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Abstract— Computed Tomography is a powerful tool to re-
construct a volume in 3D and has a wide field of applications in
industry for non-destructive testing. In these applications, the re-
construction process has a key importance to retrieve volumes that
can be easily analyzed during the control. In this paper, in order to
improve the reconstruction quality, we present a Gauss-Markov-
Potts prior model for the object to reconstruct in a Bayesian
framework. This model leads to a joint reconstruction and seg-
mentation algorithm which is briefly described. The core of the
paper is the application of the algorithm on real 3D data. We
show that our method obtains better results than other state-of-
art methods. We also propose reconstruction quality indicators
without reference which uses both reconstruction and segmenta-
tion returned by the algorithm.

Index terms— 3D Computed Tomography, non-destructive
testing, iterative reconstruction algorithm, joint reconstruction
and segmentation, Gauss-Markov-Potts

1 Introduction
Computed tomography (CT) is widely used in industry for non-
destructive testing (NDT). In many applications, X-rays are
projected on a plan of detectors which measure the decrease
of their intensity implied by their passing through the industrial
part to be controlled. By rotating the object, a set of images
is acquired during the acquisition process. Then, these images
feed a reconstruction algorithm to retrieve the interior of the
object, which make the user able to see if there is any default.

In industry, analytical reconstruction methods, based on
Radon transform [1, 2], are widely applied because of they are
fast, the most popular of which is FDK algorithm [3]. But these
methods suffer from many drawbacks, like artefacts, which re-
quire post-reconstruction corrections [4]. Moreover, they have
a lack of flexibility when one wants to introduce prior knowl-
edge in order to improve the quality of the reconstruction [5].
On the opposite, algebraic reconstruction techniques (ART)
give the possibility to easily take into account this prior knowl-
edge by adding a regularization term to the data matching term.
By this way, while the first developed ART, like SIRT [6] or
SART [7], simply try to match the data, many recent advanced
ART try to find a tradeoff between matching the data and min-
imization of, for instance, total variation [8] or l0-norm [9] of
the volume to reconstruct. In order to work well and to find
the best tradeoff, the most performing methods require to fit
parameters, which can be very tedious because the influence of
each of these parameters on the result is not always fully un-
derstandable. To overcome this difficulty, Bayesian framework
is a good way to simultaneously introduce prior information
in the reconstruction algorithm and define parameters of which
the fitting is simple thanks to their very clear role.

In this framework, we have chosen to develop a Bayesian
reconstruction method for NDT in industry using a Gauss-
Markov-Potts (GMP) prior model, which has been successfully
applied in microwave imaging [10] and image restoration [11].
Thanks to this model, our algorithm is able to reconstruct an
industrial part containing several compact regions correspond-
ing to different materials. The innovation of our method is that
the segmentation jointly retrieved by our method with the re-
construction can be useful to see defects in the controlled ob-
ject. In this paper, after having briefly presented the models, we
present the results of our method on real 3D phantom, and we
compare it to a standard FDK reconstruction and Total Varia-
tion (TV) regularization. The goal of this paper is to show the
actual efficiency of using Gauss-Markov-Potts prior model on
real 3D data : the reconstruction obtained by our method has
more constrasted regions than FDK and TV. In [12], the details
of the algorithm and some discussion about the choice of the
estimators can be found.

2 Prior models

2.1 Forward model

We denote by g the projections, and by f the object to be re-
constructed. The linearized discretized forward model for the
projections accounting for the noise is :

g =Hf + ε (1)

with
εi ∼ N (0, vεi),∀i ∈ {1, . . . ,M} . (2)

The variances vεi are unknowns and are modeled as following
an Inverse-Gamma distribution

vεi ∼ IG(αε0 , βε0),∀i ∈ {1, . . . ,M} (3)

where αε0 and βε0 are fixed parameters.

2.2 Gauss-Markov-Potts prior model

We now present the model for the controlled object f itself.
This object is composed of several materials mapped in several
compact and more or less homogeneous regions. We label each
voxel j depending on the material to which the voxel belongs.
This leads to introduce a hidden discrete field define by : zj =
k if voxel j composes material k, k ∈ {1, . . . ,K}, with K the
total number of materials. The material, or label or class, zj of
a voxel depends on the ones of its neighbours i ∈ V(j) : that is
why we assign markovian model for z, which is a Potts model
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Figure 1: Potts field for different values of γ0

:

p(z|γ0,α) ∝ exp

 N∑
j=1

 K∑
k=1

αkδ(zj − k) + γ0
∑
i∈V(j)

δ(zj − zi)


(4)

where α and γ0 are fixed parameters. Potts coefficient γ0 fits
the compacity of the regions. There exits a critical value γc
above which regions are compact, as illustrated in figure 1. This
critical value has been exactly computed in 2D for Ising field
(K = 2) [13]. Given its label zj = k, voxel j has a gray level
fj distributed around a mean mk with a variance vk

fj ∼ N (mk, vk) if zj = k. (5)

The means m and variances v of the classes are unknown and
have the following priors

mk ∼ N (m0, v0),∀k ∈ {1, . . . ,K} (6)

and
vk ∼ IG(α0, β0),∀k ∈ {1, . . . ,K} (7)

where m0, v0, α0 and β0 are fixed parameters.

3 Joint Maximization A Posteriori
(JMAP) algorithm

After having built our prior models, the reconstruction algo-
rithm consists in estimating each unknown f , z,vε,m and v
by maximizing their joint posterior probability

(f̂ , ẑ, v̂ε, m̂, v̂) = argmax
(f ,z,vε,m,v)

{p(f , z,vε,m,v|g;M)}

(8)
thanks to the approximate maximization iterative algorithm

f (t) ← argmaxf

{
p(f ,z(t−1),v

(t−1)
ε ,m(t−1),v(t−1)|g;M)

}
z(t) ← argmaxz

{
p(f (t),z,v

(t−1)
ε ,m(t−1),v(t−1)|g;M)

}
v
(t)
ε ← argmaxvε

{
p(f (t),z(t),vε,m

(t−1),v(t−1)|g;M)
}

m(t) ← argmaxm

{
p(f (t),z(t),v

(t)
ε ,m,v(t−1)|g;M)

}
v(t) ← argmaxv

{
p(f (t),z(t),v

(t)
ε ,m(t),v|g;M)

}
(9)

where index t denotes the iteration t. This algorithm is a type
of variational bayesian approximation [14] which is a local op-
timization. By applying Bayes rule

p(f , z,vε,m,v|g;M) ∝ p(g|f ,vε) p(f |z,m,v)
p(vε|αε0 , βε0) p(z|α; γ0)
p(m|m0, v0) p(v|α0, β0),

(10)
each step of the algorithm can be performed, as we have de-
tailed in [12]. Thanks to this method, we see that an estimation
of the object f and the labels z, i.e. a segmentation of the ob-
ject, are retrieved. This is a great advantage, because there is
only one source of uncertainties in the control process, while,
when applying many other methods, the reconstruction algo-
rithm and the post-reconstruction segmentation algorithm are
two different sources of uncertainties.

4 Results on real 3D IQI data

The considered volume is a real 3D IQI phantom [15], dis-
cretized in 512 × 512 × 256 voxels. The data are 300 pro-
jections of size 512 × 512 pixels. The number of materials in
the volume to reconstruct is K = 4. We apply our method and
compare it with FDK [3] and Total Variation (TV) minimiza-
tion reconstruction methods. Concerning TV, it is implemented
by following the algorithm proposed in [16], based on Bregman
iteration [17].

4.1 Initialization

To apply JMAP algorithm described in section 3, an initial vol-
ume and an initial segmentation are required. As initial volume,
because we have many projections, we use FDK reconstruction,
shown in figure 2. Next, we need a segmentation of this initial
volume as initial segmentation. This segmentation is obtained
by a non-uniform thresholding of FDK reconstruction.

To determine the thresholds, we estimate the histogram of
the initial volume. Then, we apply the peak-picking algorithm
explained in [18] and originally developped for non-parametric
clustering [19]. For each bin, we seek the nearest peak in its
neighbourhood : this peak is called the parent-bin of the current
bin, which is so called a child-bin of this peak. Each parent-
bin and its children are seen as a class, i.e. the voxels in the
children-bins of parent-bin k are assigned the initial class k.
Because we know the number of classes (K = 4), each parent-
bin is assigned as the child-bin of a higher parent-bin in its
neighbourhood until there are only K = 4 parents-bins. This
gives the segmentation shown in figure 3, used as initial seg-
mentation by JMAP algorithm.

4.2 Results and comparison with FDK

Table 1 summarizes the values of most of the parameters we
fixed to perform the joint reconstruction and segmentation of
IQI data. The controlled volume is composed of 3 materials
and air : that is why we fix K = 4. The other parameters are
fixed according to a strategy we propose in [12]. Thanks to the
clear Bayesian prior model, tuning the parameters of JMAP is
straightforward, while it is more tedious for TV.

Parameters αε0 K γ0 v0 α0 β0
Fixed values 2.1 4 3 1 5 0.01

Table 1: Reconstruction parameters for 3D IQI data

Next, we run JMAP algorithm and we obtain the reconstruc-
tion and the segmentation shown in figures 6 and 7 respectively.
When comparing FDK, TV and JMAP reconstructions in fig-
ures 2, 4 and 6 respectively, we can see the external circle sur-
rounding the object in FDK reconstruction is completely erased
by JMAP algorithm. Moreover, the JMAP reconstruction is
more constrasted than the FDK and TV reconstructions, espe-
cially for the white region in the top of the object. This better
contrast is still emphasized when in figure 8, we plot the pro-
files of the little holes in the bottom of the object : the profile
of JMAP reconstruction is sharper than the one of FDK recon-
struction.

To deepen the comparison, we have defined three reconstruc-
tion quality indicators. The first focuses on the compactness of



the classes and is defined as :

Comp =
1

K

K∑
k=1

1

Nk

∑
j∈Rk

1

NV

∑
i∈V(j)

δ(k − zi) (11)

where Rk = {j|zj = k}. The second measures the distin-
guishability of the classes on the contours :

dist = 1− 1

K

K∑
k=1

1

Nk

∑
j∈Rk

(d̂ist)j (12)

with, if zj = k :

(d̂ist)j =


∑
i∈V(j) exp(−(fj−fi)

2)(1−δ(k−zi))∑
i∈V(j)(1−δ(k−zi))

if j is on a

contour
0 otherwise

(13)
The third indicator which quantifies how homogeneous the
classes are :

homo =
1

K

K∑
k=1

1

Nk

∑
j∈Rk

(ĥomo)j (14)

with, if zj = k :

(ĥomo)j =

∑
i∈V(j) exp

(
−(fj − fi)2

)
δ(k − zi)∑

i∈V(j) δ(k − zi)
(15)

if
∑
i∈V(j) δ(k − zi) 6= 0. Otherwise, (ĥomo)j = 0.

In this way, we have three reconstruction quality indica-
tors which respectively measure compactness, distinguishabil-
ity and homogeneity of the classes in the reconstruction. These
indicators are designed such that the higher they are, the better
the reconstruction is. One shall notice they need a segmenta-
tion of the reconstruction to be applied. In table 2, we compute
them on the joint recontruction and segmentation retrieved by
JMAP, on the initial reconstruction by FDK in figure 2 and the
initial segmentation of this reconstruction in figure 3, and on
TV reconstruction and its posterior segmentation in figure 5,
obtained thanks to a Gauss-Markov-Potts prior model proposed
in [20]. Because the labels of each of the three reconstruction
are very similar,Comp is almost the same for the three methods.
Concerning dist and homo achieves the highest values, which
confirms that our method outperform FDK and TV.

Indicator Comp dist homo
FDK 94.4 % 78.4 % 78.3 %
TV 94.5 % 77.5 % 77.5 %

JMAP 94.3 % 79.0 % 78.8 %

Table 2: Comparison of FDK, TV and JMAP using reconstruction quality in-
dicators

5 Conclusion and perspectives
In this paper, we have presented results on real 3D phantom of
a reconstruction method which has achieved high compactness,
distinguishability and homogeneity of the classes obtained by
the segmentation performed jointly with the reconstruction.
Thanks to clear prior models, the parameters of the algorithm
have been proved easy to fit. The method has shown better re-
sults than both FDK and TV reconstructions. An important fu-
ture work would be to propose a massively parallelized version
of the algorithm on GPU.
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Figure 2: FDK reconstruction (bottom and top) Figure 3: Segmentation of FDK reconstruction (bottom and top)

Figure 4: Reconstruction obtained by TV (bottom and top) Figure 5: Segmentation of TV reconstruction (bottom and top)

Figure 6: Reconstruction obtained by JMAP (bottom and top) Figure 7: Segmentation obtained by JMAP (bottom and top)
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Figure 8: Profiles of holes for FDK (a), TV (b) and JMAP (c) reconstructions


