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Abstract: Motivated by the problem of vibrations due to joint clearance between components
in complex mechanical systems, we study in this paper the motion of a beam between rigid
obstacles. We assume that the material is elastic and the motion is planar. The contact is
described with a non-penetration condition, which leads to amodel of dynamics with unilateral
constraints. We propose a family of fully discretised approximations and their convergence is
established. Moreover we present some examples of implementation using either finite element
or spline space discretisation.
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1 Introduction

In several industrial fields, like automotive or aerospace,
the assemblies of components in complex mechanical
systems are not perfectly achieved and some looseness
occurs. Under external forcing, these ‘defects’ introduce
unwanted vibrations and create noise and untimely wear.
It is then important to evaluate the consequences of such

defects on the global behaviour of the structure in order
to propose some ‘defect tolerances’ which preserve the
customer satisfaction (in automotive industry for instance)
or the durability of the structures (for assemblies of pipes
for instance).

Motivated by such problems, we study in this paper
the motion of a beam which is submitted to an external
excitation force, which is clamped at its left end and
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which motion is limited by rigid obstacles. The contact
is modelled with a non-penetration condition along the
obstacles and a Signorini’s complementary condition for
the displacement and shear stress at the right end of the
beam.

Moreprecisely, let us denote byL the lengthof thebeam
and by u(x, t), (x, t) ∈ ΩT = (0, L) × (0, T ), the vertical
displacement. We assume that the material is elastic and
the motion is planar. The equilibrium equation is given by

utt + k2uxxxx = f in ΩT , (1)

where f is the density of external forces, k2 = EI
ρS , S and I

are respectively the surface and the inertial momentum of
the section of the beam and ρ and E are respectively the
density and the Young’s modulus of the material.

The beam is clamped at its left end, i.e.,

u(0, t) = 0, ux(0, t) = 0 in (0, T ). (2)

We assume that the vertical displacements are limited by
some rigid obstacles, so we define for all x ∈ [0, L] an
interval of admissible positions [g1(x), g2(x)] such that

u(x, t) ∈ [g1(x), g2(x)] in ΩT . (3)

In order to model both the cases of punctual obstacles or
longitudinal ones, we allow g1(x) and g2(x) to take infinite
values, i.e., g1(x) ∈ R ∪ {−∞} and g2(x) ∈ R ∪ {+∞}.

At the right end of the beam, we assume that no
moments act, i.e.,

uxx(L, t) = 0 in (0, T ), (4)

and the Signorini’s complementary condition leads to

g1(L) ≤ u(L, t) ≤ g2(L) in (0, T ), (5)

and


σ(L, t) ≥ 0 if u(L, t) = g1(L),
σ(L, t) ≤ 0 if u(L, t) = g2(L),
σ(L, t) = 0 if u(L, t) ∈ (g1(L), g2(L)).

(6)

Then equations (1)–(6) can be rewritten as


utt + k2uxxxx = f in ΩT ,

u(x, t) ∈ [g1(x), g2(x)] in ΩT ,

u(0, ·) = ux(0, ·) = uxx(L, ·) = 0 in (0, T ),

uxxx(L, ·) ∈ ∂ψ[g1(L),g2(L)](u(L, ·)) in (0, T ),

(7)

where ψ[g1(L),g2(L)] denotes the indicator function of
the interval [g1(L), g2(L)] and ∂ψ[g1(L),g2(L)] is its
subdifferential (see Rockafellar, 1970).

Of course, the first equation in (7) should be understood
as the equilibrium equation of the system when there is
no contact between the beam and the obstacles. Otherwise
the constraint equation (3) leads to a reaction force µ,
which is a measure on [0, L] × [0, T ] and takes its values in
−∂ψ[g1,g2](u), i.e., satisfies the following complementarity
condition:

dµ

d|µ| (x, t) ∈ −∂ψ[g1(x),g2(x)](u(x, t))

d|µ|a-e on [0, L] × [0, T ].

For a more detailed description of the reaction force
due to the constraint in the particular case of a single
longitudinal obstacle below the beam, see also Ahn and
Stewart (2005a, 2005b).

Next we complete the model with initial conditions at
t = 0

u(·, 0) = u0, ut(·, 0) = v0.

In order to obtain a variational formulation of this
problem, we define the following functional spaces:

H = L2(0, L), V = {w ∈ H2(0, L); w(0) = wx(0) = 0},

H = {w ∈ L2(0, T ; V ); wt ∈ L2(0, T ;H)},

and the convex set

K = {w ∈ V ; g1(x) ≤ w(x) ≤ g2(x) ∀x ∈ [0, L]}.

We assume that f ∈ L2(0, T ; H), v0 ∈ H and u0 ∈ K.
By multiplying the first equation of (7) by a test-
function v = w − u with w ∈ H ∩ L2(0, T ; K), we obtain
the following weak formulation of the problem:

(P )




Find u ∈ H ∩ L2(0, T ;K) such that

−
∫ T

0

∫ L

0
ut(x, t)(wt(x, t) − ut(x, t)) dxdt

+ k2
∫ T

0

∫ L

0
uxx(x, t)(wxx(x, t) −uxx(x, t)) dxdt

≥
∫ L

0
v0(x)(w(x, 0) − u0(x)) dx

+
∫ T

0

∫ L

0
f(x, t)(w(x, t) − u(x, t)) dxdt

∀w ∈ H ∩ L2(0, T ;K) such that w(·, T ) = u(·, T ).

For this problem an existence result has been proved by
Kuttler and Shillor (2001) by using a penaltymethod based
on the normal compliance approximation of Signorini’s
condition, when the unilateral constraints equation (3) are
created by punctual obstacles at x = L, i.e.,

g1(x) = −∞, g2(x) = +∞ ∀x ∈ [0, L),
g1(L) = g−, g2(L) = g+,

with g− < 0 < g+.
Another existence result has been obtained, still by

using a penalty method, by Ahn and Stewart (2005a), in
the case of a smooth mapping g1 from [0, L] to R, and
g2(x) = +∞ for all x ∈ [0, L], when the external force f
does not depend on time.Moreover, they proposed in Ahn
and Stewart (2005b) a time-discretisation of the problem,
formulated with a complementarity condition involving
directly the reaction force due to the constraints (which is
a measure on [0, L] × [0, T ]).

In a more general case where g1 and g2 are two
mappings from [0, L] to R, another existence result has
been proved by Dumont and Paoli (2005a, 2006) by using
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a time and space discretisation of (P ).More precisely, they
use the method of lines, which consists of making first
a space discretisation leading to a semi-discretised problem
(Ph), which can be rewritten as a second order measure
differential inclusion of the same type as those describing
rigid bodies dynamics with perfect unilateral constraints.
Then, they apply a time-stepping scheme inspired from
Newmark’s algorithms and Paoli and Schatzman (2002b),
which leads to the following family of fully discretised
problems:

(
Pn+1

hβ

)




Find un+1
h ∈ Kh = Vh ∩ K such that∫ L

0

(
un+1

h (x) − 2un
h(x) + un−1

h (x)
∆t2

)
×(wh(x) − un+1

h (x)) dx

+ k2
∫ L

0

(
βun+1

h,xx(x) + (1 − 2β)un
h,xx(x)

+βun−1
h,xx(x)

)(
wh,xx(x) − un+1

h,xx(x)
)
dx

≥
∫ L

0
(βfn+1(x) + (1 − 2β)fn(x)

+βfn−1(x))(wh(x) − un+1
h (x)) dx

∀wh ∈ Kh

where β is a parameter belonging to [0, 1/2], fn is an
approximate value of f at tn = n∆t and Vh is a finite
dimensional subspace of V . As usual, there is no need of
any impact law in the description of the contact problem
as far as the beam is considered as a continuous medium.
But, as far as a space discretisation is introduced, some
information about the transmission of the velocity at
impacts should be added, in order to obtain a closed
problem. The choice proposed by Dumont and Paoli
(2005a, 2006) corresponds to a vanishing restitution
coefficient, which leads to an implicit time discretisation
of the semi-dicretised problems (Ph) and finally to the
fully discretised problems

(
Pn+1

hβ

)
. The reader is referred

to Dumont and Paoli (2005a) and also Paoli (1993) for a
more detailed description of the semi-discretised problems
(Ph) and the time-discretisation of (Ph) using Paoli
and Schatzman time-stepping scheme for vibro-impact
problems.

Let us emphasise that, in the case of contact problems
for continuous medium, the chosen value of the restitution
coefficient which is needed in the associated space
discretised problems (Ph) does not seem to have great
influence on the limitwhen the space step tends to zero, as it
has been shown inPaoli andSchatzman (2002a, 2007) from
both a numerical point of view and theoretical analysis,
in the special case of a slender bar dropped on a rigid
foundation.

Furthermore, Dumont and Paoli only have
implemented these numerical techniques in the case
of punctual obstacles at x = L and they appear to be
much more efficient that the penalty approach (for other
time-discretisations inspired by Mabrouk (1998) see also
Dumont and Paoli (2005b) or Dumont (2002)). In the case
of longitudinal obstacles, even if the convergence result

remains still valid, the implementation of the discretised
problems

(
Pn+1

hβ

)
does not seem to be very easy since we

look for solutions belonging to Vh ∩ K, i.e., satisfying the
constraints on the whole interval [0, L]!

The purpose of this paper is to improve the numerical
analysis of Dumont and Paoli (2006) and to extend their
previous results from the computational point of view
to the case of longitudinal obstacles along the beam,
by choosing the set of admissible approximate positions
in a more convenient way for implementation. More
precisely, we assume that

(H1) For all h > 0, there exists a finite family of points
(xh

i )i∈Ih
, Card(Ih) < +∞, such that

∀x ∈ [0, L], ∀h > 0, ∃ih ∈ Ih/ lim
h→0

xh
ih

= x;

(H2) The mappings g1, g2 : [0, L] → R satisfy:

g1(x) ≤ −g < 0 < g ≤ g2(x) ∀x ∈ [0, L]

with g ∈ R
∗
+;

(H3) For all x ∈ [0, L] and j ∈ {1, 2}

lim
h→0

gj(xh
ih

) = gj(x)

where (xh
ih

)h>0 is the sequence defined at
assumption (H1).

Now we replace Kh = Vh ∩ K in
(
Pn+1

hβ

)
by

Kh = {wh ∈ Vh; g1(xh
i ) ≤ wh(xh

i ) ≤ g2(xh
i ) ∀i ∈ Ih}. (8)

In other words, the space discretisation is applied also
to the constraints since we consider now the unilateral
constraints only at the space nodes (xh

i )i∈Ih
.

Since we deal with a fourth order problem with respect
to the space derivative, it is not possible to consider a
linear space approximation, like the P1 finite element. In
fact, we have to consider at least a three order polynomial
approximation of the solution. It follows that, in the case
of longitudinal obstacles, a function vh ∈ Vh satisfying
the unilateral constraints at the nodes, will in general not
satisfy them along the subintervals and so will not belong
to K ∩ Vh even if the obstacles are rectilinear.

Furthermore, we can interpret assumption (H3) as a
kind of ‘discretised continuity property’ with respect to the
space variable, since the value of gj at x is equal to the limit
of the values of gj on the sequence of nodes (xh

ih
)h>0.

In particular this assumption is immediately satisfied
if g1 and g2 are continuous mappings from [0, L]
to R, i.e., in the case of smooth longitudinal obstacles.
Nevertheless, assumption (H3) can also be satisfied in
case of discontinuous mappings gj taking infinite values:
for instance in the case of punctual obstacles, the space
network (xh

i )i∈Ih,h>0 should contain the positions of the
punctual obstacles. This last condition does not create any
difficulty for the implementation.
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The rest of the paper is organised as follows: in the next
sectionwewill study the stablity properties of the proposed
discretisation and establish its convergence, then in
Section 3 we will present some numerical results obtained
with P3 finite element and spline space approximations
respectively.

2 Stability and convergence of the discretisation

Let us assume from now on that h > 0 and Vh is a finite
dimensional subspace of V such that, for all v ∈ V , there
exists a sequence (vh)h>0 such that

‖vh − v‖V →h→0 0, vh ∈ Vh ∀h > 0.

We initialise the discretisation of problem (P ) by choosing
u0

h and u1
h in Kh such that

(‖u1
h‖V

)
h>0 remains bounded

and

lim
h→0,∆t→0

‖u0
h − u0‖V +

∥∥∥∥u1
h − u0

h

∆t
− v0

∥∥∥∥
H

= 0. (9)

Let N ∈ N
∗ and ∆t = T/N . Then, for all n ∈ {1, . . . ,

N − 1} we solve the following variational inequality:

(
Pn+1

hβ

)




Find un+1
h ∈ Kh such that∫ L

0

(
un+1

h (x) − 2un
h(x) + un−1

h (x)
∆t2

)
× (wh(x) − un+1

h (x)) dx

+ k2
∫ L

0

(
βun+1

h,xx(x) + (1 − 2β)un
h,xx(x)

+βun−1
h,xx(x)

)(
wh,xx(x) − un+1

h,xx(x)
)
dx

≥
∫ L

0
(βfn+1(x) + (1 − 2β)fn(x)

+βfn−1(x))(wh(x) − un+1
h (x)) dx

∀wh ∈ Kh

with Kh given by equation (8), β ∈ [0, 1/2] and

fn =
1

∆t

∫ (n+1)∆t

n∆t

f(·, s) ds.

Observing that Kh is a non-empty closed convex subset
of Vh, we obtain by induction on n that un+1

h is uniquely
defined, for all n ∈ {1, . . . , N − 1}. Then we introduce
the approximate solutions of problem (P ) as linear
interpolations of the un+1

h , i.e.,

uβ
h,N (x, t) = un

h

(n + 1)∆t − t

∆t
+ un+1

h

t − n∆t

∆t
,

for all t ∈ [n∆t, (n + 1)∆t], 0 ≤ n ≤ N − 1.
First we obtain as in Dumont and Paoli (2006) the

following stability property:

Proposition 2.1: Let β ∈ [0, 1/2], h > 0 and κh be
defined by

κh = sup
uh∈Vh\{0}

k2
∫ L

0
|uh,xx(x)|2 dx

‖uh‖2
H

.

Let α ∈ (0, 1) and Nh ∈ N
∗ be such that

Nh ≥ T + 1 if β = 1/2,

T

Nh
< min

(√
2(1 − α)

κh(1 − 2β)
, α

)
if β ∈ [0, 1/2). (10)

Then there exists a constant depending only on the data,
C(f, u0, v0), such that for all h > 0 and for all N ≥ Nh(
i.e., ∆t ≤ ∆th = T

Nh

)
∥∥∥∥un+1

h − un
h

∆t

∥∥∥∥
2

H

+
∥∥un

h

∥∥2
V

+
∥∥un+1

h

∥∥2
V

≤ C(f, u0, v0)

for all n ∈ {1, . . . , N − 1}, where (un+1
h

)
1≤n≤N−1 are the

solutions of problems
(
Pn+1

hβ

)
1≤n≤N−1.

It follows that the sequence
(
uβ

h,N

)
h>0,N≥Nh

is

bounded in W =
{
w ∈ L∞(0, T ;V ), wt ∈ L∞(0, T ;H)

}
.

Applying Simon’s lemma (Simon, 1987), we know
that W is compactly embedded in C0([0, T ], H1(0, L)).
Hence, possibly extracting a subsequence, still denoted
(uβ

h,N )h>0,N≥Nh
, there exists u ∈ W such that

uβ
h,N ⇀ u weakly* in W and strongly in

C0([0, T ], H1(0, L)).

It follows that u(·, 0) = u0. The key point now is to
observe that the approximate solutions (uβ

h,N )h>0,N≥Nh

are uniformly Lispchitz continuous with respect to x i.e.,

Lemma 2.2: Let β ∈ [0, 1/2], h > 0 and Nh be defined by
(10). There exists a constant k(f, u0, v0), depending only
on the data, such that for all h > 0 and for all N ≥ Nh

∣∣uβ
h,N (x, t) − uβ

h,N (x′, t)
∣∣

≤ k(f, u0, v0)|x − x′| ∀t ∈ [0, T ], ∀(x, x′) ∈ [0, L]2.

Proof: Leth > 0andN ≥ Nh.With theprevious stability
property we know that

‖un
h‖2

V ≤ C(f, u0, v0) ∀n ∈ {1, . . . , N}.

Possibly modifying C(f, u0, v0), this estimate is also valid
forn = 0 since (u0

h)h>0 converges strongly tou0 inV . Thus
un

h,x ∈ H1(0, L) ⊂ C0([0, L]) and

∣∣un
h,x(x)

∣∣ =
∣∣un

h,x(x) − un
h,x(0)

∣∣ ≤
∫ x

0

∣∣un
h,xx(s)

∣∣ ds

≤ √
x‖un

h,xx‖H ≤
√

LC(f, u0, v0)

for all x ∈ [0, L], for all n ∈ {0, . . . , N}. Thus all the
functions un

h are
√

LC(f, u0, v0)-Lipschitz continuous on
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[0, L]. Let k(f, u0, v0) =
√

LC(f, u0, v0). For all (x, x′) ∈
[0, L]2 and t ∈ [0, T ], we have

∣∣uβ
h,N (x, t) − uβ

h,N (x′, t)
∣∣

≤ (n + 1)∆t − t

∆t

∣∣un
h(x) − un

h(x′)
∣∣

+
t − n∆t

∆t

∣∣un+1
h (x) − un+1

h (x′)
∣∣

≤ k(f, u0, v0)|x − x′|

with n ∈ {0, . . . , N − 1} such that t ∈ [n∆t, (n + 1)∆t].
�

It follows that

Proposition 2.3: The limit u belongs to H ∩ L2(0, T ;K).

Proof: We already know that u ∈ W and W ⊂ H, so we
just have to prove that

g1(x)≤u(x, t)≤g2(x) for all x∈ [0, L], for a.e t∈ (0, T ).

Since H1(0, L) ⊂ C0([0, L]), we have u ∈ C0(ΩT ) and

uβ
h,N (x, t) → u(x, t) ∀(x, t) ∈ ΩT .

Let (x, t) ∈ ΩT , and
(
xh

ih

)
h>0 be the sequence defined at

assumption (H1). Let h > 0 and N ≥ Nh, where Nh is
defined by equation (10). We have

uβ
h,N (xh

ih
, t) = un

h(xh
ih

)
(n+1)∆t− t

∆t
+ un+1

h (xh
ih

)
t−n∆t

∆t

≤ g2(xh
ih

)
(n + 1)∆t − t

∆t

+ g2
(
xh

ih

) t − n∆t

∆t
= g2

(
xh

ih

)
with n ∈ {0, . . . , N − 1} such that t ∈ [n∆t, (n + 1)∆t].
The previous lemma implies that

uβ
h,N (x, t) ≤ uβ

h,N

(
xh

ih
, t
)

+ k(f, u0, v0)
∣∣x − xh

ih

∣∣
≤ g2

(
xh

ih

)
+ k(f, u0, v0)

∣∣x − xh
ih

∣∣.
Then, assumption (H1) and the ‘discrete continuity
property’ (H3) allow us to pass to the limit when h and ∆t
tend to zero and we get

u(x, t) ≤ g2(x).

With similar computations we obtain that u(x, t) ≥ g1(x),
which concludes the proof. �

Remark 2.4: In Dumont and Paoli (2005a, 2005b, 2006)
the choice Kh = Vh ∩ K implied immediately that the
approximate solutions of (P ) belong toL2(0, T ;K). In our
case here, the approximate solutions uβ

h,N satisfy the
unilateral constraints only at the space nodes (xh

i )i∈Ih
and

thus do not belong necessarily to L2(0, T ; K) anymore.

It remains now to prove that u is solution of problem (P ).
For that purpose we apply the same techniques as in
Dumont and Paoli (2005a, 2006). More precisely, we
consider w ∈ H ∩ L2(0, T ;K) such that w(·, T ) = u(·, T ),
and we prove that

−
∫ T

0

∫ L

0
ut(x, t)(wt(x, t) − ut(x, t)) dxdt

+ k2
∫ T

0

∫ L

0
uxx(x, t)(wxx(x, t) − uxx(x, t)) dxdt

≥
∫ L

0
v0(x)(w(x, 0) − u0(x)) dx

+
∫ T

0

∫ L

0
f(x, t)(w(x, t) − u(x, t)) dxdt.

The main steps consist in

• constructing well-suited test-functions (wn
h)1≤n≤N−1

• introducing them in the discretised problems
(
Pn+1

hβ

)
and performing a discrete integration

• passing to the limit.

The unilateral constraints prevent us from choosing wn
h

as the projection on Vh of an approximate value of w at
tn =n∆t (let us observe that w is defined as a element
of V only for almost every t) since the projection does
not preserve the constraints. So we construct an auxiliary
function wη,µ as follows.

Let ε ∈ (0, T/2) and φ be a C∞-function such that{
0 ≤ φ(t) ≤ 1 ∀t ∈ [0, T ],

φ(t) = 0 ∀t ∈ [T −3ε/2, T ], φ(t) = 1 ∀t ∈ [0, T −2ε].

We denote w̃ = (1 − φ)u + φw. Let η ∈ (0, ε/2) and
µ∈ (0, 1). We define wη,µ by

wη,µ(·, t) = u(·, t) +
1
η

∫ t+η

t

((1 − µ)w̃(·, s) − u(·, s)) ds

∀t ∈ [0, T − ε/2].

We can check easily that wη,µ − u ∈ C0([0, T ];V ),
wη,µ

t ∈ L2(0, T ;H) and wη,µ ∈ L∞(0, T ; V ) ∩ C0([0, T ];
H1(0, L)). Moreover recalling that u ∈ W and W ⊂
C0,1/2([0, L] × [0, T ]) (see SchatzmanandBercovier, 1989)
we have∣∣∣∣u(x, t) − 1

η

∫ t+η

t

u(x, s) ds

∣∣∣∣
≤ 1

η

∫ t+η

t

|u(x, t) − u(x, s)|ds ≤ 2C0
√

η

3

for all t ∈ [0, T − ε/2] and x ∈ [0, L], where C0 is the
Hölder continuity coefficient of u. Thus

(1 − µ)g1(xh
i ) − 2C0

√
η

3
≤ wη,µ(xh

i , t)

≤ (1 − µ)g2(xh
i ) +

2C0
√

η

3
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for all t ∈ [0, T − ε/2] and for all i ∈ Ih, h > 0, with the
convention that αgj(xh

i ) + β = gj(xh
i ) for all α > 0 and

β ∈ R, if gj(xh
i ) ∈ {−∞, +∞}. It follows that we can

choose η small enough such that wη,µ satisfies strictly the
constraints on the space network (xh

i )i∈Ih,h>0. Indeed, let
ηµ ∈ (0, ε/2) be such that

2C0
√

ηµ

3
≤ µ

2
g (11)

where g is the constant defined at assumption (H2).
We obtain

g1(xh
i ) +

µ

2
g ≤ wη,µ(xh

i , t) ≤ g2(xh
i ) − µ

2
g

for all t ∈ [0, T − ε/2] and for all i ∈ Ih, h > 0.
Then, for ∆t < ε/2 and n ∈ {1, . . . , N − 1}, we define

wn
h =




un+1
h + Qh

(
wη,µ(·, n∆t) − u(·, n∆t)

)
if n∆t ≤ T − ε,

un+1
h if n∆t > T − ε,

where Qh is the projection on Vh relatively to the scalar
product defined on V by the bilinear form (u, v) �→
k2

∫ L

0 uxx(x)vxx(x) dx. As in Dumont and Paoli (2006) we
prove that

Lemma 2.5: Let η ∈ (0, ηµ), with ηµ defined by (11).
There exist h1 > 0 and N ′

h ≥ Nh such that, for all
h ∈ (0, h1) and for all N ≥ N ′

h, we have

wn
h ∈ Kh ∀n ∈ {1, . . . , N − 1}.

Remark 2.6: Let us emphasise that the crucial point here
is that wη,µ satisfies strictly the constraints on the space
network (xh

i )i∈Ih,h>0. The construction ofwη,µ is inspired
from Schatzman and Bercovier (1989), where the case of
longitudinal vibrations of a beam was studied.

Next we introduce wh = wn
h in

(
Pn+1

hβ

)
, 1 ≤ n ≤ N − 1.

With a discrete integration we obtain

∫ L

0

(
u1

h(x) − u0
h(x)

∆t

)(
w0

h(x) − u1
h(x)

)
dx

+
N−1∑
n=1

∫ L

0

(
βfn+1(x) + (1 − 2β)fn(x)

+βfn−1(x)
)(

wn
h(x) − un+1

h (x)
)
dx∆t

≤
N−1∑
n=1

k2
∫ L

0

(
βun+1

h,xx(x) + (1 − 2β)un
h,xx(x)

+βun−1
h,xx(x)

)(
wn

h,xx(x) − un+1
h,xx(x)

)
dx∆t

−
N−1∑
n=1

∫ L

0

(
un

h(x) − un−1
h (x)

∆t

)

×
((

wn
h(x)−un+1

h (x)
)−(

wn−1
h (x)−un

h(x)
)

∆t

)
dx∆t

and we pass to the limit in each term as h and ∆t tend to
zero (see Dumont and Paoli, 2006 for a detailed proof).

3 Numerical experiments

In this last section we present two approaches for the
space discretisation. In the first one, we consider the
classical P3 finite element, which is the space discretisation
used in Dumont and Paoli (2005a, 2005b, 2006). In the
second approach, we consider cubic B-spline finite element
which is used in Ahn and Stewart (2005b) and which
leads to smaller systems but is a little bit more difficult
to implement. In both cases we consider a partition of
the interval [0, L] into J subintervals of length h, i.e., we
consider the nodes xh

0 = 0, xh
i = ih, . . . , xh

J = L.

3.1 P3 finite element

We use cubics Hermite polynomial as a basis. More
precisely, at each node xh

i , we associate two Hermite
piecewise cubics ϕ2i−1 and ϕ2i defined by

ϕ2i−1 ∈ P3, ϕ2i−1(xh
j ) = δij and ϕ′

2i−1(x
h
j ) = 0

for 1 ≤ j ≤ J,

ϕ2i ∈ P3, ϕ′
2i(x

h
j ) = δij and ϕ2i(xh

j ) = 0
for 1 ≤ j ≤ J.

We introduce the following finite dimensional subspace

Vh = span{ϕ1, ϕ2, . . . , ϕ2J−1, ϕ2J} ⊂ V.

Thus, for all wh ∈ Vh we have

wh =
2J∑
i=1

λiϕi

where the coordinates λ̄ = (λi)1≤i≤2J of wh in the basis
(ϕi)1≤i≤2J are characterised by

λ2i−1 = wh(xh
i ), λ2i = w′

h(xh
i ) ∀i ∈ {1, . . . , J}.

Let us observe that wh ∈ Kh if and only if

λ̄ ∈
J∏

i=1

([
g1
(
xh

i

)
, g2

(
xh

i

)] × R
)
.

So problem
(
Pn+1

hβ

)
can be rewritten as follows



Find un+1
h =

2J∑
i=1

µn+1
i ϕi with

µ̄n+1 ∈ Kh =
J∏

i=1

([
g1(xh

i ), g2(xh
i )
] × R

)

such that
(
M

(
µ̄n+1 − 2µ̄n + µ̄n−1

∆t2

)
, λ̄ − µ̄n+1

)
+ (S(βµ̄n+1 +(1−2β)µ̄n +βµ̄n−1), λ̄− µ̄n+1)

≥ (Gn, λ̄ − µ̄n+1), ∀λ̄ ∈ Kh

(12)
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where ( , ) denotes the Euclidean scalar product of R
2J ,

M and S are the global mass and stiffness matrices
and

Gn
i =

1
∆t

∫ L

0

∫ (n+1)∆t

n∆t

(βf(x, t + ∆t) + (1 − 2β)f(x, t)

+βf(x − ∆t))ϕi(x) dxdt

for all i ∈ {1, . . . , 2J}.
We refer the reader to Dumont and Paoli (2005b, 2006)

for a more detailed description of matrices M and S.
Let us observe that we get with this appraoch two degrees
of freedom per nodes, which can give big systems.

3.2 B-spline finite element

We now define Vh by using a cubic B-spline finite element
which requires only one degree of freedom per node.
Indeed, it has been shown that the greater connectivity of
the B-splines among the elements enables to obtain good
accuracy with few elements (see Hollig, 2001).

Typically, the cubic spline shape functions over the
sub-interval [xh

i , xh
i+1] (i = 0, . . . , J − 1) are defined by




Bi−1(x) =
1
6

(
1 − x−xh

i

h

)3

,

Bi(x) =
1
6

(
4 − 3

x − xh
i

h
+ 3

(
1 − x − xh

i

h

)2

− 3
(

1 − x − xh
i

h

)3)
,

Bi+1(x) =
1
6

(
1 + 3

x − xh
i

h
+ 3

(
x − xh

i

h

)2

− 3
(

x − xh
i

h

)3)
,

Bi+2(x) =
1
6

(
x − xh

i

h

)3

.

So, taking into account the boundary conditions at x = 0,
we consider the following basis {Φ1, . . . ,ΦJ+1}

Φ1 = 2B−1 − B0 + 2B1, Φ2 = B2, . . . ΦJ+1 = BJ+1,

and we define Vh = span{Φ1, . . . ,ΦJ+1}. Then, for all
wh ∈ Vh we have

wh =
J+1∑
i=1

λiΦi,

where λ̄ = (λi)1≤i≤J+1 are the coordinates of wh

associated to the basis (Φi)1≤i≤J+1. We may observe that
here wh ∈ Kh if and only if

Dλ̄ ∈
J∏

i=1

[
g1
(
xh

i

)
, g2

(
xh

i

)]
,

where D is the following (J + 1) × J rectangular matrix

D =
1
6




7 1 0 · · · · · · 0

2 4 1 0 · · · ...

0 1 4
. . .

. . .
. . .

. . .
. . . 1 0

...
... 0 1 4 1 0
0 · · · 0 1 4 1




.

Except for the first three sub-intervals, the elemental mass
and stiffness matrices are given by

Me =
h

5040




20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20


,

Se =
k2

6h3




2 −3 0 1
−3 6 −3 0

0 −3 6 −3
1 0 −3 2


.

Then problem
(
Pn+1

hβ

)
can be rewritten as follows




Find un+1
h =

J+1∑
i=1

µn+1
i Φi with µ̄n+1 ∈ Kh such that

(
M

(
µ̄n+1 − 2µ̄n + µ̄n−1

∆t2

)
, λ̄ − µ̄n+1

)
+ (S(βµ̄n+1 +(1−2β)µ̄n +βµ̄n−1), λ̄− µ̄n+1)

≥ (Gn, λ̄ − µ̄n+1)

∀λ̄ ∈ Kh =
{̄
λ ∈ R

J+1; Dλ̄ ∈
J∏

i=1

[
g1
(
xh

i

)
, g2

(
xh

i

)]}
(13)

where M and S are the global mass and stiffness matrices
and

Gn
i =

1
∆t

∫ L

0

∫ (n+1)∆t

n∆t

(βf(x, t + ∆t) + (1 − 2β)f(x, t)

+βf(x, t − ∆t))Φi(x) dxdt

for all i ∈ {1, . . . , J + 1}.

3.3 Implementation and simulations

Using one of the previous finite element approaches,
problem

(
Pn+1

hβ

)
reduces to

{
Find µ̄n+1 ∈ Kh such that

(Aµ̄n+1 − Fn, λ̄ − µ̄n+1) ≤ 0 ∀λ̄ ∈ Kh

(14)

with A = (M + ∆t2βS) and

Fn = (2M − ∆t2(1 − 2β)S)µ̄n

−(M + ∆t2βS)µ̄n−1 + ∆t2Gn.
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Since A is a positive definite symmetric matrix,
equation (14) is equivalent to the following minimisation
problem

µ̄n+1 = Argminλ̄∈Kh

(
1
2
(Aλ̄, λ̄) − (Fn, λ̄)

)
. (15)

Observing that the condition λ̄ ∈ Kh corresponds to linear
constraints, the Linear Quadratic Problem (LQP) (15) can
be solved by using the Lagrange multipliers method (see
Fortin and Glowinski, 1982) or interior-point methods
(see Vanderbei, 1999, for a state of art). In the next
computations, we will use Scilab a scientific software
developed by ENPC-INRIA (Paris, France) and freely
available. In particular, we will use the function ‘quadpro’,
implemented inScilab,whichuses theLagrangemultipliers
method to solve linear quadratic problem.

We will consider a steel pipe of length L = 10m, with
an external diameter equal to 1cm and a thickness equal
to 0.5mm. Thus k2 = EI

ρS = 282.84m4.s−2 whereE = 2 ×
1011 Pa is the Young’s modulus, ρ = 8 × 103 kg/m3 is
the material density. Let assume that f(x, t) = sin 10t for
all (x, t) ∈ ΩT and the initial data are u0(x) = 0 and
v0(x) = 0 for all x ∈ [0, L]. In the following computations,
we choose β = 1

2 (which leads to unconditional stability)
and ∆t = 0.001 s.

We first choose two smooth convex obstacles
described by

g1(x) = −(0.005 + (0.03 × (x − L/2)2) and

g2(x) = −g1(x)

for all x ∈ [0, L]. In Figure 1, we show the behaviour
of the beam obtained with the P3 and the B-spline
finite elements, at different times tk ∈ [0.4, 0.78] such that
tk = 0.4 + (20∆t)k, with k = 1, . . . , 19.

Then, we consider flat obstacles along the second half
of the beam, i.e.,

g1(x) =




−∞ ∀x ∈
(

0,
L

2

)
,

−0.01 ∀x ∈
[
L

2
, L

]
,

and

g2(x) =




+∞ ∀x ∈
(

0,
L

2

)
,

0.01 ∀x ∈
[
L

2
, L

]
.

In Figures 2 and 3, we show the behaviour of the whole
beamat different times tk ∈ [0.5, 0.78] such that tk = 0.5 +

Figure 1 Convex obstacles (J = 40): displacements of the beam computed at several times with the spline and the P3 finite elements
for β = 1

2

Figure 2 Flat obstacles (J = 40): displacements of the beam computed at several times with the spline and the P3 finite elements
for β = 1

2
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Figure 3 Flat obstacles (J = 80): displacements of the beam computed at several times with the spline and the P3 finite elements
for β = 1

2

(20∆t)k, with k = 1, . . . , 14. Note that the behaviour of
the beam is slightly different with J = 40 and J = 80.

In Table 1, page 15, we present a comparison of the
CPU-times (all computations were done on a Mac 2Ghz
Core duo). As expected, the B-spline approach is faster
since we have a J + 1 dimensional quadratic problem
instead of a 2J dimensional quadratic problem for the P3
approach. Anyway, for this value of ∆t, i.e., ∆t = 0.001 s,
the computations are relatively fast. Let us emphasise that
we can take a rather big time step size since we have
unconditional stability for β = 1

2 (see Proposition 2.1).
If we choose ∆t = 10−4 s, we obtain a much larger
CPU-time. Indeed, in the case of convex obstacles, the
P3-approach takes 6351 CPU-time, and the B-spline
approach only 1645 CPU-time.

Table 1 Comparison of the CPU-times

Convex Convex Flat Flat
obstacle obstacle obstacle obstacle
spline P3 spline P3

J = 40
CPU time (s) 40.62 124.39 37.39 103.90

J = 80
CPU time (s) 189.39 873.91 157.89 763.29

With our choice of Kh, the approximate solutions satisfy
the non-penetration conditions at each space nodes
but can violate it between two successive nodes. From
Lemma 2.2, we already know that the penetration can
be estimated fromabove bymini∈Ih

k(f, u0, v0)
∣∣x − xh

i

∣∣ =
k(f, u0, v0)∆x

2 , where ∆x = L
J is the space step size. For

small values of J, this estimate leads to a quite coarse
approximation of the unilateral constraints and it is
important to check numerically what happens. As we
can see in Tables 2 and 3, the penetration is much more
important in the case of a flat obstacles which is not so
surprising since uβ

h,N is approximated by a polynomial
function of degree 3, which shape is ‘far’ from being flat.

Table 2 Convex obstacles – maximum of the penetration
computed with the P3 and B-spline approaches

J = 40 J = 80 J = 160

P3
max(x,t)∈ΩT

0.0001076 0.0000322 0.0000051
(
g1(x) − uβ

h,N (x, t)
)+

max(x,t)∈ΩT
0.0001609 0.0000196 0.0000046

(
uβ

h,N (x, t) − g2(x)
)+

B-spline
max(x,t)∈ΩT

0.0001589 0.0000268 0.0000044
(
g1(x) − uβ

h,N (x, t)
)+

max(x,t)∈ΩT
0.0001690 0.0000308 0.0000050

(
uβ

h,N (x, t) − g2(x)
)+

Table 3 Flat obstacles – maximum of the penetration
computed with the P3 and B-spline approaches

P3 J = 40 J = 80 J = 160

max(x,t)∈ΩT

(
g1(x) − uβ

h,N (x, t)
)+ 0.0106 0.0037 0.00151

max(x,t)∈ΩT

(
uβ

h,N (x, t) − g2(x)
)+ 0.0110 0.0038 0.00163

B-spline J = 40 J = 80 J = 160

max(x,t)∈ΩT

(
g1(x) − uβ

h,N (x, t)
)+ 0.00136 0.00034 0.000096

max(x,t)∈ΩT

(
uβ

h,N (x, t) − g2(x)
)+ 0.00145 0.000279 0.000083

In order to complete our numerical study, we now
consider the total energy of the system. With f = 0, as
in Ahn and Stewart (2005b), we expect dissipation of
energy for the discretised system, although the continuous
problem conserves the energy. Thus, wewant to investigate
numerically the evolution of the energy when ∆x and ∆t
tend to zero. Indeed, ifwe choose λ̄ = µ̄n−1 in equation (12)
or equation (13), we obtain En+1

β ≥ En
β for all n ≥ 1, where

En
β is the discrete energy given by

En
β = (µ̄n − µ̄n−1)T

(
1

∆t2
M + βS

)
(µ̄n − µ̄n−1)

+ (µ̄n)T Sµ̄n−1.
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As an example, we will consider u0(x) = 0.005x2, v0 = −x
and

g1(x) = −(
0.2 + (0.3 × (x − L/2)2)

)
, g2(x) = −g1(x)

for all x ∈ [0, L]. In Figures 4 and 5, we show the evolution
of the energy for different values of the time step and
the space step for β = 1

2 . Even if the Newmark’s scheme

with β = 1
2 is known to be dissipative we can observe

in Figures 4 and 5 that the energy remains constant
between two successive impacts and is decreasing only at
impacts.

It seems also interesting to compare the previous results
in the case of an energy conservative scheme (when no
impacts occur), i.e., for β = 1

4 , which corresponds to the
well-known trapezoidal scheme. Figures 6 and 7 show that

Figure 4 Dissipation of energy for β = 1
2 (B-spline and P3 finite elements approaches, J = 40)

Figure 5 Dissipation of energy for β = 1
2 (B-spline and P3 finite elements approaches, J = 80)

Figure 6 Dissipation of energy with the B-spline finite element for β = 1
4 and β = 1

2 (comparison between J = 40 and J = 80)
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1
4

1
2Figure 7 Dissipation of energy with the P3 finite element for β = and β = (comparison between J = 40 and J = 80)

the energy decreases, but only at impacts, as expected.
Moreover, we can observe that the behaviour of the energy
is quite similar for both values of β, 1

2 and 1
4 . Thus, it seems

that the general behaviour of the approximation does not
depend on the choice of β.

Let us recall that for β �= 1
2 , the time-step should satisfy

the stability condition ∆t ≤ ∆th (see Proposition 2.1).
For instance, for β = 1

4 and J = 40, using the estimate
of κh given in the Appendix, we find that ∆th ≤ 1.2 ×
10−4 s for the B-spline and ∆th ≤ 7 × 10−5 s for the P3.
Note that for ∆t = 10−5 s the computations become very
expansive (around 48 hours are necessary to complete the
computations with the B-spline and the P3 approaches).
Thus the importance of the unconditional stability result
for β = 1

2 .
We also obtain the same qualitative results as Ahn

and Stewart (2005b) and we may expect that energy
conservation will hold at the limit.
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Appendix: Estimate of κ(h)

Let us first compute (wh, wh)L2(0,L), i.e.,

(wh, wh)L2(0,L) =
J∑

i,j=1

λiλj(Φi, Φj)L2(0,L)

where (·, ·)L2(0,L) is the standard inner product.
In particular, we have

(Φ1,Φ1)L2(0,L) = (2B−1 − B0 + 2B1, 2B−1

−B0 + 2B1)L2(0,L) =
6588
5040

∆x,

(Φ1,Φ2)L2(0,L) =(2B−1−B0+2B1, B2)L2(0,L)=
2264
5040

∆x,

(Φ1,Φ3)L2(0,L) =(2B−1−B0+2B1, B3)L2(0,L)=
239
5040

∆x,

(Φ1,Φ4)L2(0,L) =(2B−1−B0+2B1, B4)L2(0,L)=
2

5040
∆x.

Thus

(wh, wh)L2(0,L)

=
6588
5040

λ2
1∆x +

2 × 2264
5040

λ1λ2∆x +
2 × 239
5040

λ1λ3∆x

+
4

5040
λ1λ4∆x +

2416
5040

J−2∑
j=2

λ2
j∆x +

2 × 1191
5040

×
J−2∑
j=2

λjλj+1∆x +
2 × 120
5040

J−2∑
j=2

λjλj+2∆x +
2

5040

×
J−2∑
j=2

λjλj+3∆x +
2 × 1062

5040
λJ−1λJ∆x

+
2396
5040

λ2
J−1∆x +

2 × 60
5040

λJ−1λJ+1∆x

+
1208
5040

λ2
J∆x+

2 × 129
5040

λJλJ+1∆x+
20

5040
λ2

J+1∆x.

We observe that

10
J−2∑
j=1

(6λj + 7λj+1 + 2λj+2)2∆x

=
J−2∑
j=1

(360λ2
j + 490λ2

j+1 + 40λ2
j+2)∆x + 2 × 420

×
J−2∑
j=1

λjλj+1∆x+2 × 120
J−2∑
j=1

λjλj+2∆x+2 × 140

×
J−2∑
j=1

λj+1λj+2∆x,

and

10
J−2∑
j=1

(6λj + 7λj+1 + 2λj+2)2∆x

= 360λ2
1h + 850λ2

2h + 530λ2
J−1h + 40λ2

J∆x +

890 ×
J−2∑
j=3

λ2
j∆x+2×120

J−2∑
j=1

λjλj+2∆x+2×420λ1λ2∆x

+ 2 × 140λJ−1λJ + 2 × 560
J−2∑
j=2

λjλj+1∆x.

Thus

(wh, wh)L2(0,L)

=
1

5040

(
10

J−2∑
j=1

(6λj + 7λj+1 + 2λj+2)2 + 6228λ2
1

+ 1566λ2
2 + 2 × 1844 × λ1λ2 + 2 × 119λ1λ3 + 2λ1λ4

+ 2 × 922λJ−1λJ +2×129λJλJ+1 +2 × 60λJ−1λJ+1

+ 1866λ2
J−1 + 1168λ2

J + 20λ2
J+1 + 1526

×
J−2∑
j=3

λ2
j + 2 × 631

J−2∑
j=2

λjλj+1 + 2
J−2∑
j=1

λjλj+3

)
∆x.

But

2
(

10λJ−1 +
129
6

λJ + 3λJ+1

)2

= 2
(

100λ2
J−1 +

1849
4

λ2
J + 9λ2

J+1 + 2 × 60λJ−1λJ+1

+ 2 × 129λJλJ+1 + 2 × 215λJ−1λJ),

631 ×
J−2∑
j=3

(λj + λj+1)2 = 631(λ2
3 + λ2

J−1)

+ 2 × 631 ×
J−2∑
j=3

λjλj+1 + 1262
J−3∑
j=4

λ2
j ,

and

119(λ1 + λ2 + λ3)2 + 69
(

25
3

λ1 + 3λ2

)2

+ 128
(√

3λ2 +
4√
3
λ3

)2

+
11856

9
λ2

1 + 42λ2
2

+
637
3

λ2
3 = 6228λ2

1 + 1166λ2
2 + 2 × 1844 × λ1λ2

+ 2 × 119λ1λ3 + 2 × 631λ2λ3 + 895λ2
3,

×
J−2∑
j=1

(λj + λj+3)2∆x = (λ2
1 + λ2

J+1 + λ2
2 + λ2

J

+λ2
3 + λ2

J−1)∆x + 2
J−2∑
j=2

λjλj+3∆x + 2
J−2∑
j=4

λ2
j∆x.
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Then, we get

(wh, wh)L2(0,L)

=
1

5040

(
10

J−1∑
j=1

(6λj + 7λj+1 + 2λj+2)2

+
J−2∑
j=1

(λj + λj+3)2 + 631
J−1∑
j=1

(λj + λj+1)2

+ 119(λ1 + λ2 + λ3)2 + 69
(

25
3

λ1 + 3λ2

)2

+ 128
(√

3λ2 +
4√
3
λ3

)2

+
3952

3
λ2

1 + 442λ2
2

+
637
3

λ2
3 + (λ1 + λ4)2 + 894λ2

4

+ 2
(

10λJ−1 +
129
6

λJ + 3λJ+1

)2

+ 707(λJ−1 + λJ)2 + 959λ2
J−1 +

2819
4

λ2
J

+ λ2
J+1 + 895

J−2∑
j=5

λ2
j

)
∆x.

From the previous equality, we deduce the following lower
bound for (wh, wh)L2(0,L)

1
5040

(
3952

3
λ2

1 + 442λ2
2 +

637
3

λ2
3 + 894λ2

4 + 959λ2
J−1

+
2819

4
λ2

J + λ2
J+1 + 895

J−2∑
j=5

λ2
j

)
∆x. (16)

In the same manner, we compute (wh,xx, wh,xx)L2(0,L),
that is

(wh,xx, wh,xx)L2(0,L)

=
k2

6h4

(
108λ2

1 − 16λ1λ2 − λ1λ3 + 16
J−3∑
i=2

λ2
i − 2 × 9

×
J−3∑
i=1

λiλi+1 + 2
J−2∑
i=1

λiλi+3 + 14λ2
J−2 − 12λJλJ−1

+ 8λ2
J − 6λJλJ+1 + 2λ2

J+1

)
∆x.

Using Cauchy-Schwarz formula, we ‘easily’ deduce that

(wh,xx, wh,xx)L2(0,L)

≤ 26k2

6h4

( J−2∑
i=3

λ2
i +

253
52

λ2
1 +

34
26

λ2
2 +

53
52

λ2
3

+
21
26

λ2
J−1 +

17
26

λ2
J +

6
26

λ2
J+1

)
∆x,

and from equation (16), we infer that

(wh,xx, wh,xx)L2(0,L) ≤ 5040
k2

∆x4 × (wh, wh)L2(0,L).

Finally, we obtain

κ(h) ≤ 5040
k2

∆x4 .

Remark 3.1: Of course, this is not an optimal upper
bound. Anyway, we get a smaller upper bound than with
the P3 finite element for which (Dumont and Paoli, 2006)
proved that κ(h) ≤ 2729160

37
k2

∆x4 .
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