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1. Introduction

Devices involving dry friction [1,2] are often used to decrease maximal amplitudes of structures during resonance. Each device
is characterised by a different behaviour depending on the geometry, as well as the position and the dimensions of surfaces in
contact. As a consequence, different adapted contact models have been developed, as presented for example in [3–6]. Two main
categories of friction contact models are encountered: Macroslip and Microslip [7]. The main difference between them concerns
the homogeneity of their behaviour along contact surfaces. With a Macroslip model, the behaviour of the contact surface is global
and homogeneous and every contact at any moment is either in a completely slipping or in a completely stuck state. Considering
Microslipmodels, the behaviour of contact surfaces is nomore homogeneous andmixed configurationsmay be present. Part of the
contact surface may be stuck while another part may slip at the same time. Taking into account the most adapted model, a good
agreement can be obtained between numerical and experimental results, as shown for example in [8–10].

A common characteristic between all friction devices relies on the induced flattening of frequency response function (FRF)
peaks obtained when specific normal loads are applied at the contact. When normal load is very high in comparison with the
excitation force, the dynamic behaviour is almost linear and FRF exhibits high level resonance peaks. For lower normal loads, the
amplitude of peaks diminishes and the FRF may become very flat. Finally, when normal load is much lower than the excitation
force, the dynamic behaviour is linear again and the FRF may exhibit high amplitude peaks [11,12].

Two different approaches are used to explain such flattening. Energetic approaches, as presented for example in [13], suppose a
direct relationship between peak flattening and the energy dissipated by dry friction. Experimentally it is shown that, within stick/
slip states, the amplitudes of FRF decrease and the ratio between dissipated energy and input energy increases. Consequently
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dissipated energy is considered as the cause of flattening. On the other hand, peak flatteningmay be explained as a consequence of
changes in boundary conditions during stick/slip states. The occurrence of different contact states induces a phase difference
between displacement and components of the nonlinear friction force that limit its effect and then explain peak flattening. Several
authors [14–16] analyse bending and/or torsion stick/slip motions associated to industrial applications.

In order to get a better understanding of this phenomenon, a numerical model based on a single dof system is used here. An
energetic analysis and an analysis based on the equilibrium of forces at resonance are both considered. A classical Multi Harmonic
BalanceMethod (MHBM) operating in the frequency domain [17–19] compared to a reference transient solution obtained in the time
domain is used to determine the influence of dissipated energy and changes in boundary conditions associated to contact states.

2. Developments and contact model

The prediction of responses of systems involving dry friction is complex due to their highly nonlinear behaviour. Different
techniques are available to solve such nonlinear problems. Time domain solutions, based on numerical integrations, give precise
results but are often costly and may induce large discrepancies if time steps are not properly chosen. Frequency based methods
generally reduce drastically computational efforts by considering that the solution is periodic. Different approaches may be used,
depending on the complexity of the structure and the level of non linearity. The classical Harmonic Balance Method is used in
many applications dealingwith the dynamics of periodically excited structures with contact and dry friction. Steady state response
approximations of motion are obtained in the frequency domain by decomposing the periodical response of the nonlinear system
into a Fourier series, leading to a set of algebraic equations. The accuracy of this method to predict responses and friction forces is
highly dependent upon the number of harmonics retained. But keeping a too large number of harmonics reduces the interest of the
method.

2.1. Multi Harmonic Balance Method

A single dof system (Fig. 1) associated with a Masing Macroslip contact model (Fig. 2) [18,19]) has been chosen in order to
simplify the numerical procedures and to be able to conduct parametric studies. This system is supposed to model a blade to
ground with Macroslip frictional contact where parts in contact are either slipping or sticking. Contact separation and partial slips
are not allowed here.

A periodic excitation force Fex(t)=f0cos ωt is applied to the system, and a normal load Fn is applied to the frictional damper to
load the contact.

For such systems, the motion equation is:
where
mẋ̇+ cẋ + kx = Fex−fnl: ð1Þ
Structural parameters are: massm, stiffness k and viscous damping c. The frictional device is represented by its stiffness kd, the
coefficient of friction μ at the contact interface and the normal load Fn which is supposed to be constant. x(t) represents the time
dependent displacement of the entire systemwhile z(t) is the displacement of the contact point with respect to ground. y(t) is the
relative displacement between the mass and the contact point y(t)=x(t)−z(t).

According to the Macroslip approach [19], the friction force fnl can be expressed as:
fnl tð Þ = + kd x tð Þ−z tð Þð Þ when kd x−zj j ≤ μFn
+ μFnsign żð Þ when kd x−zj j ≥ μFn

:

�
ð2Þ
The steady state associated to Eq. (1) may be obtained using the MHBM, which considers the total displacement as a
superposition of harmonic components with frequency ω.
x tð Þ = ∑
N

n=1
ancos nθð Þ + bn sin nθð Þ ð3Þ

θ=ωt, an and bn are harmonic (cosine and sine) components and N is the number of harmonic retained.
Fig. 1. 1 DOF system.
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Fig. 2. Hysteresis loop (Masing Model): Multi term approximation. Parameters θ* and θ0.
Wang [19] shows that the friction force, when associated with the Macroslip model of Fig. 2, can be approximated as
follows:
where
fnl tð Þ = μFn + kd x tð Þ−Amaxð Þ for stick contact state
μFnsign ẋð Þ for slip contact state

�
ð4Þ

Amax is the highest amplitude of the total displacement and x(t) is given as a function of θ0.

Am = Amax = x θ0ð Þ = ∑
N

n=1
an cos nθ0ð Þ + bn sin nθ0ð Þ ð5Þ
The two parameters θ* and θ0 are introduced to determine whether the slider is within a stick or a slip state. Angle θ0 is
associated to point A of the hysteresis cycle where the slip state stops and the stick state begins. Angle θ* is associated to point B
where the slip state begins and the stick state stops. Taking into account these two parameters, defining contact states, the
nonlinear force can be developed into two different expressions, one for the stuck state where θ0bθbθ* and another for the slip
state where θ*bθbθ0+π.

As observed in Figs. 2 and 3, the stuck state is characterised by line (AB) and the slipping state by line (BC).
Changes in contact states from slip to stick are identified by points A and C, at θ=θ0 and θ=π+θ0 respectively. Change from

stick to slip occurs at point B where θ=θ*.
The nonlinear force due to dry friction is also approximated using a truncated Fourier series as:
fnl tð Þ = ∑
N

n=1
fcn θð Þcos nθð Þ + fsn θð Þsin nθð Þ ð6Þ

and fsn(θ) are functions of the contact model chosen and, as the nonlinear force is antisymmetric [19], can be obtained from
fcn(θ)
the following Fourier integrals:
fcn θð Þ = 2
π

∫
θ0 + π

θ0

fnl tð Þcos nθð Þdθ ð7Þ
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Fig. 3. Nonlinear force versus time in 1HBM, MHBM and time solution for Fn=3 N, frequency=20 Hz.
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fsn θð Þ = 2
π

∫
θ0 + π

θ0

fnl tð Þsin nθð Þdθ ð8Þ
Both expressions (2) of the nonlinear force in stuck and slip states, written as a function of the state parameters θ0 and θ*, are
considered when integrating over the proper intervals.

By introducing (3) and its derivatives and (4) into the equation of motion (1) and identifying the cosine and sine components, a
system of N algebraic equations with 2 N+2 unknowns a1, b1, …..,an, bn, θ0, θ* is obtained.
−mω2 ∑
N

n=1
n2 ancos nθð Þ + bnsin nθð Þð Þ

" #

−c ∑
N

n=1
n ansin nθð Þ−bncos nθð Þð Þ

" #

+ k ∑
N

n=1
ancos nθð Þ + bnsin nθð Þ

" #
+ ∑

N

n=1
fcncos nθð Þ + fsnsin nθð Þ = f0cos θð Þ

ð9Þ
Two additional equations are required. The first one states that at θ=θ0, displacement x(t) reaches a maximal value Amax and
so, velocity is null. Null velocity is written as:
∂x
∂t jθ=θ0

= ω ∑
N

n=1
n bncos nθ0ð Þ−ansin nθ0ð Þð Þ = 0: ð10Þ
At point B (Fig. 2), the two expressions of the nonlinear force given for stick and slip states are equal. Consequently, the second
additional equation will be:
μFn + kd x tð Þ−Amð Þ = −μFn then

μFn + kd ∑
N

n=1
an cos nθ�

� �
−cos nθ0ð Þ� �

+ bn sin nθ�
� �

−sin nθ0ð Þ� �� �
= −μFn:

ð11Þ
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Fig. 5. Relative error for the nonlinear force calculated with 1HBM and MHBM.
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For each pulsationω, initial values are needed for θ* and θ0. The unknown coefficients an, bn, θ* and θ0 are determined by solving
Eqs. (9)–(11) using a Newton–Raphson iterative method [19].
2.2. MHBM versus time solution

Parameters considered for the numerical application are as follows: mass m=1.24 kg, system stiffness k=17,890 N/m and
viscous damping c=0.134 Ns/m. Contact stiffness kd=3500 N/m, and dry friction coefficient is μ=0.5. f0 is taken to unity.
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maximum displacement Amax with respect to parameter τ.
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Figs. 3 and 4 show the evolution of the nonlinear force as a function of time and displacement respectively. Results obtained
from the MHBM (using N=1 and N=55 harmonics) are compared with those obtained from a time marching direct solution
(Newmark method with constant average acceleration). The Multi Harmonic Balance truncated at the first harmonic will be
denoted as 1HBM and MHBM will be associated to cases when more than one harmonic are retained.

As expected, the accuracy of the MHBM increases with the number of harmonics considered.
Fig. 5 shows the error obtained for the nonlinear force fnl(t) when using the 1HBM as a function of the normal load (reference

results obtained from MHBM with N=55).
This error is 10% at the quasi slip state, increases up to 25% and finally decreases to zero when approaching the quasi stick

region corresponding to the high values of normal force Fn. Then, the 1HBM provides an accurate description of hysteresis curves
as well as nonlinear forces, especially for low values of the normal contact force leading to a highly nonlinear behaviour.

2.3. Physical considerations

Fig. 6a gives the FRFs obtained at different normal loads using the MHBM.
For Fn=0.01 N, contact is always sliding and the system exhibits a linear behaviour. In this case, the equivalent stiffness is

keq=k and resonance occurs at:
f1 =
1
2π

ffiffiffiffiffiffiffiffi
keq
m

r
= 19:1Hz: ð12Þ
For FnN500 N, contact is always completely stuck and the resonant frequency is in this case a function of both system stiffness
and contact stiffness. The equivalent stiffness is keq=k+kd and resonance is at:
f2 =
1
2π

ffiffiffiffiffiffiffi
keq
m

s
=

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd + k

m

r
¼ 20:9Hz: ð13Þ
When normal load decreases from 500 N to 0.01 N, contact state changes from stick to stick/slip state. As a consequence of
those changes, peaks become flat and the amplitudes obtained are much smaller than those associated to the linear cases when
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contact is stuck or slipping. The dynamic behaviour obtained with a simple single dof system with dry friction exhibits the three
different contacts states (stick, stick/slip and slip) and peak flattening is classically observed.

The advantage of representing results with respect to the difference between parameters θ* and θ0 lies in an easier
comprehension of shape changes induced on the hysteresis curves during various contact states.

An illustration of the transformation of hysteresis curves is given in Fig. 7. The case of slip contact induces a small difference
between θ* and θ0 and, graphically, when approaching this state, point B becomes closer to point A than to point C (Fig. 2). As a
consequence, the hysteresis curve degenerates into a horizontal line. When approaching the stick state, difference in the two
parameters comes close to π, and point B becomes closer to point C. In this case, the hysteresis curve evolves toward a line with a kd
slope. The percentage of the stick state τ over a period of motion is defined as τ=100.(θ*−θ0)/π. It is equal to zero for systems
without friction and increases with the increase in contact normal force. τ=0% and τ=100% correspond to pure slip and pure
stick motions respectively.

The maximal efficiency of the considered damping device, corresponding to the minimum amplitude in Fig. 6c is observed at a
frequency of 20 Hz and a normal force Fn=3 N. According to Fig. 6b, (θ*−θ0) is in this case equal to π/2, then τ=50%. This specific
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Fig. 11. Total dissipated energy for different normal loads.
state corresponds to a semi stick semi slip configuration. Fig. 6c combines the results of Fig. 6a and b. Fig. 6a shows that for a given
normal force Fn, there exist only one maximum amplitude Amax and an associated frequency. From Fig. 6b, it appears that at this
frequency, are associated a unique set of contact parameters θ* and θ0, and consequently a unique value of τ. Fig. 6c gives the
evolution of the maximal amplitude calculated for each normal load as a function of parameter τ. Maximal efficiency is clearly
obtained for τ=50%.

3. Dry friction and viscous dissipated energy

The energy dissipated by the dry friction damper Efriction and by the viscous damper Eviscous is calculated over a period of one
forcing cycle at steady state, using the following expressions:
Efriction = ∫
T

fnl tð Þẏdt ð14Þ

Eviscous = ∫
T

Fviscousẋdt = ∫
T

c ẋð Þ2dt = πcω Amax ωð Þð Þ2 ð15Þ

fnl(t) is the nonlinear contact force, y(t) the relative displacement between damper andmass, and Amax the amplitude of the
where
total displacement x(t) associated with forcing frequency ω.

The dissipated energy by dry friction may be obtained from the hysteresis loop giving the nonlinear friction force fnl(t) as a
function of the relative displacement y(t). Relations between response functions and dry friction dissipated energy are illustrated
in Figs. 8–10. Those results are associated to three given normal forces Fn that induce the three specific contact states: majority slip
for Fn=1 N, stick/slip for Fn=3 N and finally Fn=10 N for majority stuck. The case Fn=1 N gives the highest magnitude of
response, the largest hysteresis curve and the highest dry energy dissipation. Fn=3 N gives the lowest amplitude associated to the
thinnest hysteresis curve, whereas Fn=10 N leads to greater levels in magnitude.

Fig. 10a shows the energy dissipated by dry friction for different normal loads varying from 0.01 N to 350 N. At very low values
of normal loads, the system is purely slipping. As the system is purely slipping, dry friction energy dissipation tends to zero. For
very high normal loads FnN350 N, relative motion is no more possible (stuck state) and dry energy dissipation tends to zero as
well. There is no dissipated energy by dry friction associated to those two limit linear cases.
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The total dissipated energy is obtained by adding dissipation due to dry friction Efriction and viscous damping Eviscous as
expressed in (16).
Etot = Efriction + Eviscous ð16Þ
Fig. 11 gives the evolution of the total dissipated energy and the same conclusions as made previously appear clearly.
Dissipated energy decreases also with peak amplitude lowering (Fig. 6a).

Fig. 12 superimposes the evolution the maximum of the total energy, the dry friction energy and the viscous energy (obtained
from Figs. 10a and 12) as a function of τ. Using this representation, low normal loads are located near τ=0%whereas high normal
loads are located near τ=100%.

It is interesting to examine the ratio of energies associated to dry friction and to viscous damping (Fig. 13).When normal load is
low, contact is mainly slipping and the rubbing element becomes prominent and can dissipate more than 95% of the total
dissipated energy. Within stick/slip states the influence of the rubbing element is much more significant than the influence of the
viscous damper. Viscous damping energy is almost negligible within stick/slip zone and participates significantly only for the quasi
linear cases associated to low and high normal loads.

Energy dissipated by dry friction exhibits twomaxima, corresponding to Fn=1 and Fn=200 N (Fig. 10). Thesemaxima are also
associated to the resonance peaks, as observed in Fig. 6a. Below Fn=1 N, the system tends to a pure slip behaviour and so Efriction
tends to zero (Fig. 10a). Beyond Fn=200 N, the system tends to pure stick behaviour and Efriction tends also to zero (Fig. 10b).
Efriction has a minimum value at the optimum value of the stick–slip states, corresponding to the minimum displacement
amplitude, observed for τ=50% in Fig. 6c.

The total energy is also minimum for τ=50%, and globally follows the same evolution than themaximal amplitude response of
Fig. 6c.

As a conclusion, since the minimum in displacement does not correspond to the maximum of dissipated energy, neither total
dissipated energy nor energy only dissipated by dry friction is sufficient to explain FRF flattening.

4. Changes in the contact state due to stick/slip behaviour

The MHBM has a major interest here as it allows defining a phase parameter that describes changes in boundary conditions
within stick/slip motions. The nonlinear tangential force can be conveniently expressed as:
fnl tð Þ = ∑
N

n=1
fcn cos nθð Þ + ∑

N

n=1
fsn sin nθð Þ = fnlcos nθð Þ + fnlsin nθð Þ: ð17Þ
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Fig. 14 shows the same evolution for fnl(t) over a cycle period 2π (as drawn in Fig. 3), its cosine and sine components fnlcos(t),
fnlsin(t) and displacement x(t). This figure demonstrates that displacement x(t) and nonlinear force fnl(t) are in phase, withmaxima
at θ=θ0, as defined for the Macroslip model presented in Fig. 2. The sine component is also in phase with x(t). On the other hand,
the cosine part of the nonlinear force is confirmed as out-of-phase with respect to displacement. These results stand whatever the
value of the normal force Fn and the value of frequency, i.e. whatever the value of τ.

Fig. 15 gives the evolution of the nonlinear tangential force fnl as well as the in-phase Fnlsin and out-of-phase Fnlcos components
of the nonlinear force calculated using the MHBM (N=55), as a function of parameter τ. For low normal forces, and then for low
values of stick percentage τ close to 0%, the magnitude of the nonlinear force starts at zero (totally slip state). Both Fnlcos and Fnlsin
have the same contribution until reaching the optimum of the stick–slip states at τ=50%.

At this point, Fnlcos begins to decrease and the nonlinear force increases and becomes almost equal to Fnlsin when approaching
the stick state. Close to the stick state (τ=100%), fnl(t) is almost equal to the magnitude of its in-phase component Fnlsin whereas
the magnitude of the out-of-phase component Fnlcos is almost equal to zero.

This phenomenon can be physically explained as follows: close to the stick state, the nonlinear force becomes linear and in
phase with displacement; implying that the contribution of the in-phase component will be dominant whereas the contribution of
the out-of-phase component will be negligible.

When examining all the forces acting, the viscous force and the cosine component of the nonlinear force are always out-of-
phase with respect to displacement, whereas the inertial force, the spring force and the sine component of the nonlinear force are
in phase. Peak flattening is measured at the maximal amplitude Amax that occurs at a particular value of frequency ω denoted Ω.
The in-phase forces with respect to displacement x(t) are:
Inertial Force : fin tð Þ = mẋ̇ tð Þ = −mΩ2x tð Þ

Restitution Force : fspring tð Þ = k:x tð Þ

In−phase tangential Force : fnlsin tð Þ = ∑
N

n=1
fsnsin nθð Þ:

ð18Þ
Consequently, the maximal value of the total in-phase force Fp associated to maximal amplitudes is:
Fp = Fin + Fspring + Fnlsin ð19Þ
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Fig. 16. Evolution of maximum displacement Amax with respect to τ for c=0 and c=0.134.
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Fin = −‖mẋ̇ tð Þ‖; Fspring = k:‖x tð Þ‖ = k:Amax;

Fnlsin = ‖∑
N

n=1
fsnsin nθð Þ‖ = ‖fnlsin tð Þ‖
The out-of-phase forces are:
Viscous force : fvisc tð Þ = cẋ tð Þ
Out−of−phase tangential Force :

fnlcos tð Þ = ∑
N

n=1
fcncos nθð Þ

ð20Þ
with a maximum Fo at:
Fo = Fvisc + Fnlcos ð21Þ

Fvisc = ‖cẋ tð Þ‖Fnlcos = ‖∑
N

n=1
fcncos nθð Þ‖ = ‖fnlcos tð Þ‖
These forces may be written per displacement unit Fp/x and Fo/x:
Fp=x = k−‖mẋ tð Þ‖
Amax

+
Fnlsin
Amax

ð22Þ

Fo=x =
‖cẋ̇ tð Þ‖
Amax

+
Fnlcos
Amax

ð23Þ
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Fig. 18. Evolution of (Fnlcos/Amax) and (Fvisc/Amax) components of the out-of-phase per displacement force, with respect to τ.
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Considering equilibrium, it becomes:
Ftot =x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2o=x + F2p=x

q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖cẋ tð Þ‖
Amax

+
Fnlcos
Amax

� �2

+ k− ‖mẋ̇ tð Þ‖
Amax

+
Fnlsin
Amax

� �2
s

=
f0

Amax

ð24Þ

f0 is the excitation force. Fig. 16 presents the evolution of the amplitude Amax as a function of the stick percentage τ. The
where
highest amplitudes are obtained in the case of quasi linear slipping and stuck contact. The optimal state, associated to the lowest
amplitude, is obtained at τ=50% where a period of oscillation is constituted by half-stuck and half-slip motions.

Fig. 17 shows the evolution of the in-phase and out-of-phase forces per displacement unit Fp/x and Fo/x. The total in-phase force
appears clearly negligible when compared to the out-of-phase component, excepted close to purely slip and stick states where
both components have the same order of magnitude. The maximum value for Fo/x occurs at τ=50% where the lowest maximal
amplitude Amax has been noticed before.

Fig. 18 gives the two components of the total out-of-phase force Fo/x associated to dry friction Fnlcos/Amax and to viscous damping
Fvisc/Amax. Viscous damping effects cannot be neglected close to completely stuck and to completely slipping contact states.
Elsewhere, the total out-of-phase force Fo/x is verywell approximated by Fnlcos/Amax. This result is confirmed by Fig. 16which shows
the highest amplitude Amax as a function of the different contact states for both cases with andwithout viscous damping.Whatever
the case, the optimal stick/slip states remains at τ=50%with about the same value of amplitude and viscous damping effect is only
significant for the completely stuck or slipping states.

Fig. 19 superimposes the evolution of the maximal displacement amplitude, the dry friction dissipated energy Efriction and the
out-of-phase force per displacement unit Fo/x, given as function of the percentage of stick τ.

When Amax reaches its lowest value at τ=50%, the energy dissipated by dry friction Efriction is the lowest while the out-of-phase
force Fo/x reaches a maximum.

The effect of the nonlinear force appears clearly when viscous damping is not considered. The maximal amplitude is at
resonance and, in this case, the total in-phase force per displacement unit Fp/x, given by Eq. (22) is classically equal to zero.Without
viscous damping, the total out-of-phase force per displacement unit Fo/x is only constituted by the cosine component Fnlcos of the
nonlinear force:
Fo=x =
Fnlcos
Amax

: ð26Þ
Then, the equilibrium given Eq. (5) reduces to:
Ftot =x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2o=x + F2p=x

q
= Fo=x =

Fnlcos
Amax

= f0 = Amax: ð27Þ
Consequently, the maximal amplitude Amax is inversely proportional to the out-of-phase force per displacement.
As a conclusion, changes in contact states during a stick/slip phase has a major influence on the out-of-phase force per

displacement unit and consequently on the maximal vibration amplitudes. Then, FRF flattening may not be explained by energy
dissipation induced by the rubbing element but by the perturbation in boundary conditions it induces during each vibration cycle.
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5. Conclusion

The objective of the present study is directed toward the identification of the physical causes explaining the flattening
phenomenon of FRF peaks of structures including dry friction devices. Two different hypotheses, classically found in the literature,
have been examined: the first is related to energy dissipated and the second implies changes in contact states during stick/slip
motions.

Numerical results, obtained using a representative single degree-of-freedom system, show that peak flattening cannot be
associated to an increase in the dissipated energy induced by dry friction nor to an increase in the total dissipated energy (dry
friction and viscous damping) as those two quantities decrease with amplitude. Considering dissipation, it should be however
noticed that a majority of the whole dissipated energy may be associated to dry friction within stick/slip states.

On the other hand, the analysis of the different forces acting on the system at resonance proves that when contact moves
toward stick/slip states, the out-of-phase force per displacement unit increases, implying a decrease in vibration amplitudes. The
contact state that minimises amplitudes is half-stuck and half-slip when viscous damping is neglected. When viscous damping is
considered and for classical values of damping ratios, the optimal contact state changes slightly towards more stuck
configurations. However, also in this case, the increase in the out-of-phase force per displacement unit when contact moves
toward stick/slip states is confirmed to be the real cause of peak flattening.
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