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An existence result for non-smooth vibro-impact
problems

Laetitia Paoli

Equipe dAnalyse Numérique-UPRESEA 3058, Saint-Etienne,Faculté des SciencesUniv esité Jean
Monnet, 23 Rue du Docteur Paul Michelon, 42023 St-Etienne Cedex 2, France

We are interested in mechanical systems with a finite number of degrees of freedom submitted
to frictionless unilateral constraints. We consider the case of a convex, non-smooth set of
admissiblepositionsgivenby K={q € [Rd; ¢,(q) =20, 1<a<v}, v>1, andwe assumeanelastic
shocksat impacts.We proposea time-discretizationof the measuredifferential inclusion which
describesthe dynamicsand we prove the convergenceof the approximatesolutionsto a limit
motion which satisfiesthe constraints Moreover, if the geometricpropertiesensuringcontinuity

on data hold at the limit, we show that the transmissionof velocities at impacts follows the
inelastic shocksrule.

Keywords: Vibro-impact; Non-smooth convex constraints; Measure differential inclusion; Inelastic shocks;
Time-discretization scheme; Convergence; Existence



1. Introduction and statement of the result

We consider a mechanical system wilhdegrees of freedom which unconstrained
motion is described by the following ODE

= f(t,u,un),

whereu € R? is the representative point of the system.
We assume that the trajectory must remain in a given closed skbe&tR? i.e.

u(t) e K forall r € [0, 7].

This unilateral constraint may lead to some discontinuities for the velocity. Indeed let
us assume for instance thatr) € Int(K) for all + € (19, 11) U (11, 2) C [0, ] and
u(t1) € dK. Then the constraint implies that

i(t1 — 0) € =Tk (u(11)),
i(t1+ 0) € Tg (u(11)),

where Tk (¢) denotes the tangent cone Koat g given by
Tk (q) = U=0MK — q).

Hence, ifit(r1 — 0) & Tk (u(11)), it is clear thatiz is discontinuous at = 1. It follows
that the equation of motion has to be modified by adding a meastoehe right-hand
side i.e.

i = f(t,u, )+ p.
This measureu describes the reaction force due to the unilateral constraint and
Supp@) C {r € [0, tl; u(r) € 0K}

Let us assume moreover that the constraint is perfect i.e. frictionless. We infer (see
[7,8]) that

—p € Tx ()™ = Ng ()
and the motion is described by the following measure differential inclusion (MDI)

w=ii— f(t,u,u1) € —Ngu). (1.1



The discontinuities of the velocity at impacts are now characterized by

w(t+0) € Tx (u(®)), u@t—0) € =Tk (u(1)),
w(t —0) —u(t +0) = —pu({t}) € Nk (u(@)

but these equations do not define uniquély + 0) and we have to complete the
description of the motion. Following Moredid,8] (see alsd15,17] for a mathematical
justification of this impact law by a penalty method) we assume inelastic impacts i.e.
i(t + 0) = Proj(Tx (u(r)), u(t — 0)) (1.2)
for all € (0, 7).
Remark. We may observe that
Nk (u(®) = {0}, Tk (u(®) =R’

if + €(0,7) andu(r) € Int(K): in this case the impact law (1.2) implies simply that
is continuous at.

Let (4o, v0) € K x Tk (up) be admissible initial data. We consider the following
Cauchy problem (P):

Problem (P). Find « : [0, 1] = R? (¢ > 0) such that
(P1) u is continuous with values iiK,

(P2) it belongs toBV (0, 7; RY),

(P3) the measur@ = ii — f(z,u, u) is such that

Suppg) C {r € [0, 7]; u(r) € 0K}
and the MDI (1.1) is satisfied in the following sense (§£8]):
(v —uy=0 VYoue 0,1 K),
(P4) the initial data are satisfied in the following sense:
u(0) = ug, w0+ 0) = v,
(P5) for allr € (O, 1)

i(r + 0) = Proj(Tx (u(1)), u(t — 0)).



The existence of a solution for this Cauchy problem is still an open problem in the
general case. When the boundarykofis smooth enough, the s&t can be described
at least locally with a single inequality

ue K < o)=0.

In this case (single-constraint case), several existence results have been obtained. The
corresponding proofs rely on the study of a sequence of approximate solutions which are
built either by means of a time-discretization of the MDI ($2e4,9,13,14,16]) nor by
means of a penalization (s§E2,19]). The convergence of the sequence of approximate
solutions gives both a theoretical result of existence and a numerical method to compute
approximate solutions of (P).

In a more general case, whé&his described by several inequalities (multi-constraint
case) i.e.

K={geR) ¢,)>0 Vae(l,... v}, v>1

the existence of a solution has been established by Ballafd]iif all the data are
analytical. His proof uses a very different technic based on existence results for ODE
and variational inequalities. Unfortunately, this very nice proof does not yield directly
a numerical method. Observing that the time-discretization schemes proposed by M.
Monteiro-Marques or L. Paoli and M. Schatzman in the single-constraint case can be
also defined in the multi-constraint case, it is natural to try to extend their convergence
proofs in order to complete P.Ballard’s result when the data are not analytical and
to obtain well-suited numerical methods. For this last point another question arises
immediately: what do we know about continuity on data? In the analytical case, Ballard
has proved (sefl]) that continuity on initial data holds if the active constraints along
the limit motion remain orthogonal. Moreover, the study of the model problem of a
free material point in an angular domak of R? shows that continuity on data does
not hold in general if the active constraints create an obtuse angle and leads to the
opposite conjecture in case of acute angles (469. The proof of this last result is
given in a very recent paper (s¢kl]).

In this framework, we will extend in this paper the convergence result of the time-
discretization scheme proposed[B$13] to the multi-constrained case. More precisely,
we assume that
(H1) fis a continuous function fromo, 7] x R¢ x R? to R (z > 0) and is Lipschitz

continuous in its last two arguments;
(H2) K is a closed convex subset & with a non-empty interior, given by

K={geR% ¢,9)>0 Vae{l, ... v}, v>1 (1.3)

with ¢, € CY(RY;R) such thatVp, does not vanish in a neighborhood of
lg € R 9,(q) = 0}.



For all ¢ € RY we define the set of active constraintsgaby

J(q) ={ore{l,....v} @,(q)<0}

and we assume that

(H3) for all ¢ € K, (V(px(q))“ej(q) is linearly independent.
Let F be a function such that

(H4) F is continuous from[0, 7] x RY x RY x R? x [0, #*] to R? (h* > 0), F is
Lipschitz continuous in its second, third and fourth arguments and is consistent
with respect tof i.e.

F(t,q,q,v,0) = f(t,q,v) Y(t,q,v) €[0,1] x R x RY.

We define a time-discretization of the Cauchy problem (P) with initial dagavo) €
K x Tk (ug) as follows:

U° =uo, U'=Proj(K,uo+ hvo+ hz(h)) with ;Ilimo z(h) =0, (1.4)

and, for alln € {1,..., [t/h]}
U™t = Proj(K, 2U" — U™t + h?F") (1.5)
with

(1.6)

F' — F(nh "yt M h)
9 9 b 2h k .

Let us denote by the Lipschitz constant oF. Then, by applying Banach’s fixed
point theorem, we can prove easily that, for &le (0, »*] N (0,2/L) and for alln €
{1,....t/h]} the system (1.5)—(1.6) admits an unique solution. Possibly decreasing
h* we will assume from now on that* € (0,2/L) and hence the scheme is correctly
defined for allh € (0, h*].

We may observe that the projection &hensures that all the approximate positions
satisfy the constraints and, ift2 — U"~1 + h2F" belongs to IntK), then Eq. (1.5)
reduces to

Un+1 _2un Unfl
h2 * =,

which is simply a centered scheme for the unconstrained motion.



We define now the sequence of approximate soluti@fiS$,co,»*] by

n+1 n

up(t) =U" + (t — nh)T if 1 € [nh, (n+1h) N[0, 1] 1.7)

for all h € (0, h*].
We prove the following result:

Theorem 1.1. Let us assume thafH1)—(H2)—(H3)—(H4) hold. Let (ug,v0) € K x
Tk (up) be admissible initial data. Then the sequen@g),co.»+ defined by(1.4)-
(1.5)~(1.6)—(1.7)admits a converging subsequence GR([0, <]; R?) and the limit u
satisfies the propertiefP1)—-(P2)—(P3)—-(P4).

If we assume moreover that

H5) (Vo (), Vos(u)) <O V(x f) € J(u®)?, a#f Vie© 1),

where (v, w) denotes the euclidean scalar product of the vectorand w in R¢,
then the function u satisfies also the impact I®6) and is a solution of the Cauchy
problem (P).

Remark. Assumption (H5) is the condition which ensures continuity on data (see
[10,11)).

2. Proof of the convergence of the scheme

Let us outline the main steps of the proof of Theordm. First, in Section 2.1,
we establish a priori estimates for the discrete velocities and accelerations. Then, in
Section 2.2, we pass to the limit &stends to zero and applying Ascoli’'s and Helly’s
theorem, we infer that there exists a subsequence of approximate solutions, denoted
(un,;)n;>0, such that

up, — u  strongly in €°([0, zl; RY),
iy, — i weakly* in L>®(0, t; RY) and a.e in(0, 1),
iin, — ii weakly* in M1(0, t; RY).

Moreover, we prove thatl satisfies the properties (P1)-(P2)—(P3)—(P4).

Finally, in Section 2.3, we study the reflexion afat impacts: we show that the
right velocities are given by Moreau’s rule for inelastic shocks when assumption (H5)
is satisfied.

Thoughout this section we will meet some technicalities which cannot be avoided.
In order to make the essential ideas as clear as possible, the proof of some lemmas is
given in the Appendix A.



2.1. A priori estimates

For all » € (0, h*] we define the discrete velocities by

Un-‘rl _ Un

T
V" =
h

Vne{0....,N}, N:bJ.

We prove first a uniform estimate for the velociti€8" o<, <n-

Proposition 2.1. There existsi1 € (0, ~*] and C > 0 such that
IV*I<C Vnel0,...,N} Vhe(0,h1]. (2.1)
Proof. Let us defineM by

M = max{ | F(t, uo, uo, 0, h)|

; 1€[0,1], hel0,n*]} (2.2)

and recall thatL is the Lipschitz constant of with respect to its second, third and
fourth arguments.

As a first step we prove the following estimate:
Lemma 2.2. Let h € (0, h*]. For all n € {1, ..., N}, we have

n n k-1
IVAIIVO + M+ Lh Y IVEI 4+ 2L ) Y V7. (2.3)
k=0 k=1 p=0
Proof. Let h € (0, h*] andn € {1, ..., N}. By definition of the scheme we have
U™t = Proj(k, 2U" — U"t + h?F")

which implies that

(2Un _pyr1 + h2pn _ Un+1’ 7 — U’H’l) <0 VzeKkK

(V"= V"4 hF", - U <0 VzeK. (2.4)
Furthermore, we have alsg” € K, thus

(anl _Yr L pF" UM — U”*l) = —h(V"il — V" +hF", V")go- (2.5)



We infer immediately that

VIV + R F
and
n
IV I<IVOL 4+ R Y IFA. (2.6)
k=1

SinceF is L-lipschitzian with respect to its second, third and fourth arguments, for all
ke{l,..., N}, we have

Vk Vk—l
I1F) < “F(kh,Uk,uk—l,+T,h)"

_ vk + yk-1
< [P b o 0,0, + L (104 = 004 ot w0y )

The first term of the right-hand side can be estimated with the conbtaséfined by
(2.2), thus we get

k=1 k=2

VA + VA
FYl < M+1L hVP| + L pvp| 4t 1
IS < M+L )Y nve | +L > hve| + |
p=0 p=0
k-1 I L
< M+ 2Lh VP + ZvE = Z vkt
+2Lh Y IVPI+ S IVEL+ SV
p=0
and relation (2.6) yields
n k-1 Lh &
IV < VO kM + 2L Y S VPl + = 3 (VA 1vEH)
k=1 p=0 k=1
n n k-1
< AVO+ M+ Lh Y [IVEI+2Lh2 Y > vel. O
k=0 k=1 p=0

Sincehlirr(1)||z(h)|| = 0, there existd11 € (0, #*] such that

|z <1 Vh e (0, hal



and, recallinghatug= U° € K, for all € (0, h*], we obtain

|Proj(k, U° + hvo + hz(h)) — UP|

VO =
V=l W

< [Jvo + 2| < llvoll + 1.

Moreover, (2.3) implies that, for akk € {1, ..., N} and for allz € (0, h1]

n—1 n k-1
IV lI(X = Lhy<flvoll + Mt + 1+ Lh Y _ V¥ +2LA? Y > V7.
k=0 k=1 p=0

Possibly decreasingy;, we may assume without loss of generality thate (0, 1/L).
Then, for allz € (0, h1], we define

o_ llvoll+Mr+1
Q=

1—Lh
1 n—1 n k-1
n o__ k 2 p
e — lvoll + Mt +1+Lh Yo" +2Lh*Y "> ¢ vn>1.
k=0 k=1 p=0
A trivial induction shows that|V"| <" for all n € {0, ..., N}. Moreover, we have

the following result:

Lemma 2.3. There existC; > 0 and x > 0 such that
0<@"<C1™" VYn>0 Vh e (0, h1].

Proof. See Lemma&A.1 in Appendix A.
It follows that

[V <@"<Cre<C = C1e"® Vnef{l,...,N}, Vhe (0 hi]
which concludes the proof.(J

Let us establish now an estimate for the discrete accelerations.

Proposition 2.4. There exist:; € (0, 1] and C’ > 0 such that

N
Z [vh — v l<C’ Vh e (O, hil. (2.7)



Proof. Let k1 and C be defined as in Propositich1l and K1 and M1 be defined by
K1 = K N B(uo, C1)
and

My=max{|F(t,u,u’,v.0)|, t €[0, 7], (u,u’)eKZ, |v|<C, hel0h*]}. (2.8)

By definition of scheme, we hav&” € K for all n € {0,..., N 4+ 1} and, using
Proposition2.1

n—1

> v

k=0

IU" — uoll = |U" — U = h <Cnh<Cr.

ThusU" € Ky forall n e {0,..., N+ 1} and | F"||<M1 for all n € {1, ..., N}.
By LemmaA.2, we infer that, for ally € K3, there exista, R¢ and two strictly
positive numbers, andr, such that, for ally’ € B(q, 25,)

E(aqa rq) C TK(q/) (2.9)

and
; / 1 2 ; / 2 d
|z = Proj(Tx (4", z) | SZ(IIZ —agll® — |[Proj(Tx (¢"), z) — aq| ) vz e RY. (2.10)

It is obvious thatky C (J B(g,d,), and a compactness argument implies that there
qekK1
exists (gi)1<i<¢ such that

¢
Ky C U B(qi, 9g;).
i=1

In the remainder of the proof we will simply writ¢;, ¢; andr; instead ofé,,, a,,
andr,. We define

O_I S2

r= mn r, 6= min o, T1=
1<i<e 1<i<e

Let #5 € (0, min(hy, 11)), h € (0, k5] andn € {0, ..., N}. Leti € {1,..., ¢} be such
that U"* € B(g;, 6;). Then, for allm € {n,..., p} with p = min(N,n + [11/h]),

10



we have

JUm™ — gl < U™ — U 4 Uttt — g

m
> hvk

k=n+1

< +0; <hC(m —n) 4+ 9; <0+ 6; <20;.

By applying (2.9)—(2.10), we obtain that, for a#l € {n, ..., p}, we have
Bai, ri) C T (U™
and
|z = Proj(Tx U™+, )| < Ziri(uz — ai|? = |Proj(Tx (U"*Y). 2) — i |°) ¥z e RY.
But, relation (2.4) implies that
vm=l_ym L g™ e Ng (U™,

Since Nx (U™t and Tx (U™1) are two closed convex polar cones, we infer that
(see[5])

Proj(Tx (U™ ™), v"=t — v + hF™) = 0.
Consequently, we obtain

1
IVt = v ET S (VT = VT RET — 1 = ai1?)
1

1
< (vt = v n P | = 2, vt = v hE™) )
ri
and thus
1
ri

+R2I P2 = 2(ap, VTR VI hF™) ).
Moreover, relation (2.5) implies that

_(Vm—l’ Vm)g _ ”Vm”2 +h(Fm, Vm)

11



which yields

IV = v = R = 2V v 4 v 2
S ANVPTHZ = VTP A+ 20 (FT V).
It follows that
V"R =V <RI+ o (||V’" HZ = v = 2(a, vt = V)
+2(F", V= a) + B2 FR).
Thus, for allm € {n, ..., p}, we have

V"t = VII<hCo + o (||V’" Y2 = R = 2(a, vt - v))

with

C+a Zh*
Co=M |1+ +Mi—, a= max |a]l.
r 2r 1<i <t

By summation we obtain

P
Do VTV < (p = mhCot o (||V”|| IVI2 = 2(ai, V" = V7))
m=n+1

< (p—mhCz + o (||V”|| — V2|7 + 4Ca).

Recalling thatp = min(N, n + [11/h]), we infer that

vaml VIISNRCa + o (||V°|| IV¥1%) + (k1 + 1)4Ca,

m=1

wherek; € N is such that
T1 T1
— 1 KL —
kle \N<(k1+1)LhJ.

Observing that; <t/(r1 — h), we can conclude the proof with

p c? T
C' ' =1C+ — +4Ca +1). O
r 11— hj

12



2.2. Passage to the limit as h tends to zero

Thanks to Propositio2.1, we know that the functions,, 0 < & <h¥, areC-Lipschitz
continuous on[0, t]. Hence, (uy)o<s, <h: is a bounded and equicontinuous family of

functions of C0([0, 7]; R¢). Applying Ascoli’s theorem we may extract a subsequence,
denoted(uhi)0<high§, such that:

up, — u  strongly in C°([0, tJ; RY),
iy, — i in L0, 1; RY) weak*.

SinceU" € K for all n belonging tof0, ..., N+1}, we infer that, for allh; € (0, h7]
and for allr € [0, 7]:

dist(uy, (1), K)<h; max ||V/|<h;C.
0<j<N

Passing to the limit when; tends to 0, we obtain that(r) € K for all ¢ € [0, t] and
u satisfies the property (P1).
The measuréi, is a sum of Dirac's measures @, 1), more precisely, we have

N
iip(t) =Y (V"= V" H5(t —nh) Vh e (0, h]].
n=1

Consequently, the total variation @f, on (0, 7) is equal to
N
TV @) =Y _ [v'—v"
n=1

and estimate (2.7) implies thath)o<h<ha£ is a bounded family oBV (0, 7; RY). Using

Helly’'s theorem and possibly extracting another subsequence, we may conclude that
(tth; Jo<n; <n; CONVerge, except perhaps on a countable set of points, to a function of
bounded variation. Hence

i€ BV(0,7; RY), up, — 1 except perhaps on a countable set of poihts
and

iin, — i weakly* in M0, ; RY).

13



It follows that (P2) is also satisfied. Moreover, let define the sets () >oand Dy by

Di = (0,0)NhiN, Dy = {t €(0,7); u(t —0) #i(t + 0)}
and let

D= U D; U Dy UD. (2.11)

i=0

Sincei € BV (0, 7; RY), Do and D are denumerable and, for alle (0, 1) \ D we
have

u( —0)=u(+0) =u®), up—0) =ip@+0) =up@) Vi=0
and

u() = hl-iTO ip,; (1). (2.12)

Let F;, be the measure defined @@, 7) by

N
Fy(t) =Y hF"5(t —nh) Vh e (0, h}l.

n=1

Lemma 2.5. The sequence(Fy, Jo<n, <n; CONvVerges weakly*in M0, 7; R?) to
ft, u, ).

Proof. We know that (uh[)0<hi<h»i converges tou in BV(O, 7; RY). In particular

Lebesgue’s theorem implies thaﬂhi)0<hi<hi converges toi in Ll(O, 7; RY). We
extendu,, and# to R by 0 outside of{0, t] and still denote the respective extensions
iy, andu. The setfiy, : h; € (0,h7]} U {u} is a compact subset af}(R: RY). The
classical characterization of compact subsetd bfR; R?) implies that

lim  sup / [itn, (t — 0) — 1ip, (1) || dt = 0.
R

0—0 o< iy gh’i

Letting 0 = h;, we can see thai,, (. — h;) converges tai in Ll([R; RY).

14



Let us define an approximate velocity, on R by

ih (t — i +0) + it (f + 0
vh,-(t)=uh’(t +2)+Mh’(l+) Vi e R.

The sequenceuvy, Jo<p, <x; CONvVerges tou in Ll(IRE; Rd). Moreover, estimate (2.1)
implies that

on, )| <C Vi eR Vh; € (0, hil.

Let ¢ € C([0, 71; R?). By definition of F;, we have

N N-1 mt1yn T
<Fhi,¢>>=2 (F", p(nhi)) =) / (F", ¢0)dt + / (F", ) dt

—1 n=1 hi Nh;

N— (n4+1)h;
Z / (F", p(nhi) — @) di + hi (FN, p(Nhy))

—/T (FY. p) ar. (2.13)
Recalling that| F"|| <M1 for all n € {1,..., N} we can easily estimate the last two
terms:
[ (™ V) | < MU o, )
and

Moreover, we denotey, the modulus of continuity ofp on [0, z]. We get

/T (FN, ¢(0)) dt

Nh;

<(t— Nh; )M1II¢||C0( [0,7;Re) S <h Ml||¢”c0( 0.7 R¢)"

N-L |\ pmt+Diy
/ (F", ¢p(nhi) — ¢()) dt || <M1(N — Dhiwy(hi) < Mitog(hy).

hi

n=1

Let us compare now the two first terms of the right-hand side of (2.13) with

[ (euw.i0).pw)ar

15



Foralln € {1,..., N} andt € [nh;, (n + 1)h;i) N [0, 7] we have

vn Vn—l
F <nh,-, grynt, T hi)

F n
2

= F(nhi, up,(nhy), up,(nhi — hy), vp, (1), h;)

thus
| F" = f (1 un, @), on, )
< | F(nhi, un, (nhi), up, (0 — Dhi), v, (1), hi) — F (nhi, up, (), up, (t), vp, (0), hi) ||
+[ F (nhi s un (), wn (), on, (0, hi) = f (i, un, (0), v, 1) |
[ (nhi un, (@), v, ) = f (2 un, @), vm, )]
The first term on the right-hand side is estimated by
Lun, (nhi) — up, )] + Lun, ((n — Dhi) — up, (6)| <3LCh;.

Let us denotg bywr the modulus of continuity ofF on the compact sef0, 7] x
B(uo, C1)2 x B(0, C) x [0, h*]. The second term is equal to

| F (nhi un, (6), up, (1), vp; (0), hi) = F(nhi, up; (), up, (), vp, (1), 0)

and can be estimated hyr(h;). Then, by denotings; the modulus of continuity of
f on the compact s€0, 7] x B(ug, Ct) x B(0, C), the third term can be estimated by
g (h;).

Therefore, using the Lipschitz continuity 6fwith respect to its last two arguments
we get

H(Fh,, }) — /O (f(r.u@), @), p@))dt

< [0 £ (1 e, (0, vy () — £ (60 ey, o)) || 6| d

+2hiM1||¢||Co([0J];Rd) + Matwg (h;)
+(BLChi + wp(hi) + wf(hi))/o lp@ | dt

LIS o ) [, (o ® =] + Jon, 0 = o)

2R Ml Pll o0 1) T M1 (i)

+(3LCh; + wp(hi) + w7 (h)) /0 gl dt. (2.14)

16



With the previous results we know thé, ) > 5,0 converges tal in cO([o, 71; RY)

and (Un)ng>n;>0 converges toi in LY(R; RY). Thus, the first integral term on the
right-hand side of (2.14) tends to O &g tends to 0. The convergence to zero of the
other terms is clear. ]

Let us definew, = iiy — Fj i.e.

N
py =Y (V"= V"L —hF™"§(t —nh) Vh e (0, hjl.
n=1

With all the previous results, we know that, )op, <y converges tqu = ii— f(t, u, i)
weakly* in M1(0, r; RY). At the limit, we obtain the equality

i = f(t,u, i) +p in ML0, 1; RY).

Let us prove now that the measunesatisfies property (P3).

Proposition 2.6. The measure: satisfies propertyP3) i.e.

Suppg) C {r € [0, 7]; u(r) € 0K}
and

(v —u)>0 Vv e CO[0,1]; K).
Proof. Let us prove first that

(v —u)>0 Vv e CO[0,1]; K).

Let v be continuous froni0, 7] to K. By definition of 4 and 1, we have

N
(W, v —u) = thTO(uhi, v—u) = hliTOZ (V” — V"L p PP u(nhyg) — u(nhi)).
1 1 n—l

Let h; € (0, h]. Using (2.4), we have

(i F" = V" + V"t —U"™)<0 Vze Kk Vne{l,...,N}

17



Sincev(nh;) € K for all n € {1, ..., N}, we obtain

N
(V" = v*t — ni F" v(nh;) — u(nh;))
n=1

N
> Z (Vn _ Vn—l _ hl’Fn, Ui’l+1 _ u(nhl))
n=1
N
= Z(v" — V"L — B F" hV™ + up, (nhy) — u(nhy))
n=1

and estimates (2.1) and (2.7) yield

N
(v —u) = D (V"= V" =1 F" v(nhi) — u(nhy))
n=1

N

-3 (hiMl + V" — V"‘lll) (hiC + llu — up, ”Co([o,r];Rd))

n=1

WV

WV

—(tM1 + C/) (hl'C + |lu — Up; ||C0([O,r];Rd)> s

where M, is defined by (2.8). Passing to the limit whén tends to zero, we may
conclude the first part of the proof.
Let us prove now that

Supp) C {t € [0, t]; u(r) € 0K }.
Let ¢ € CO([0, 7]; K) be such thatp # 0 and
Supp@) C [0, 7]\ {t € [0, t]; u(t) € 0K} = {t € [0, 7]; u(t) € Int(K)}.

Then, for all7 € Supp@), there exists;, > 0 such thatB(u(r),r;) C K. Observing
that

Suppe) ¢ | (t - z%’H_ zr—’c)
teSupp)

18



and that Suppf) is a compact subset dk, we infer that there existét, ..., 7,} C
Supp¢) such that

P
Supp@) C t —ri,t +ﬁ .
kL_Jl(" 2c’ ™" 2c)

Letr = min “. Then, for allr € Supp@), B(u(r),r) C K. Indeed, let € Supp@)

KX P
andz € B(u(t),r). There existsk € {1, ..., p} such thatr (zk - ;’—g,tk + ;’—é) and,
recalling thatu is C-lipschitzian, we get

|z —u@) | <||z —u@®| + |Ju@) —u@)| <r + Clt — 1 <1y,

Hencez € B(u(t), ry) C K.

Let us define nowy = u + ——"——¢. It is clear thatvy € Co([O, 7]; K) and,

”¢HCO([O,‘EJ;Rd)
with the first part of the proof,

r

t——— (1. $) 20.
191l co10.71:m)

(,U, Ut —Lt> =

Thus

which enables us to concludel™
Let us conclude this subsection with the proof of property (P4).
Proposition 2.7. The initial conditions(ug, vg) are satisfied i.e.
u(0) =ug, u(0+0) = vo.
Proof. Sinceuy, (0) = U® = ug for all h; € (0, hil, the first equality is an immediate

consequence of the uniform convergence(w;fi)hphpo to u on [0, z]. In order to
prove the second equality, we begin with the following lemma.

Lemma 2.8. Under the previous assumptions we have

(vo—1#(@©+0),z—ug)<0 VzeKk.
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Proof. Let z € K andp € (0, 7) \ D, whereD is definedby (2.11). We will prove that
(vo — it (), 2 — u0) <O(p) + O(llz(h)ll) + O(hy).
Passing to the limit ag; tends to zero first, then gs tends to zero, we will obtain

the announced result.
Let O < h; < min(h}, p). By definition of u,, we have

(vo — ttn; (p). 2 —uo) = (vo— VP, z —uo) with p = Lhﬁj

1

which we rewrite as

(vo— VP, z—ug) = (vo— V°+2z(hi), z — uo) — (z(h), z — uo)

14
+ (VL= VT b F", 2 — ug)
n=1

P
DGR
Using relation (2.4), we know that for all € {1, ..., N}
(Vi vtz — U <0
and, sinceU* = Proj(ug + hivo + hiz(h;)), we have also
h(vo — VO +z(hi), z — UY) = (uo + hivo + hiz(hy) — U, z — UY) 0.
Thus we get

(vo— i, (p).z —uo) < (vo— VO +z(hi), Ut — uo) — (2(hi), z — uo)

P P

+Y (V= VI i FT UM —ug) = Y hi(F", 2 — uo).

n=1 n=1

Let us estimate each term of the right-hand side of this inequality. Using the estimates
(2.1) and (2.7), we obtain

n
U™t — uo|| < Z RIVHISC+ Dl <Cp+h) Vnell,..., p)
k=0

20



and
14 14
[ (vt — v ot —ug)[< vt - v Ut = wo <CClp + ).
n=1 n=1
Moreover, we have

|F'| <My Vne{l,...,N)

with M3 defined by (2.8). Thus

p

p
[ mi(rr vt - Z: 12— uo)|

n=1

P
<l F (10" = uoll + 1z — uoll)
n=1

<phiM1(C(p + hi) + ||z — uol)
<pM1(C(p + hi) + 1z — uol).

Finally,

— o
hi

Ul
Vo = H

1 .
= ;||PrOJ<K, uo, +hivo + hiz(hi)) — uo|| < llvoll + |z(h) |
1

and
|(vo = VO + 2(hi). Ut = uo) | = hi | (vo — VO + z(hi)., VO) | <2 (lvoll + |2 ).
Thus, we get

(vo — i, (), 2 — ) SCC'(p + hi) + pM(C(p + hy) + |1z — uoll)

+]z(h) |11z = woll + 2hi (Ilvoll + |2(hi) |)?
which concludes the proof.(J

The previous lemma implies that

(vo —u(0+ 0), w)<0 Yw € Tk (uo).
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If uo € Int(K) then T (uo) = R? and the conclusion follows immediate@therwise, by

choosing successively = * (0 + 0) and w = y, we obtain

lvoll2< (i(0 + 0), vo) < [0+ 0) .

With (2.6) we have also

p
Wm@w=HVW<NNW+MZ]WW<WMHWAMN+pM1thp=L£J
k=1

for all p € (0,7) \ D and for all; € (0, min(h}, p)). By passing to the limit ag;
tends to zero, then gs tends to zero, we get

[i©+0)| < llvoll-
Hence

lvoll? = (10 +0). vo) = [0+ 0)?,

andvg=u(0+0). O
2.3. Transmission of the velocities at impacts

In this subsection, we study the behavior of the limit of the scheme at impacts. We
will assume from now on that the limit motion satisfies property (H5), i.e.

(H5) (Vo (u®), Vgoﬁ(u(t)))go Y(a, f) € J(u(t))z, oa#f Vie(0r)
and we will prove thatu satisfies Moreau’s rule for inelastic shocks, i.e.
i(t + 0) = Proj(Tx (u(1)), iu(t — 0)) Vi € (0, 7). (2.15)

More precisely, let € (0, t) and denote:i = u(r), i™ = u(f +0), i~ = u(f —0). Since
u(t) € K for all ¢+ € [0, 7], we have

ut e Tx@), u~ e —Tg@).

Thus, if ut = u~, we geti~ € Tk () and the impact law is satisfied. Otherwise, we
have u({r}) =™ — i~ # 0 and the measurg has a Dirac mass at
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Let us decomposg with respect to Lebesgue’s measure: there existsL.(0, 7; RY)
such that

dpu=gdt +dy,

where u, is a singular measure with respect to Lebesgue’s measure. Using Radon-
Nicodym’s theorem we infer that there existq q|-integrable functior, such that

dug = hed|ugl.

Then, property (P3) implies that (s¢&8])

g(1) € =Nk (u(r)) dta-e on(0, 1),
hs(t) € =Ng (u(0)  |u| a-e on(0, 7).

It follows that
ut — i = p({f}) € =Nk (@).

Thusu € 0K and J (1) # .

In order to prove that (2.15) holds also in this case, we will perform a precise study
of the discrete velocities/” in a neighbourhood of. Let us introduce some new
notations.

From assumption (H3) we know th&¥ ¢, (i1)) is linearly independent. Hence

oeJ (i)

{1,....d}\ J@@)} is a basis ofiR¢
For all« € {1,...,d} and for allq € R? we definee,(q) by

| Voulg) i e J@),
elq) = ey it o ¢ JG@@).

Since the functionsp,, 1<a<v, belong to CLY(R?; R),_we infer that there exists
r > 0 such that(ea(q))oa:l gisa basis ofR* for all ¢ € B(u, r). We define the dual

.....

,,,,,

continuous onB (i, r). Moreover, we recall thap, (1) > 0 for all o ¢ J(ii). Since the
functions¢,, 1<a<v, are continuous, possibly decreasingve may assume without
loss of generality that

¢,(q) >0 Youdg J() Vqe B(,r)
J(q) C J@i) Yq € B(i,r). (2.16)
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Then, using the continuity ofi and the convergence Qiti)hi>hi>o touin CO([O, ];
R?), we can defing > 0 andhy € (0, %] such thatl7 — p, 7+ p] C (0, 7) and

u(t) e B(iu,r) Vtelt—p,i+p] (2.17)
Ut e B, r) Vnhi €[i—p,i+p] Vhi € (0, hal. (2.18)

Finally we define
Mz = sup{lle(@)l, llex(@)ll, g € B, r), 1<a<v}. (2.19)

We prove the following result.
Proposition 2.9. Let us assume that* # i~ and
(Vo (), Vop()) <O V¥(x, f) € J(@)?, o0 # B.
Then the impact law is satisfied at=71, i.e.
it = Proj(Tx (i), i™). (2.20)

Proof. With the definition (1.3) of Kwe can describdk (1) and Nk (u) as follows:

Tk (i) = {v e RY; (Vo,(i),v)=>0 Vae J(@@)},

Ng@@) ={we R w= a;@ IV @), Ay <0 Vo€ J@)}.

Thus, there exist non-positive numbers, o € J(u), such that

it -0 = Z — gV @, ().

aeJ (i)

Recalling thatiu™ e Tx (i), i~ — ™ € Nk (i) and Tk (1) and Nk (i) are two polar
cones, we infer that (2.20) is equivalent to

G =it ity =0= " u,(Ve,a),i")
aed ()

1, (Vo (), u™) =0 Vo e J@).

Let us prove the following lemma.
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Lemma 2.10. Let o € J (i) such thaty, # 0. Then,for all p; € (0, p] there exists
hy, € (0, h2] such that for all; € (O, hy,], there existsnh; € [t — py.t + p;] such
that ¢, (U"+1) <O0.

Proof. Let us assume that the announced result does not hold, i.e. assume that there
exists p; € (0, p] such that, for allh,, € (0, h2] there existsh; € (0, hp,] such that
¢, (U™1) > 0 for all nh; € [ — py, T+ pql.

Hence, we can extract frorh;); >0 a subsequence denotétl,); >0 such that

Py(U"™) >0 Vnhya) € [f — py, T+ py] Vi=0. (2.21)
For all p € (0, p4] such that +p € (0, 1)\ D, let us establish the following estimate:
|(tih ) @ = P) =ty (F + p). £2())| SO(P) + O(hpiy) + O(llu — wn,yg ”CO([O,r];Rd))'
Then, by passing to the limit wheintends to+oo, we will infer with (2.12) that
|(i(F — p) — (@ + p). ()| <O(p)
and, whenp tends to zero, we will obtain
|(i(F = 0) — k(7 + 0), e5()) | = |11,| <O

which gives a contradiction.
Let p € (0, p4] such thatr + p € (0, 7) \ D. For alli >0 we define

f— r+
= o =[]
ho) h)

Then, for allnhyi) € [t — p.t + pl, we have p<n<p; and we infer from (2.4) that
VIV hp@ " € Ng (U™,

Hence there exist non-positive nume;%)ﬁGJ(le) such that

VIV b hon FT = Y VU,
ﬁe](U”*l)
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With (2.21) we obtain that: ¢ J(U"*1) and thus
(Vn—l _yn + hgo(i)an Sa(U”+l)) — Z uréeﬁ(Un-‘rl)’ Sgg(U’H_l) —0.
ﬁEJ(U"Jrl)

It follows that

Di

n=n;
pi Pi
= Y (Vv @) + 30 (VT v @) - e
n=n; n=n;
pPi pi
=— Z By (F”, sa(U’H'l)) + Z (Vn_l = V" ea(i) — 8“(Un+l))'
n=n; n=ni

Let us observe now tha”i—1 = Uhy, (t—p) and VPi =uy . (f+ p). We obtain

(i)

|(L.th<p(i) t—p)— I;thrp(i)(t__’_ P, 8“(’2))|

’

Di Pi
<Y hpoyMaMa+ Y VP = V7 [en @) — £,(UHY)|

n=n; n=n;

where My and M, are defined by (2.8) and (2.19).

Moreover
I = U™ = u@) = uny, (0 + Do) |
< ”u(f) T Unyg () “ + ”uhq)(i) ) — Uh iy ((” + 1)h<ﬂ(i)) ”
< llu = upyg, IICO([O,T];RL;) + Clt = (4 Dhge|
<

=ty ”co([O,r]:Rd) o+ o).
whereC is the constant obtained at Propositidri. Hence,

|("‘£hq)(i) (lT - p) - I/‘thtp(,') (t_ + p)v 80((12))|
<SMaMo(pi — ni + Dhggy
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pi
(e = g oo,y + €O+ hp@) P IV = V"

n=n;

SM1M2(2p + hoai)) + Cog, (llu — un,q, ”Co([o,r];Rd) +C(p +ho@m)),

whereC’ is the constant defined at Propositi®@ and w,, is the modulus of continuity
of &, on B(iu, r), which achieves the proof.[J

We come now to the last step of the proof of Propositi$.

Lemma 2.11. Let o € J (i) be such that, # 0. Then
(V(px(ﬁ), zl+) =0.

Proof. Let « € J(i) such thatu, # 0. Sincei™ € T (i) we have(Ve, (i), ") >0

and it remains to prove tha(tﬁ, V%(ﬁ)) <0. The main idea of the proof is to obtain

an estimate ofi (7 + p), Vo, (u(i +p))) and to pass to the limit whep tends to zero.
More precisely, leto € (0, p] such that + p € (0,7) \ D. We have

_ . . , . r
a(i+p) = lim in (c+p) = lim VP with  p; = {%J Vi >0.

i
Observing that

|+ p) = UPHH| < uG+ p) = un, @+ p) | + |un, @ + p) = wn, ((pi + D) |

< llu—up, ”Co([O,T];Rd) + Ch;

the continuity of Vo, on B(i, r) implies that

(@G + p), Vo, (ul@ + p)) (itn, (F + p), Vo, (UPTY)

lim
h,‘—)O
= lim (VPi,v pi+l
h,—)O( ’ (,Do((U ))
and we will prove that

(vri, V%(Upi+1)) <O(p) + Ohi) + O(llu — up, ”c0( (2.22)

[O,I];Rd))'

Let us apply the previous lemma: there exisis e (0, h2] such that, for allh;
(0, hpl, there existsih; € [1 — p, 1 + p] such thatp, (U"+1) <0 and we defineV; as
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the last time step ii7 — p, 7 + p] at which the constrainp,, is active. More precisely,
let i be such that; € (0, h,] and defineN; by

N; = max{n € N; nh; € [f — p, 7+ p] and ¢, (U" 1) <0}.
Since Vi ¢ —Tx (UNit1y and o € J(UNi 1), we infer that
(Vi Ve, UNTh)<o.
By definition of the scheme, for alt € {1, ..., N}, we have
Vil yn 4 P e Ne (Ut

and there exist non-positive numbe{qﬂ;})ﬁeuunu) such that

V}’l—l _ V}’l + hl'Fn — Z 1 M%V(pﬂ(Un-i_l)
ﬁEJ(U”+ )

Thus, for allz; € (0, hy] we get

(V2 Vo, ) = (VM. Ve,wrth) + i (vr—vit v, wrth)

n:N,-+l
< (VNi, V(pa(UpH_l) _ V([)a(UNH_l))
Pi
+ 2 (mFn Ve, wrth)
n=N;+1

Di
B S
n=N;+1 [)’eJ(U"+1)

< C| Vo (UPHY = Vo U | + (pi — NiYhi MM

Pi
+ 2 Y (Cupveputth, Ve, wrh).

n=Ni+1 pej(U"+1)

Let us estimate the last term. We observe first that (2.16) and (2.18) imply that
JWU™Yy ¢ J@) for all nh; € [t — p, 7+ p] and by definition ofN;, we have also
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a g J(UY) for all n e {N; +1,..., pi}. Moreover,assumption(H5) implies that
(Vwﬁ(ﬁ), Vo, ) = (ep(in), ex()) <O Vf e J(@)\ {a}

and thus

Pi
> Y (VoW ve,wrth)

n=N;+1pesU"+1)

Di
< Y Y Cupllepurth enurth) = (ep@, ex@) ).

pe Uty n=N;+1

Let us denote byv,, the modulus of continuity oés on B(i, r) for all p e J(i) and

let w = ﬁmax we,. Arguing as in the previous lemma we obtain
e J (i)

|en(UPFY) — ey() | <, (Cp + Chi + |lu — up, ||Co([0,ﬂ;Rd))
and
lep(U™™) — ep(i)]| < e, (Cp + Chi + |lu — up, ||CO([0’T];R‘1)>
for all e J(U"L) and for alln € {N; +1,..., p;}. Hence
[(ep@™),ea@ )  (ep@). ext@) | < 2M200 (Cp + Chi + lu — up, ||C0([O’T];Rd))

for all p e J(U™Y) and for alln € {N; +1,..., p;}. Moreover, by definition OfM’Zg
we have

] = (vt = VP e [ <MV = VI 4y MaMy

for all e J(U™) and for alln € {N; +1,..., p;}. It follows that

Pi
)N (—u?;Vw/s(U"“)v V%(U”"“))

n=N;+1 geJ (Ut

<2dM2o <Cp + Chj + |lu — up, ”CO([O,r];[F\Ed))
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Pi
x 3 Y IV =V 4 (pi — NihiMy
n=N;+1

gZdMZZ(C/ + 2o0M1)w (Cp + Ch; + lu — up, ||C0([0,‘c];Rd)> ,

where C’ is the constant defined at Propositi@r6. Finally, for all h; € (0, h,] we
have

HV(Poc(Upl-’_l) _ v(pa(UN,-f‘l) ”
= [ex@P™) — eu N |
<o, (IUPH = UNH) <o, (2Cp)

and thus

(VPi, Vo, UPrth)
<Cw,, (2Cp) + 2ph; M1 M

+2dM3(C' + 2pM1)w <Cp + Ch; + |lu — up, | CO([O’T];R,,))
which proves (2.22). Passing to the limit Astends to zero, we obtain
(i@ + 9. Vo, (ud + ) ) <Co, 2Cp) + 24MF(C' + 2pMD)(Cp).
Then, passing to the limit ag tends to zero, we conclude the proof.]
Appendix A

Lemma A.1. Let i1 € (0,1/L) and (¢"),>0 be defined by

o_ llvoll+Mt+1
=7

1-Lh
1 n—1 n k-1
0" == | Ivol + Me+ 1+ Ly F +2Lh2 Y S or | s
k=0 k=1 p=0

There exist1 > 0 and x > 0 such that

0<@"<C1e™" VYn>0 Vh e (0, h1].
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Proof. Let i € (0, h1]. By definition of the sequence ty,>0, we ha v e
(1—Lh)@"™t + (Lh —2—2Lh%)¢" +¢" 1 =0 Vn>1.
Let us denote by andn the roots of the characteristic equation

1—L)X?>+ (Lh—2—-2Lh»)X+1=0

i.e.
fe 14 L+ 2Lh +2\(/185 zrhsz(l — 2h)2 1t ()
and
ye14 JL+2Lh —2\(/185 ;52(1 —2m? _ 14 hea(h).
Then we have
Q" =al" +by" Vn>=0
with (a, b) given by the relations
(po =a+b= %,
ot =altby= 1—COLh (H hLlJ:ZLth>
and Co = |lvo|| + Mt + 1. We infer that
Co L+ 2Lh + /8L + L?(1 — 2h)>?
‘= V8L + L2(1 — 2h)? ( 2(1—Lh) )
and
- Co (_L +2Lh — /8L + L2(1— 2h)2> .
V8L + L2(1 — 2h)2 2(1— Lh)
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It follows thata and b are two continuous functions df, which remain non-negative
and bounded on0, 41]. Thus there exist€; > 0 such that

C
0<a< ., Ogbgil Vh € [0, hal.

For the same reason, the functians and x, are bounded on0, 1] and there exists
x > 0 such that

0<n<é<e™, Vh e [0, hl.
Finally we get
0< " <al" + by <(a + b)e"" <C1e"" V¥n>0 Vhe (0,h1]. O
Lemma A.2. Let K be defined by
K={qeR%p,q)>0, a=1,...,v]

with functionse,, « =1, ..., v, belonging toC1(R?, R) and satisfying(H4). Then for
all go € K, there existd > 0, r > 0 anda € R? such that,for all ¢ € B(qgo, 20):

B(a,r) C Tx(q) (A.1)
and
_ 1 _
= = Proi(Ti (9). 2) | < - (Il = all? = [Proj(Tx (). ) - al’) viem (A2

Proof. First, let us proveA.1).
Let go be inK and recall that, for aly € R,

J(q) = {oc e{l,....v} (pa(q)QO}.

Since the functiong¢,).=1,., are continuous, we infer that there exists> 0 such
that, for allo ¢ J(gp), we have

©y(q) >0 if lg — qoll <61.

It follows that J(q) C J(qo) for all ¢ € B(qo, 51).
Consequently, if/(go) = ¥, we have J(g)= ¢ for all ¢ € B(go, d1) and @A.1) is
satisfied foro = 91/2 and for alla € R? andr > 0.
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Let us assume now that(go) # ¥. For all o € J(go) we define¢,, : RYx R —> R
by

$,(q.9) = (Vo (@).y) Y(g.y) e R x R
and¢ : RY x R? - R by

d(g,y) = min $,(q,y) Y(g.y) € R! x RY.
aeJ(qo)

Since ¢, € CcY(R?) for all o € {1,...,v}, we obtain that the mappings are continu-
ous. Moreover, sincufv%(qo)) is linearly independent, we can define a basis

(ei)1<i<a Of R? such that

aeJ(qo)

eq = V,(go) Yo e J(qo).

Let us denote bye;)1<i<qs the dual basis ofe;)1<i<qs and let

a= E £y

o€t (qo0)

Then, for alla € J(qo), we have

¢a(q0’ Cl) = (V(Px(qo)»a) = (eoh Z 8ﬁ> - 1

BeJ (q0)

and ¢(qo, a) = 1. By continuity, it follows that there exist > 0 andd2 > 0 such that
¢(q.y) >0 V(g,y) € B(qo, 92) x B(a,r).
Let 6 = 3 min(d1. 52). For all g € B(qo. 20) we have
J@) CI@qo. ¢g.y)= min (Vo,(q).y)>0 VyeBa.r)
which implies that

B(a,r) C Tx(q) = {y € R (Vo,(q), y) =0 Voe J(g)}

and @A.1) is satisfied.
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Then we observe tha\(2) is a direct consequence (with the choile= D = R¢,
C =Tk (q) and S = Proj(C,-)) of the following result due to J.J.Moreau:

Lemma A.3 (Moreau [6]). Let D be a subset of a real Hilbert space H and ket
D — D be such that

ISz — SZII<lz — 2l ¥(z,7) e D%

Leta € H andr > 0 such thatB(a,r) C {z € D : Sz = z}. Then
1
Iz =Szl <5 (lz—al® = ISz —all®) YzeD. O
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