential CPU-like programming, and without
any optimization.

From this implementation, a first optimization is to improve
streaming throughput. By default, when a kernel needs to
access an array, it allocates memory resources for efficient
reads and writes. When an array access pattern matches with a
streaming pattern, implementation can be modified to integrate
a Shift-Register Pattern.

From lines 10 to 12 of Algorithm 1, we implement this
Shift Register Pattern mechanism. Initially, α and β arrays
are stored in global memory, and for every voxel, they are se-
quentially accessed. For every successive (x, y, z, ϕ) iteration,
the implemented shift-register pattern shifts the data contained
in the shift-register pattern array in a loop pattern. A streaming
pipeline is generated through all the loops and shifted for
each iteration, instead of a costly memory mechanism. This
optimization allows the compiler to extract the parallelism
between each loop iteration, effectively reducing the execution
time as shown with the SWI+SRP+LM kernel version in
Section V-C2. From a software developer perspective, those
three lines seem counter-intuitive. In reality, the Altera Offline
Compiler recognize the shit-register pattern and implements it
as a cascade of flip flops, sharing the same clock.

B. Data parallelism - NDRangeKernel

Data parallel implementations on OpenCL strongly depends
on the underlying hardware architecture. GPUs have SIMD
architectures, whereas FPGAs can be reprogrammed as such,

5Single work-item architecture is as in Fig.2, but with only one work-group
and one work-item per work group



Input: α[dimϕ], β[dimϕ],
sinogram[dimU*dimV *dimϕ]

Output: volume, 3D array of reconstructed volume

1 int2 SRP[dimϕ];
2 for ϕ = 0 to dimϕ - 1 do
3 SRP[ϕ] = (α[ϕ], β[ϕ]);
4 for zn = 0 to dimZ - 1 do
5 for yn = 0 to dimY - 1 do
6 for xn = 0 to dimX - 1 do
7 voxelsum = 0;
8 #pragma unroll;
9 for ϕ = 0 to dimϕ - 1 do

10 SRP[dimϕ - 1] = SRP[0];
11 for i = 0 to dimϕ - 2 do
12 SRP[i] = SRP[i+1];

/* Calculate (Un, Vn) from
SRP[ϕ] */

13 voxelsum += sinogram[Un, Vn, ϕ];
14 volume[xn,yn,zn] = voxelsum;

Algorithm 1: Shift Register Pattern Single work-item opti-
mization

but works best with iterative-bound architectures. The Altera
Offline Compiler instantiates an iterative loop in order to
sequentially execute each work-group and, if the design allows
it, multiple compute units can be implemented, allowing some
work-groups to be launched in parallel.

Therefore, the main difference compared to task parallelism
is the handling of shared local memory within a work-group.
The shift-register pattern optimization (Section IV-A) of the
projection coefficient α and β can no longer be implemented
because of the work-group repartition, and the main challenge
of the BP algorithm is to effectively access the sinogram array.
The FPGA architecture inherent inadequacy to data parallelism
can be curtailed if memory pre-fetching is efficient.

Fig. 4. Sinogram memory fetching pattern optimization.

As explained in Section II, (U, V, ϕ) is the projection of a
voxel over the detector matrix. For a given ϕ, a projection of
a (localx, localy, 1) voxel rectangle looks like the red pattern
of Fig. 4, the four ends of the volume rectangle corresponding
to the four black points. To compute the volume density of the

initial voxel rectangle, the kernel needs to access blue cells of
the sinogram, and its access pattern cannot be predicted by
the Altera Offline Compiler. Defining (Wblue, Hblue) as the
Cartesian width and height of the blue region, the geometry
of the 3D back-projection problem guarantees the following :

Wblue <
√
local2x + local2y, Hblue <= 4 (2)

In our implementation, localx = localy = 16. By choosing
a local array dimension of Xoff ∗ Yoff = 24*4, we are
assured to fetch all necessary sinogram cells needed for the
work-group computation. Therefore, the implemented fetching
algorithm (Algorithm 2) first calculates the top-left coordi-
nates6 of a matching rectangle (intersection of the red dotted
lines), and then evenly distributes the fetching of the values
inside the constant-size yellow rectangle. To guarantee a well-
ordered execution, work-item synchronization is mandatory,
and achieved at lines 4, 5, and 6.

Additionally, α and β arrays are stored in constant memory,
in order to reduce memory latency through all work-groups.

Input: constant α[dimϕ], constant β[dimϕ],
sinogram[dimU*dimV *dimϕ]

Output: volume, 3D array of reconstructed volume

1 local int local sinogram[Xoff ∗ Yoff ];
/* Recovery of work-item

characteristics */
2 voxelsum = 0;
3 for ϕ = 0 to dimϕ - 1 do

/* Calculate Un, Vn coordinates */
/* Dispatch min, max coordinates

computation between local
work-items */

4 barrier(CLK LOCAL MEM FENCE);
/* Global sinogram fetching by local

work-items */
5 barrier(CLK LOCAL MEM FENCE);
6 voxelsum += local sinogram[local Un,local Vn];
7 volume[xn,yn,zn] = voxelsum;

Algorithm 2: NDRange kernel fetching optimization

The drawback of this algorithm is that there are more
memory fetching than needed, that is, in Fig. 4, blue values
are always included in the yellow rectangle area, but its major
advantage is that each line fetching is coalesced and shared
between work-items of a work-group, thus improving burst
read access and potentially reducing memory stalls.

V. RESULTS AND DISCUSSION

A. Theoretical attainable performance

FPGA as a hardware platform can implement almost any
type of instruction in a custom pipeline, and its architecture
is therefore algorithm dependent. A major difficulty relies
on defining proper FPGA performance, especially with HLS

6Or bottom-right, depending on the array boundaries.



tools. However, when it comes to pipeline parallelism, the
optimal implementation guarantees one general operation per
cycle per input data. For a given design, the number of normal-
ized stream (NS) corresponds to the number of simultaneous
handled input. For 3D back-projection, where the elementary
data item is a voxel, can be defined the global optimal
execution time of a design (3) and the maximal throughput
(4).

Tsim =
Nvoxel

fmax ∗NS
(3)

Dopt = 1 voxel/cycle/normalized stream (4)

B. Experiment setup

The FPGA board used for testing our implementations is
a DE1-SoC coming with 1 GB of DDR3 memory and an
Altera Cyclone V chip that integrates both a dual core ARM
Cortex A9 processor and the FPGA fabric, with a maximum
FPGA frequency of 305 MHz. All versions were compiled
and synthesized using the Intel FPGA SDK for OpenCL 16.0.
The GPU used for comparison is a Nvidia Titan X Pascal,
with CUDA 8.0 toolkit.

The considered volume is a 2563 voxel cube, with 256
angles variations. Each kernel execution is monitored through
the Altera OpenCL Profiler. For each kernel, this tool provides
amongst other things the operating frequency, the execution
time, the logic utilization, and the latency, bandwith and stall
of most memory access.

In the following subsection, we suggest a benchmark for
this specific BP algorithm, to further discuss the execution
results shown on Table II. Kernel implementations match the
different optimizations previously discussed in Section IV.

C. OpenCL optimization for FPGA

1) Performance benchmarking: In practice, theoretical per-
formance of Section V-A is unattainable. The Altera Offline
Compiler memory management reduces the maximum operat-
ing frequency for kernels, and use an irreducible percentage
of logical elements for kernel enqueueing. To evaluate the
minimum logical footprint of our algorithm, we construct the
ND+Backbone kernel by removing all memory access in the
code, with only the algorithm backbone remaining. This gives
us two important information. Firstly, the logic utilization
cannot be shrunk more than 21% on the DE1-SoC board, and
secondly, the measured mean frequency for NDRange kernels
is of 140 MHz.

Also, because of the specificity of each design, every
kernel implemented uses a varying percentage of the total
available logic elements. In order to accurately compare
those designs, we propose a linear extrapolation of the
execution time for a given logic utilization to a full-chip
usage. To validate this assertion, we replicated the initial
design (ND+Naive) into a design with two Compute Units
(ND+CU, cf Table II) on the same chip. Each compute
unit of this new kernel handles half of the total voxels.
Results show that the time estimated with our linear model

(Normalized Execution Time (NET)) is slightly slower than
the actual replicated kernel execution time (ND+2CU Raw
Execution Time (RET)). This is mostly due to the memory
footprint of two compute units being smaller than twice the
logic utilization used for a single one thanks to the Altera
Offline Compiler optimizations. Overall, it validates our
extrapolation as a good empirical model, and we can safely
use the Normalized Execution Time to compare performances.

2) Single work-item and NDRange kernels: As discussed in
Section IV-A, we implemented two different single work-item
kernels. The first one (SWI+Naive) is the baseline algorithm
for this article with no optimization, and the second one
implements a shift-register pattern to reduce memory footprint
and increase streaming efficiency. This simple improvement
gives a normalized 4.5 speedup, underlining the importance of
a comprehensive approach to the algorithm data access pattern
for performance optimization.

With a single work-item there is no notion of shared
memory within a work-group. Therefore, it has less logical
footprint than a NDrange kernel. However, with an execution
time of 67.5 s, the kernel mean frequency is of 63.6 MHz,
compared to a maximum operating frequency of 140 MHz
per normalized stream. Improving a single work-item kernel
is closely related to optimizing memory handling and data
streaming effectiveness, in order to increase kernel frequency.

The ND+Naive kernel is the GPU-like version of the BP
algorithm, with no memory optimization. From this version,
we implemented the replicated kernel (ND+2CU) already
presented in Section V-C1 and the memory fetching kernel
described in Section IV-B.

What is noticeable is that the Altera Offline Compiler top
priority is to guarantee no kernel stall. With approximately an
execution time of 30 s, and a 140 MHz operating frequency for
all NDrange kernels with one normalized stream, this means
that we execute one (x, y, z, ϕ) computation per clock cycle.
Also, Normalized Execution Time for the memory fetched
kernel (ND+LM+MF) has a 1.4 speedup compared to the
ND+Naive iteration, thanks to a reduced logical footprint.

From a software developer’s perspective, the Altera Offline
Compiler is quite effective. Firstly, a program can be imple-
mented on FPGAs using two different kernel types suited for
task or data parallelism, and this generic characteristic can
be used over a wide range of algorithm implementations on
FPGAs. Secondly, the automatic optimizations are focused on
performance, and guarantees a filled pipeline. However, this
automatization comes with two main drawbacks : a bigger
memory footprint, and a reduced kernel frequency. Therefore,
effective optimization tracks is to reduce the logical footprint
and increase operating frequency, allowing more kernel repli-
cation.

D. GPU versus FPGA, consumption and performance

The DE1-SoC chip is a low-value product. For an adequate
comparison to high-end GPUs, we compiled the ND+LM+MF
kernel with 17 replicated CU targeting an Arria 10 FPGA,



TABLE II
RAW AND NORMALIZED EXECUTION TIME OF VARIOUS KERNEL

OPTIMIZATIONS ON THE CYCLONE V SOC.

Kernel version Logic utilization (%) RET(s) NET(s)
SWI+Naive 49 222.9 109.2

SWI+SRP+LM 36 67.5 24.3
ND+Naive 55 32.26 17.7
ND+2CU 96 16.9 16.2

ND+LM+MF 40 31.3 12.5
ND+Backbone 21 30.8 6.47

using 98% of its logic elements. Within Quartus, we obtained
the kernel operable frequency (260 MHz), and using the
PowerPlay Early Power Estimator, we get the power of the
design (2.27 W). Because we didn’t have access to a SX660
Arria 10 card, we estimated the execution time by dividing the
Raw execution time of the ND+LM+MF kernel on a Cyclone
V by the number of replication fitting on an Arria 10, and
further multiplying it by the ratio of both designs operable
frequency (tArria 10 = 31.3

17 ∗ 140
260 = 0.991 s).

We compare the extrapolated execution time on an Arria 10
to the raw execution time measured on a Titan X Pascal GPU
(11 TFLOPS), and to the extrapolated execution time on an
embedded Jetson TK2 GPU (1.4 TFLOPS). In terms of raw
performance, FPGA is merely comparable to GPUs due, as
discussed in Section II to the BP algorithm being appropriate
for data parallel architectures. As shown in Table III, even if
an Arria 10 OpenCL implementation has a better performance
per watt than on a Titan X, the same program is faster on a
Jetson TK2 while consuming less.

TABLE III
POWER AND ENERGY CONSUMPTION OF BP OPTIMIZATION ON GPUS

AND FPGAS.

Device Power (W) Execution
time (ms)

Energy (mWh)

Titan X Pascal 250 12 0.83
Jetson TK2 15 94 0.39
Intel Arria 10 2.27 991 0.63

Even though performances were largely improved on FP-
GAs compared to the naive version, the inadequacy between
algorithm and architecture remains a major obstacle for im-
plementing this type of algorithm on FPGAs.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we presented different FPGA optimizations
using the Intel FPGA SDK for OpenCL. We achieved to
port a CPU code on a FPGA, with an overall speedup of
8.74 between the naive and the best optimized kernel on a
Cyclone V chip. What first spring to mind is that the developer
must be aware of its program specificity, and some hardware
knowledge is required to fully harness the power of OpenCL
on FPGAs. Even more, memory management is at the core
of OpenCL implementation, and, on FPGAs, reducing kernels
logical footprint is key for further optimizations. Despite those
improvements, FPGA is lagging behind GPU implementations
partly due to a mismatch between the algorithm and FPGA

architecture. We observed that the algorithm backbone was
using a significant percentage of the total available logic
(ND+Backbone cf Table II)), and this overhead, caused by
the OpenCL handling, limits larger improvements.

In this way, FPGAs resurgence for tomography is not due
to happen unless manufacturers integrate dedicated graphical
cores within FPGAs. However, their rise is most likely through
OpenCL thanks to its capacity to allow data and task par-
allelization with the same syntax while exploiting software
developers’ expertise. In the near future, it is therefore viable
to think about heterogeneous architectures where algorithms
will be segmented depending on their inherent specificity, and
each elementary partition executed on FPGA, GPU, or CPU
devices, while using the same language: OpenCL.

VII. ACKNOWLEDGMENTS

We would like to thank Nicolas Heemeryck and Mickael
Seznec for their preliminary work on CUDA to OpenCL
portability.

REFERENCES

[1] “The International Technology Roadmap For Semiconductors 2.0,”
Semiconductor Industry Association, 2015.

[2] Philip Garcia, Katherine Compton, Michael Schulte, Emily Blem, and
Wenyin Fu, “An Overview of Reconfigurable Hardware in Embedded
Systems,” EURASIP Journal on Embedded Systems, 2006.

[3] Marek Wegrzyn, “FPGA-Based Logic Controllers for Safety Critical
Systems,” IFAC Conference on New Technologies for Computer Control,
2001.

[4] Mohamed S. Abdelfattah, Andrei Hagiescu, and Deshanand Singh,
“Gzip on a chip : High Performance Lossless Data Compression on
FPGAs using OpenCL,” International Workshop on OpenCL, 2014.

[5] Qi Jia and Huiynag Zhou, “Tuning Stencil Codes in OpenCL for
FPGAs,” International Conference Computer Design, 2016.

[6] Zeke Wang, Bingsheng He, Wei Zhang, and Shunning Jiang, “A
Performance Analysis Framework for Optimizing OpenCL Applications
on FPGAs,” IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 114–125, 2016.

[7] Kavya Shagrithaya, Krzysztof Kepa, and Peter Athanas, “Enabling
Development of OpenCL Applications on FPGA platforms,” Conference
on Application-Specific Systems, Architectures and Processors, 2013.

[8] P. E.Kinahan et al., “Emission tomography : the fundamentals of PET
and SPECT, chapter Analytic image reconstruction methods. Elsevier
Academic Press,” 2004.

[9] Nicolas Gac, Stephane Mancini, Michel Desvignes, and Dominique
Houzet, “High Speed 3D Tomography on CPU, GPU, and FPGA,”
EURASIP journal on Embedded Systems, 2008.

[10] S. L. Vasilev, A. V. Artemev, V. N. Bakulin, and S. A. Yurgenson,
“Testing loaded samples using X-ray computed tomography,” Russian
Journal of Nondestructive Testing, 2016.

[11] M. Vidhya, N. Varadharaju, Z. John Kennedy, D. Amirtham, and
D. Manohar Jesudas, “Applications of X-Ray Computed Tomography
in Food Processing,” RSNA, 2015.

[12] M. Leeser et al., “Parallel-beam backprojection: an FPGA implementa-
tion optimized for medical imaging.,” VLSISIgnal Processing Systems,
vol. 39, no. 3, pp. 295–311, 2005.

[13] Lucas L. Geyer, U. Joseph Schoepf, Felix G. Meinel, John W. Nance,
Gorka Bastarrika, Jonathon A. Leipsic, Narinder S. Paul, Marco Rengo,
PhD Andrea Laghi, and Carlo N. De Cecco, “State of the Art:
Iterative CT Reconstruction Techniques,” Journal of Food Processing
& Technology, 2015.

[14] Hongbing Lu, Jui-His Cheng, Guoping Han, Lihong Li, and Zhengrong
Liang, “A 3D distance-weighted Wiener filter for Poisson noise
reduction in sinogram space for SPECT imaging,” Medical Imaging,
Physics of Medical Imaging, 2001.

[15] “Intel FPGA SDK for OpenCL Best Practices Guide,” Intel, 2017.
[16] “Intel FPGA SDK for OpenCL Programming Guide,” Intel, 2017.
[17] “Gitlab link,” https://gitlab.com/maxGit/tomography-back-projection.git.


