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An existence result for non-smooth vibro-impact
problems

Laetitia Paoli
Equipe d’Analyse Numérique-UPRES EA 3058, Saint-Etienne, Faculté des Sciences, Univ ersité Jean

Monnet, 23 Rue du Docteur Paul Michelon, 42023 St-Etienne Cedex 2, France

We are interested in mechanical systems with a finite number of degrees of freedom submitted
to frictionless unilateral constraints. We consider the case of a convex, non-smooth set of

admissible positions given by K={q ∈ Rd ; ��(q)�0, 1����}, ��1, and we assume inelastic 
shocks at impacts. We propose a time-discretization of the measure differential inclusion which 
describes the dynamics and we prove the convergence of the approximate solutions to a limit  
motion which satisfies the constraints. Moreover, if the geometric properties ensuring continuity 
on data hold at the limit,  we show that the transmission of velocities at impacts follows the 
inelastic shocks rule.

Keywords:Vibro-impact; Non-smooth convex constraints; Measure differential inclusion; Inelastic shocks;
Time-discretization scheme; Convergence; Existence
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1. Introduction and statement of the result

We consider a mechanical system withd degrees of freedom which unconstrained
motion is described by the following ODE

ü = f (t, u, u̇),

whereu ∈ Rd is the representative point of the system.
We assume that the trajectory must remain in a given closed subsetK of Rd i.e.

u(t) ∈ K for all t ∈ [0, �].

This unilateral constraint may lead to some discontinuities for the velocity. Indeed let
us assume for instance thatu(t) ∈ Int(K) for all t ∈ (t0, t1) ∪ (t1, t2) ⊂ [0, �] and
u(t1) ∈ �K. Then the constraint implies that

u̇(t1 − 0) ∈ −TK
(
u(t1)

)
,

u̇(t1 + 0) ∈ TK
(
u(t1)

)
,

whereTK(q) denotes the tangent cone toK at q given by

TK(q) = ∪�>0�(K − q).

Hence, if u̇(t1 − 0) �∈ TK
(
u(t1)

)
, it is clear thatu̇ is discontinuous att = t1. It follows

that the equation of motion has to be modified by adding a measure� to the right-hand
side i.e.

ü = f (t, u, u̇)+ �.

This measure� describes the reaction force due to the unilateral constraint and

Supp(�) ⊂ {t ∈ [0, �]; u(t) ∈ �K
}
.

Let us assume moreover that the constraint is perfect i.e. frictionless. We infer (see
[7,8]) that

−� ∈ TK(u)
⊥ = NK(u)

and the motion is described by the following measure differential inclusion (MDI)

� = ü− f (t, u, u̇) ∈ −NK(u). (1.1)
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The discontinuities of the velocity at impacts are now characterized by

u̇(t + 0) ∈ TK
(
u(t)

)
, u̇(t − 0) ∈ −TK

(
u(t)

)
,

u̇(t − 0)− u̇(t + 0) = −�
({t}) ∈ NK

(
u(t)

)
but these equations do not define uniquelyu̇(t + 0) and we have to complete the
description of the motion. Following Moreau[7,8] (see also[15,17] for a mathematical
justification of this impact law by a penalty method) we assume inelastic impacts i.e.

u̇(t + 0) = Proj
(
TK
(
u(t)

)
, u̇(t − 0)

)
(1.2)

for all t ∈ (0, �).

Remark. We may observe that

NK

(
u(t)

) = {0}, TK
(
u(t)

) = Rd

if t ∈ (0, �) andu(t) ∈ Int(K): in this case the impact law (1.2) implies simply thatu̇

is continuous att.

Let (u0, v0) ∈ K × TK(u0) be admissible initial data. We consider the following
Cauchy problem (P):

Problem (P). Find u : [0, �] → Rd (� > 0) such that
(P1) u is continuous with values inK,
(P2) u̇ belongs toBV (0, �;Rd),
(P3) the measure� = ü− f (t, u, u̇) is such that

Supp(�) ⊂ {t ∈ [0, �]; u(t) ∈ �K
}

and the MDI (1.1) is satisfied in the following sense (see[18]):

〈�, v − u〉�0 ∀v ∈ C0([0, �];K),
(P4) the initial data are satisfied in the following sense:

u(0) = u0, u̇(0+ 0) = v0,

(P5) for all t ∈ (0, �)

u̇(t + 0) = Proj
(
TK
(
u(t)

)
, u̇(t − 0)

)
.
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The existence of a solution for this Cauchy problem is still an open problem in the
general case. When the boundary ofK is smooth enough, the setK can be described
at least locally with a single inequality

u ∈ K ⇐⇒ �(u)�0.

In this case (single-constraint case), several existence results have been obtained. The
corresponding proofs rely on the study of a sequence of approximate solutions which are
built either by means of a time-discretization of the MDI (see[2–4,9,13,14,16]) nor by
means of a penalization (see[12,19]). The convergence of the sequence of approximate
solutions gives both a theoretical result of existence and a numerical method to compute
approximate solutions of (P).

In a more general case, whenK is described by several inequalities (multi-constraint
case) i.e.

K = {q ∈ Rd; ��(q)�0 ∀� ∈ {1, . . . ,�}}, ��1

the existence of a solution has been established by Ballard in[1] if all the data are
analytical. His proof uses a very different technic based on existence results for ODE
and variational inequalities. Unfortunately, this very nice proof does not yield directly
a numerical method. Observing that the time-discretization schemes proposed by M.
Monteiro-Marques or L. Paoli and M. Schatzman in the single-constraint case can be
also defined in the multi-constraint case, it is natural to try to extend their convergence
proofs in order to complete P.Ballard’s result when the data are not analytical and
to obtain well-suited numerical methods. For this last point another question arises
immediately: what do we know about continuity on data? In the analytical case, Ballard
has proved (see[1]) that continuity on initial data holds if the active constraints along
the limit motion remain orthogonal. Moreover, the study of the model problem of a
free material point in an angular domainK of R2 shows that continuity on data does
not hold in general if the active constraints create an obtuse angle and leads to the
opposite conjecture in case of acute angles (see[10]). The proof of this last result is
given in a very recent paper (see[11]).

In this framework, we will extend in this paper the convergence result of the time-
discretization scheme proposed in[9,13] to the multi-constrained case. More precisely,
we assume that
(H1) f is a continuous function from[0, �] × Rd × Rd to Rd (� > 0) and is Lipschitz

continuous in its last two arguments;
(H2) K is a closed convex subset ofRd with a non-empty interior, given by

K = {q ∈ Rd; ��(q)�0 ∀� ∈ {1, . . . ,�}}, ��1 (1.3)

with �� ∈ C1(Rd;R) such that∇�� does not vanish in a neighborhood of
{q ∈ Rd;��(q) = 0}.
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For all q ∈ Rd we define the set of active constraints atq by

J (q) = {� ∈ {1, . . . ,�}; ��(q)�0
}

and we assume that
(H3) for all q ∈ K,

(∇��(q)
)
�∈J (q) is linearly independent.

Let F be a function such that
(H4) F is continuous from[0, �] × Rd × Rd × Rd × [0, h∗] to Rd (h∗ > 0), F is

Lipschitz continuous in its second, third and fourth arguments and is consistent
with respect tof i.e.

F(t, q, q, v, 0) = f (t, q, v) ∀(t, q, v) ∈ [0, �] × Rd × Rd .

We define a time-discretization of the Cauchy problem (P) with initial data(u0, v0) ∈
K × TK(u0) as follows:

U0 = u0, U1 = Proj
(
K, u0 + hv0 + hz(h)

)
with lim

h→0
z(h) = 0, (1.4)

and, for alln ∈ {1, . . . , ��/h�}

Un+1 = Proj
(
K, 2Un − Un−1 + h2Fn

)
(1.5)

with

Fn = F

(
nh,Un,Un−1,

Un+1 − Un−1

2h
, h

)
. (1.6)

Let us denote byL the Lipschitz constant ofF. Then, by applying Banach’s fixed
point theorem, we can prove easily that, for allh ∈ (0, h∗] ∩ (0, 2/L) and for all n ∈{

1, . . . , ��/h�} the system (1.5)–(1.6) admits an unique solution. Possibly decreasing
h∗ we will assume from now on thath∗ ∈ (0, 2/L) and hence the scheme is correctly
defined for allh ∈ (0, h∗].

We may observe that the projection onK ensures that all the approximate positions
satisfy the constraints and, if 2Un − Un−1 + h2Fn belongs to Int(K), then Eq. (1.5)
reduces to

Un+1 − 2Un + Un−1

h2 = Fn,

which is simply a centered scheme for the unconstrained motion.
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We define now the sequence of approximate solutions(uh)h∈(0,h∗] by

uh(t) = Un + (t − nh)
Un+1 − Un

h
if t ∈ [nh, (n+ 1)h

) ∩ [0, �] (1.7)

for all h ∈ (0, h∗].
We prove the following result:

Theorem 1.1. Let us assume that(H1)–(H2)–(H3)–(H4)hold. Let (u0, v0) ∈ K ×
TK(u0) be admissible initial data. Then the sequence(uh)h∈(0,h∗] defined by(1.4)–
(1.5)–(1.6)–(1.7)admits a converging subsequence inC0

([0, �];Rd
)
and the limit u

satisfies the properties(P1)–(P2)–(P3)–(P4).
If we assume moreover that

(H5)
(∇��

(
u(t)

)
,∇��

(
u(t)

))
�0 ∀(�,�) ∈ J

(
u(t)

)2
, � �= � ∀t ∈ (0, �),

where (v,w) denotes the euclidean scalar product of the vectorsv and w in Rd ,
then the function u satisfies also the impact law(P5) and is a solution of the Cauchy
problem (P).

Remark. Assumption (H5) is the condition which ensures continuity on data (see
[10,11]).

2. Proof of the convergence of the scheme

Let us outline the main steps of the proof of Theorem1.1. First, in Section 2.1,
we establish a priori estimates for the discrete velocities and accelerations. Then, in
Section 2.2, we pass to the limit ash tends to zero and applying Ascoli’s and Helly’s
theorem, we infer that there exists a subsequence of approximate solutions, denoted
(uhi )hi>0, such that



uhi → u strongly inC0

([0, �];Rd
)
,

u̇hi → u̇ weakly* in L∞(0, �;Rd) and a.e in(0, �),
ühi → ü weakly* in M1(0, �;Rd).

Moreover, we prove thatu satisfies the properties (P1)–(P2)–(P3)–(P4).
Finally, in Section 2.3, we study the reflexion ofu̇ at impacts: we show that the

right velocities are given by Moreau’s rule for inelastic shocks when assumption (H5)
is satisfied.

Thoughout this section we will meet some technicalities which cannot be avoided.
In order to make the essential ideas as clear as possible, the proof of some lemmas is
given in the Appendix A.
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2.1. A priori estimates

For all h ∈ (0, h∗] we define the discrete velocities by

V n = Un+1 − Un

h
∀n ∈ {0. . . . , N}, N =

⌊ �
h

⌋
.

We prove first a uniform estimate for the velocities(V n)0�n�N .

Proposition 2.1. There existsh1 ∈ (0, h∗] and C > 0 such that

‖V n‖�C ∀n ∈ {0, . . . , N} ∀h ∈ (0, h1]. (2.1)

Proof. Let us defineM by

M = max
{∥∥F(t, u0, u0, 0, h)

∥∥; t ∈ [0, �], h ∈ [0, h∗]} (2.2)

and recall thatL is the Lipschitz constant ofF with respect to its second, third and
fourth arguments.

As a first step we prove the following estimate:

Lemma 2.2. Let h ∈ (0, h∗]. For all n ∈ {1, . . . , N}, we have

‖V n‖�‖V 0‖ +M� + Lh

n∑
k=0

‖V k‖ + 2Lh2
n∑

k=1

k−1∑
p=0

‖V p‖. (2.3)

Proof. Let h ∈ (0, h∗] and n ∈ {1, . . . , N}. By definition of the scheme we have

Un+1 = Proj
(
K, 2Un − Un−1 + h2Fn

)
which implies that

(
2Un − Un−1 + h2Fn − Un+1, z− Un+1)�0 ∀z ∈ K

i.e.

(
V n−1 − V n + hFn, z− Un+1)�0 ∀z ∈ K. (2.4)

Furthermore, we have alsoUn ∈ K, thus

(
V n−1 − V n + hFn,Un − Un+1) = −h

(
V n−1 − V n + hFn, V n

)
�0. (2.5)
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We infer immediately that

‖V n‖�‖V n−1‖ + h‖Fn‖

and

‖V n‖�‖V 0‖ + h

n∑
k=1

‖Fk‖. (2.6)

SinceF is L-lipschitzian with respect to its second, third and fourth arguments, for all
k ∈ {1, . . . , N}, we have

‖Fk‖ �
∥∥∥∥F
(
kh,Uk, Uk−1,

V k + V k−1

2
, h

)∥∥∥∥
�
∥∥F(kh, u0, u0, 0, h)

∥∥+ L

(
‖Uk − U0‖ + ‖Uk−1 − U0‖ + ‖V k + V k−1‖

2

)
.

The first term of the right-hand side can be estimated with the constantM defined by
(2.2), thus we get

‖Fk‖ � M + L

∥∥∥∥∥∥
k−1∑
p=0

hV p

∥∥∥∥∥∥+ L

∥∥∥∥∥∥
k−2∑
p=0

hV p

∥∥∥∥∥∥+ L
‖V k‖ + ‖V k−1‖

2

� M + 2Lh
k−1∑
p=0

‖V p‖ + L

2
‖V k‖ + L

2
‖V k−1‖

and relation (2.6) yields

‖V n‖ � ‖V 0‖ + nhM + 2Lh2
n∑

k=1

k−1∑
p=0

‖V p‖ + Lh

2

n∑
k=1

(‖V k‖ + ‖V k−1‖)

� ‖V 0‖ +M� + Lh

n∑
k=0

‖V k‖ + 2Lh2
n∑

k=1

k−1∑
p=0

‖V p‖. �

Since lim
h→0

‖z(h)‖ = 0, there existsh1 ∈ (0, h∗] such that

∥∥z(h)∥∥�1 ∀h ∈ (0, h1]
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 and, recalling that u0 = U0 ∈ K, for all h ∈ (0, h∗], we obtain

‖V 0‖ =
∥∥Proj(K,U0 + hv0 + hz(h)

)− U0
∥∥

h
�
∥∥v0 + z(h)

∥∥�‖v0‖ + 1.

Moreover, (2.3) implies that, for alln ∈ {1, . . . , N} and for all h ∈ (0, h1]

‖V n‖(1− Lh)�‖v0‖ +M� + 1+ Lh

n−1∑
k=0

‖V k‖ + 2Lh2
n∑

k=1

k−1∑
p=0

‖V p‖.

Possibly decreasingh1, we may assume without loss of generality thath1 ∈ (0, 1/L).
Then, for allh ∈ (0, h1], we define

�0 = ‖v0‖ +M� + 1

1− Lh
,

�n = 1

1− Lh


‖v0‖ +M� + 1+ Lh

n−1∑
k=0

�k + 2Lh2
n∑

k=1

k−1∑
p=0

�p


 ∀n�1.

A trivial induction shows that‖V n‖��n for all n ∈ {0, . . . , N}. Moreover, we have
the following result:

Lemma 2.3. There existC1 > 0 and � > 0 such that

0��n�C1e
�nh ∀n�0 ∀h ∈ (0, h1].

Proof. See LemmaA.1 in Appendix A.
It follows that

‖V n‖��n�C1e
�nh�C = C1e

�� ∀n ∈ {1, . . . , N}, ∀h ∈ (0, h1]

which concludes the proof.�

Let us establish now an estimate for the discrete accelerations.

Proposition 2.4. There existh∗1 ∈ (0, h1] and C′ > 0 such that

N∑
n=1

‖V n − V n−1‖�C′ ∀h ∈ (0, h∗1]. (2.7)
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Proof. Let h1 andC be defined as in Proposition2.1 andK1 andM1 be defined by

K1 = K ∩ B(u0, C�)

and

M1 = max
{∥∥F(t, u, u′, v, h)

∥∥, t ∈ [0, �], (u, u′) ∈ K2
1, ‖v‖�C, h ∈ [0, h∗]}. (2.8)

By definition of scheme, we haveUn ∈ K for all n ∈ {0, . . . , N + 1} and, using
Proposition2.1

‖Un − u0‖ = ‖Un − U0‖ = h

∥∥∥∥∥
n−1∑
k=0

V k

∥∥∥∥∥ �Cnh�C�.

ThusUn ∈ K1 for all n ∈ {0, . . . , N + 1} and ‖Fn‖�M1 for all n ∈ {1, . . . , N}.
By LemmaA.2, we infer that, for allq ∈ K1, there existaq ∈ Rd and two strictly

positive numbers	q and rq such that, for allq ′ ∈ B(q, 2	q)

B(aq, rq) ⊂ TK(q
′) (2.9)

and

∥∥z− Proj
(
TK(q

′), z
)∥∥� 1

2r

(
‖z− aq‖2 − ∥∥Proj

(
TK(q

′), z
)− aq

∥∥2
)

∀z ∈ Rd . (2.10)

It is obvious thatK1 ⊂ ⋃
q∈K1

B(q, 	q), and a compactness argument implies that there

exists (qi)1� i�" such that

K1 ⊂
"⋃

i=1

B(qi, 	qi ).

In the remainder of the proof we will simply write	i , ai and ri instead of	qi , aqi
and rqi . We define

r = min
1� i�"

ri , 	 = min
1� i�"

	i , �1 = 	
C
.

Let h∗1 ∈ (0,min(h1, �1)
)
, h ∈ (0, h∗1] andn ∈ {0, . . . , N}. Let i ∈ {1, . . . , "} be such

that Un+1 ∈ B(qi, 	i ). Then, for all m ∈ {n, . . . , p} with p = min
(
N, n + ��1/h�

)
,
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we have

‖Um+1 − qi‖ � ‖Um+1 − Un+1‖ + ‖Un+1 − qi‖

�
∥∥∥∥∥

m∑
k=n+1

hV k

∥∥∥∥∥+ 	i �hC(m− n)+ 	i �	 + 	i �2	i .

By applying (2.9)–(2.10), we obtain that, for allm ∈ {n, . . . , p}, we have

B(ai, ri) ⊂ TK(U
m+1)

and

∥∥z− Proj(TK(U
m+1), z)

∥∥� 1

2ri

(‖z− ai‖2 − ∥∥Proj(TK(U
m+1), z)− ai

∥∥2) ∀z ∈ Rd .

But, relation (2.4) implies that

Vm−1 − Vm + hFm ∈ NK(U
m+1).

Since NK(U
m+1) and TK(U

m+1) are two closed convex polar cones, we infer that
(see[5])

Proj
(
TK(U

m+1), V m−1 − Vm + hFm
) = 0.

Consequently, we obtain

‖Vm−1 − Vm + hFm‖ � 1

2ri

(∥∥(V m−1 − Vm + hFm)− ai
∥∥2 − ‖ai‖2)

� 1

2ri

(∥∥Vm−1 − Vm + hFm
∥∥2 − 2

(
ai, V

m−1 − Vm + hFm
))

and thus

‖Vm−1 − Vm‖ � h‖Fm‖ + 1

2ri

(
‖Vm−1 − Vm‖2 + 2h

(
Fm, V m−1 − Vm

)
+h2‖Fm‖2 − 2

(
ai, V

m−1 − Vm + hFm
))
.

Moreover, relation (2.5) implies that

−(Vm−1, V m
)
� − ‖Vm‖2 + h

(
Fm, V m

)

11



which yields

‖Vm−1 − Vm‖2 = ‖Vm−1‖2 − 2
(
Vm−1, V m

)+ ‖Vm‖2

� ‖Vm−1‖2 − ‖Vm‖2 + 2h
(
Fm, V m

)
.

It follows that

‖Vm−1 − Vm‖ � h‖Fm‖ + 1

2ri

(
‖Vm−1‖2 − ‖Vm‖2 − 2

(
ai, V

m−1 − Vm
)

+2h
(
Fm, V m−1 − ai

)+ h2‖Fm‖2
)
.

Thus, for allm ∈ {n, . . . , p}, we have

‖Vm−1 − Vm‖�hC2 + 1

2r

(
‖Vm−1‖2 − ‖Vm‖2 − 2

(
ai, V

m−1 − Vm
))

with

C2 = M1

(
1+ C + a

r

)
+M2

1
h∗

2r
, a = max

1� i�"
‖ai‖.

By summation we obtain

p∑
m=n+1

‖Vm−1 − Vm‖ � (p − n)hC2 + 1

2r

(
‖V n‖2 − ‖V p‖2 − 2

(
ai, V

n − V p
))

� (p − n)hC2 + 1

2r

(‖V n‖2 − ‖V p‖2 + 4Ca
)
.

Recalling thatp = min
(
N, n+ ��1/h�

)
, we infer that

N∑
m=1

‖Vm−1 − Vm‖�NhC2 + 1

2r

(‖V 0‖2 − ‖V N‖2)+ (k1 + 1)4Ca,

wherek1 ∈ N is such that

k1

⌊�1

h

⌋
�N < (k1 + 1)

⌊�1

h

⌋
.

Observing thatk1��/(�1 − h), we can conclude the proof with

C′ = �C2 + C2

r
+ 4Ca

(
�

�1 − h∗1
+ 1

)
. �
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2.2. Passage to the limit as h tends to zero

Thanks to Proposition2.1, we know that the functionsuh, 0 < h�h∗1, areC-Lipschitz
continuous on[0, �]. Hence,(uh)0<h�h∗1 is a bounded and equicontinuous family of

functions ofC0([0, �];Rd). Applying Ascoli’s theorem we may extract a subsequence,
denoted(uhi )0<hi �h∗1, such that:

uhi → u strongly inC0([0, �];Rd),

u̇hi → u̇ in L∞(0, �;Rd) weak*.

SinceUn ∈ K for all n belonging to{0, . . . , N+1}, we infer that, for allhi ∈ (0, h∗1]
and for all t ∈ [0, �]:

dist(uhi (t),K)�hi max
0� j �N

‖V j‖�hiC.

Passing to the limit whenhi tends to 0, we obtain thatu(t) ∈ K for all t ∈ [0, �] and
u satisfies the property (P1).

The measurëuh is a sum of Dirac’s measures on(0, �), more precisely, we have

üh(t) =
N∑
n=1

(V n − V n−1)	(t − nh) ∀h ∈ (0, h∗1].

Consequently, the total variation ofu̇h on (0, �) is equal to

T V (u̇h) =
N∑
n=1

∥∥V n − V n−1
∥∥

and estimate (2.7) implies that(u̇h)0<h�h∗1 is a bounded family ofBV (0, �;Rd). Using
Helly’s theorem and possibly extracting another subsequence, we may conclude that
(u̇hi )0<hi �h∗1 converge, except perhaps on a countable set of points, to a function of
bounded variation. Hence

u̇ ∈ BV (0, �;Rd), u̇hi → u̇ except perhaps on a countable set of pointsD

and

ühi → ü weakly* in M1(0, �;Rd).
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It follows that (P2) is also satisfied. Moreover, let us define the sets (Di )i �0 and D∞ by

Di = (0, �) ∩ hiN, D∞ = {t ∈ (0, �); u̇(t − 0) �= u̇(t + 0)
}

and let

D =
⋃
i�0

Di ∪D∞ ∪ D. (2.11)

Since u̇ ∈ BV (0, �;Rd), D∞ and D are denumerable and, for allt ∈ (0, �) \ D we
have

u̇(t − 0) = u̇(t + 0) = u̇(t), u̇hi (t − 0) = u̇hi (t + 0) = u̇hi (t) ∀i�0

and

u̇(t) = lim
hi→0

u̇hi (t). (2.12)

Let Fh be the measure defined on(0, �) by

Fh(t) =
N∑
n=1

hFn	(t − nh) ∀h ∈ (0, h∗1].

Lemma 2.5. The sequence(Fhi )0<hi �h∗1 converges weakly*in M1(0, �;Rd) to
f (t, u, u̇).

Proof. We know that (u̇hi )0<hi �h∗1 converges tou̇ in BV
(
0, �;Rd). In particular

Lebesgue’s theorem implies that(u̇hi )0<hi �h∗1 converges tou̇ in L1
(
0, �;Rd). We

extendu̇hi and u̇ to R by 0 outside of[0, �] and still denote the respective extensions
u̇hi and u̇. The set{u̇hi : hi ∈ (0, h∗1]} ∪ {u̇} is a compact subset ofL1(R;Rd). The
classical characterization of compact subsets ofL1(R;Rd) implies that

lim

→0

sup
0�hi �h∗1

∫
R

∥∥u̇hi (t − 
)− u̇hi (t)
∥∥ dt = 0.

Letting 
 = hi , we can see thaṫuhi (.− hi) converges tou̇ in L1
(
R;Rd).
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Let us define an approximate velocityvhi on R by

vhi (t) =
u̇hi (t − hi + 0)+ u̇hi (t + 0)

2
∀t ∈ R.

The sequence(vhi )0<hi �h∗1 converges tou̇ in L1
(
R;Rd

)
. Moreover, estimate (2.1)

implies that

∥∥vhi (t)∥∥�C ∀t ∈ R ∀hi ∈ (0, h∗1].

Let � ∈ C0
([0, �];Rd

)
. By definition of Fhi we have

〈Fhi ,�〉 =
N∑
n=1

hi
(
Fn,�(nhi)

) = N−1∑
n=1

∫ (n+1)hi

nhi

(
Fn,�(t)

)
dt +

∫ �

Nhi

(
FN,�(t)

)
dt

+
N−1∑
n=1

∫ (n+1)hi

nhi

(
Fn,�(nhi)− �(t)

)
dt + hi

(
FN,�(Nhi)

)

−
∫ �

Nhi

(
FN,�(t)

)
dt. (2.13)

Recalling that‖Fn‖�M1 for all n ∈ {1, . . . , N} we can easily estimate the last two
terms:

∥∥hi(FN,�(Nhi)
)∥∥�hiM1‖�‖C0

(
[0,�];Rd

)
and

∥∥∥∥
∫ �

Nhi

(
FN,�(t)

)
dt

∥∥∥∥ �(� −Nhi)M1‖�‖C0
(
[0,�];Rd

)�hiM1‖�‖C0
(
[0,�];Rd

).
Moreover, we denote�� the modulus of continuity of� on [0, �]. We get

N−1∑
n=1

∥∥∥∥∥
∫ (n+1)hi

nhi

(
Fn,�(nhi)− �(t)

)
dt

∥∥∥∥∥ �M1(N − 1)hi��(hi)�M1���(hi).

Let us compare now the two first terms of the right-hand side of (2.13) with

∫ �

0

(
f
(
t, u(t), u̇(t)

)
,�(t)

)
dt.
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For all n ∈ {1, . . . , N} and t ∈ [nhi, (n+ 1)hi
) ∩ [0, �] we have

Fn = F

(
nhi, U

n,Un−1,
V n + V n−1

2
, hi

)

= F
(
nhi, uhi (nhi), uhi (nhi − hi), vhi (t), hi

)
thus∥∥Fn − f

(
t, uhi (t), vhi (t)

)∥∥
�
∥∥F (nhi, uhi (nhi), uhi ((n− 1)hi

)
, vhi (t), hi

)− F
(
nhi, uhi (t), uhi (t), vhi (t), hi

)∥∥
+∥∥F (nhi, uhi (t), uhi (t), vhi (t), hi)− f

(
nhi, uhi (t), vhi (t)

)∥∥
+∥∥f (nhi, uhi (t), vhi (t))− f

(
t, uhi (t), vhi (t)

)∥∥.
The first term on the right-hand side is estimated by

L
∥∥uhi (nhi)− uhi (t)

∥∥+ L
∥∥uhi ((n− 1)hi

)− uhi (t)
∣∣�3LChi.

Let us denote by�F the modulus of continuity ofF on the compact set[0, �] ×
B(u0, C�)2 × B(0, C)× [0, h∗]. The second term is equal to∥∥F (nhi, uhi (t), uhi (t), vhi (t), hi)− F

(
nhi, uhi (t), uhi (t), vhi (t), 0

)∥∥
and can be estimated by�F (hi). Then, by denoting�f the modulus of continuity of
f on the compact set[0, �] × B(u0, C�)× B(0, C), the third term can be estimated by
�f (hi).

Therefore, using the Lipschitz continuity off with respect to its last two arguments
we get ∥∥∥∥〈Fhi ,�〉 −

∫ �

0

(
f
(
t, u(t), u̇(t)

)
,�(t)

)
dt

∥∥∥∥
�
∫ �

0

∥∥f (t, uhi (t), vhi (t))− f
(
t, u(t), u̇(t)

)∥∥∥∥�(t)∥∥ dt
+2hiM1‖�‖C0

(
[0,�];Rd

) +M1���(hi)

+(3LChi + �F (hi)+ �f (hi)
) ∫ �

0
‖�(t)‖ dt

�L‖�‖
C0
(
[0,�];Rd

) ∫ �

0

(∥∥uhi (t)− u(t)
∥∥+ ∥∥vhi (t)− u̇(t)‖) dt

+2hiM1‖�‖C0
(
[0,�];Rd

) +M1���(hi)

+(3LChi + �F (hi)+ �f (hi)
) ∫ �

0
‖�(t)‖ dt. (2.14)
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With the previous results we know that(uhi )h∗1 �hi>0 converges tou in C0
([0, �];Rd

)
and (vhi )h∗1 �hi>0 converges tou̇ in L1(R;Rd). Thus, the first integral term on the
right-hand side of (2.14) tends to 0 ashi tends to 0. The convergence to zero of the
other terms is clear. �

Let us define�h = üh − Fh i.e.

�h =
N∑
n=1

(V n − V n−1 − hFn)	(t − nh) ∀h ∈ (0, h∗1].

With all the previous results, we know that(�hi
)0<hi �h∗1 converges to� = ü−f (t, u, u̇)

weakly* in M1(0, �;Rd). At the limit, we obtain the equality

ü = f (t, u, u̇)+ � in M1(0, �;Rd).

Let us prove now that the measure� satisfies property (P3).

Proposition 2.6. The measure� satisfies property(P3) i.e.

Supp(�) ⊂ {t ∈ [0, �]; u(t) ∈ �K
}

and

〈�, v − u〉�0 ∀v ∈ C0([0, �];K).
Proof. Let us prove first that

〈�, v − u〉�0 ∀v ∈ C0([0, �];K).
Let v be continuous from[0, �] to K. By definition of � and �hi

we have

〈�, v − u〉 = lim
hi→0

〈�hi
, v − u〉 = lim

hi→0

N∑
n=1

(
V n − V n−1 − hiF

n, v(nhi)− u(nhi)
)
.

Let hi ∈ (0, h∗1]. Using (2.4), we have

(
hiF

n − V n + V n−1, z− Un+1)�0 ∀z ∈ K ∀n ∈ {1, . . . , N}.
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Sincev(nhi) ∈ K for all n ∈ {1, . . . , N}, we obtain

N∑
n=1

(
V n − V n−1 − hiF

n, v(nhi)− u(nhi)
)

�
N∑
n=1

(
V n − V n−1 − hiF

n, Un+1 − u(nhi)
)

=
N∑
n=1

(
V n − V n−1 − hiF

n, hV n + uhi (nhi)− u(nhi)
)

and estimates (2.1) and (2.7) yield

〈�hi
, v − u〉 =

N∑
n=1

(
V n − V n−1 − hiF

n, v(nhi)− u(nhi)
)

� −
N∑
n=1

(
hiM1 + ‖V n − V n−1‖

)(
hiC + ‖u− uhi‖C0

(
[0,�];Rd

))

� −(�M1 + C′)
(
hiC + ‖u− uhi‖C0

(
[0,�];Rd

)) ,

where M1 is defined by (2.8). Passing to the limit whenhi tends to zero, we may
conclude the first part of the proof.

Let us prove now that

Supp(�) ⊂ {t ∈ [0, �]; u(t) ∈ �K
}
.

Let � ∈ C0
([0, �];K) be such that� �≡ 0 and

Supp(�) ⊂ [0, �] \ {t ∈ [0, �]; u(t) ∈ �K
} = {t ∈ [0, �]; u(t) ∈ Int(K)

}
.

Then, for all t ∈ Supp(�), there existsrt > 0 such thatB
(
u(t), rt

) ⊂ K. Observing
that

Supp(�) ⊂
⋃

t∈Supp(�)

(
t − rt

2C
, t + rt

2C

)
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and that Supp(�) is a compact subset ofR, we infer that there exists{t1, . . . , tp} ⊂
Supp(�) such that

Supp(�) ⊂
p⋃

k=1

(
tk − rtk

2C
, tk + rtk

2C

)
.

Let r = min
1�k�p

rtk
2 . Then, for allt ∈ Supp(�), B

(
u(t), r

) ⊂ K. Indeed, lett ∈ Supp(�)

and z ∈ B
(
u(t), r

)
. There existsk ∈ {1, . . . , p} such thatt ∈

(
tk − rtk

2C , tk +
rtk
2C

)
and,

recalling thatu is C-lipschitzian, we get

∥∥z− u(tk)
∥∥�
∥∥z− u(t)

∥∥+ ∥∥u(t)− u(tk)
∥∥�r + C|t − tk|�rtk .

Hencez ∈ B
(
u(tk), rtk

) ⊂ K.
Let us define nowv± = u± r

‖�‖
C0
(
[0,�];Rd

)�. It is clear thatv± ∈ C0
([0, �];K) and,

with the first part of the proof,

〈�, v± − u〉 = ± r

‖�‖
C0
(
[0,�];Rd

) 〈�,�〉�0.

Thus

〈�,�〉 = 0

which enables us to conclude.�

Let us conclude this subsection with the proof of property (P4).

Proposition 2.7. The initial conditions(u0, v0) are satisfied i.e.

u(0) = u0, u̇(0+ 0) = v0.

Proof. Sinceuhi (0) = U0 = u0 for all hi ∈ (0, h∗1], the first equality is an immediate
consequence of the uniform convergence of(uhi )h∗1 �hi>0 to u on [0, �]. In order to
prove the second equality, we begin with the following lemma.

Lemma 2.8. Under the previous assumptions we have

(
v0 − u̇(0+ 0), z− u0

)
�0 ∀z ∈ K.
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Proof. Let z ∈ K and ∈ (0, �) \ D, where D is defined by (2.11). We will  prove that

(
v0 − u̇hi (), z− u0

)
�O()+ O(‖z(hi)‖)+ O(hi).

Passing to the limit ashi tends to zero first, then as tends to zero, we will obtain
the announced result.

Let 0< hi < min(h∗1,). By definition of uhi we have

(
v0 − u̇hi (), z− u0

) = (v0 − V p, z− u0
)

with p =
⌊


hi

⌋

which we rewrite as

(
v0 − V p, z− u0

) = (
v0 − V 0 + z(hi), z− u0

)− (z(hi), z− u0
)

+
p∑

n=1

(
V n−1 − V n + hiF

n, z− u0
)

−
p∑

n=1

hi
(
Fn, z− u0

)
.

Using relation (2.4), we know that for alln ∈ {1, . . . , N}
(
V n−1 − V n + hiF

n, z− Un+1)�0

and, sinceU1 = Proj
(
u0 + hiv0 + hiz(hi)

)
, we have also

h
(
v0 − V 0 + z(hi), z− U1) = (u0 + hiv0 + hiz(hi)− U1, z− U1)�0.

Thus we get

(
v0 − u̇hi (), z− u0

)
�
(
v0 − V 0 + z(hi), U

1 − u0
)− (z(hi), z− u0

)
+

p∑
n=1

(
V n−1 − V n + hiF

n, Un+1 − u0
)− p∑

n=1

hi
(
Fn, z− u0

)
.

Let us estimate each term of the right-hand side of this inequality. Using the estimates
(2.1) and (2.7), we obtain

∥∥Un+1 − u0
∥∥�

n∑
k=0

hi‖V k‖�C(n+ 1)hi �C( + hi) ∀n ∈ {1, . . . , p}
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and

∥∥∥ p∑
n=1

(
V n−1 − V n,Un+1 − u0

)∥∥∥�
p∑

n=1

∥∥V n−1 − V n
∥∥∥∥Un+1 − u0

∥∥�CC′( + hi).

Moreover, we have

‖Fn‖�M1 ∀n ∈ {1, . . . , N}

with M1 defined by (2.8). Thus

∥∥∥ p∑
n=1

hi
(
Fn,Un+1 − u0

)− p∑
n=1

hi
(
Fn, z− u0

)∥∥∥

�
p∑

n=1

hi‖Fn‖(‖Un+1 − u0‖ + ‖z− u0‖
)

�phiM1
(
C( + hi)+ ‖z− u0‖

)
�M1

(
C( + hi)+ ‖z− u0‖

)
.

Finally,

‖V 0‖ =
∥∥∥∥U1 − u0

hi

∥∥∥∥ = 1

hi

∥∥Proj(K, u0,+hiv0 + hiz(hi)
)− u0

∥∥�‖v0‖ +
∥∥z(hi)∥∥

and

∥∥(v0 − V 0 + z(hi), U
1 − u0

)∥∥ = hi
∥∥(v0 − V 0 + z(hi), V

0)∥∥�2hi
(‖v0‖ +

∥∥z(hi)∥∥)2.
Thus, we get

(
v0 − u̇hi (), z− u0

)
�CC′( + hi)+ M1

(
C( + hi)+ ‖z− u0‖

)
+∥∥z(hi)∥∥‖z− u0‖ + 2hi

(‖v0‖ +
∥∥z(hi)∥∥)2

which concludes the proof.�

The previous lemma implies that

(
v0 − u̇(0+ 0), w

)
�0 ∀w ∈ TK(u0).
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If u0 ∈ Int(K) then TK (u0) = Rd and the conclusion follows immediately. Otherwise, by 

choosing successively w = ˙ u(0 + 0) and w = v0, we obtain

‖v0‖2�
(
u̇(0+ 0), v0

)
�
∥∥u̇(0+ 0)

∥∥2
.

With (2.6) we have also

∥∥u̇hi ()∥∥ = ‖V p‖�‖V 0‖ + hi

p∑
k=1

‖Fk‖�‖v0‖ +
∥∥z(hi)∥∥+ M1 with p =

⌊

hi

⌋

for all  ∈ (0, �) \ D and for all hi ∈
(
0,min(h∗1,)

)
. By passing to the limit ashi

tends to zero, then as tends to zero, we get

∥∥u̇(0+ 0)
∥∥�‖v0‖.

Hence

‖v0‖2 = (u̇(0+ 0), v0
) = ∥∥u̇(0+ 0)

∥∥2
,

and v0 = u̇(0+ 0). �

2.3. Transmission of the velocities at impacts

In this subsection, we study the behavior of the limit of the scheme at impacts. We
will assume from now on that the limit motion satisfies property (H5), i.e.

(H5)
(∇��

(
u(t)

)
,∇��

(
u(t)

))
�0 ∀(�,�) ∈ J

(
u(t)

)2
, � �= � ∀t ∈ (0, �)

and we will prove thatu satisfies Moreau’s rule for inelastic shocks, i.e.

u̇(t + 0) = Proj
(
TK
(
u(t)

)
, u̇(t − 0)

) ∀t ∈ (0, �). (2.15)

More precisely, let̄t ∈ (0, �) and denotēu = u(t̄), u̇+ = u̇(t̄+0), u̇− = u̇(t̄−0). Since
u(t) ∈ K for all t ∈ [0, �], we have

u̇+ ∈ TK(ū), u̇− ∈ −TK(ū).

Thus, if u̇+ = u̇−, we get u̇− ∈ TK(ū) and the impact law is satisfied. Otherwise, we
have�

({t̄}) = u̇+ − u̇− �= 0 and the measure� has a Dirac mass at̄t .
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Let us decompose� with respect to Lebesgue’s measure: there existsg ∈ L1(0, �;Rd)

such that

d� = g dt + d�s ,

where �s is a singular measure with respect to Lebesgue’s measure. Using Radon–
Nicodym’s theorem we infer that there exists a|�s |-integrable functionhs such that

d�s = hsd|�s |.

Then, property (P3) implies that (see[18])

g(t) ∈ −NK

(
u(t)

)
dt a-e on(0, �),

hs(t) ∈ −NK

(
u(t)

) |�s | a-e on(0, �).

It follows that

u̇+ − u̇− = �
({t̄}) ∈ −NK(ū).

Thus ū ∈ �K and J (ū) �= ∅.
In order to prove that (2.15) holds also in this case, we will perform a precise study

of the discrete velocitiesV n in a neighbourhood of̄t . Let us introduce some new
notations.

From assumption (H3) we know that
(∇��(ū)

)
�∈J (ū) is linearly independent. Hence

there exists(e�)�∈{1,...,d}\J (ū) such that the family
{∇��(ū), � ∈ J (ū)

} ∪ {e�,� ∈
{1, . . . , d} \ J (ū)} is a basis ofRd .

For all � ∈ {1, . . . , d} and for all q ∈ Rd we definee�(q) by

e�(q) =
{∇��(q) if � ∈ J (ū),

e� if � �∈ J (ū).

Since the functions��, 1����, belong toC1(Rd;R), we infer that there exists
r > 0 such that

(
e�(q)

)
�=1,...,d is a basis ofRd for all q ∈ B(ū, r). We define the dual

basis
(
ε�(q)

)
�=1,...,d for all q ∈ B(ū, r). It is clear that the mappingsε�, 1���d, are

continuous onB(ū, r). Moreover, we recall that��(ū) > 0 for all � �∈ J (ū). Since the
functions��, 1����, are continuous, possibly decreasingr, we may assume without
loss of generality that

��(q) > 0 ∀� �∈ J (ū) ∀q ∈ B(ū, r)

i.e.

J (q) ⊂ J (ū) ∀q ∈ B(ū, r). (2.16)
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Then, using the continuity ofu and the convergence of(u
i
)h∗1 �hi>0 to u in C0

([0, �];
Rd
)
, we can definē > 0 andh2 ∈ (0, h∗1] such that[t̄ − ̄, t̄ + ̄] ⊂ (0, �) and

u(t) ∈ B(ū, r) ∀t ∈ [t̄ − ̄, t̄ + ̄] (2.17)

Un+1 ∈ B(ū, r) ∀nhi ∈ [t̄ − ̄, t̄ + ̄] ∀hi ∈ (0, h2]. (2.18)

Finally we define

M2 = sup
{‖e�(q)‖, ‖ε�(q)‖, q ∈ B(ū, r), 1����

}
. (2.19)

We prove the following result.

Proposition 2.9. Let us assume thaṫu+ �= u̇− and

(∇��(ū),∇��(ū)
)
�0 ∀(�,�) ∈ J (ū)2, � �= �.

Then the impact law is satisfied att = t̄ , i.e.

u̇+ = Proj
(
TK(ū), u̇

−). (2.20)

Proof. With the definition (1.3) of Kwe can describeTK(ū) andNK(ū) as follows:

TK(ū) =
{
v ∈ Rd; (∇��(ū), v

)
�0 ∀� ∈ J (ū)

}
,

NK(ū) =
{
w ∈ Rd; w = ∑

�∈J (ū)
��∇��(ū), ���0 ∀� ∈ J (ū)

}
.

Thus, there exist non-positive numbers��, � ∈ J (ū), such that

u̇+ − u̇− =
∑

�∈J (ū)
−��∇��(ū).

Recalling thatu̇+ ∈ TK(ū), u̇− − u̇+ ∈ NK(ū) and TK(ū) and NK(ū) are two polar
cones, we infer that (2.20) is equivalent to

(u̇− − u̇+, u̇+) = 0 =
∑

�∈J (ū)
��
(∇��(ū), u̇

+)

i.e.

��
(∇��(ū), u̇

+) = 0 ∀� ∈ J (ū).

Let us prove the following lemma.
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Lemma 2.10. Let � ∈ J (ū) such that�� �= 0. Then, for all 1 ∈ (0, ̄] there exists
h1

∈ (0, h2] such that for allhi ∈ (0, h1
], there existsnhi ∈ [t̄ − 1, t̄ + 1] such

that ��(U
n+1)�0.

Proof. Let us assume that the announced result does not hold, i.e. assume that there
exists 1 ∈ (0, ̄] such that, for allh1

∈ (0, h2] there existshi ∈ (0, h1
] such that

��(U
n+1) > 0 for all nhi ∈ [t̄ − 1, t̄ + 1].

Hence, we can extract from(hi)i�0 a subsequence denoted(h�(i))i�0 such that

��(U
n+1) > 0 ∀nh�(i) ∈ [t̄ − 1, t̄ + 1] ∀i�0. (2.21)

For all  ∈ (0,1] such thatt̄± ∈ (0, �)\D, let us establish the following estimate:

∣∣(u̇h�(i) (t̄ − )− u̇h�(i) (t̄ + ), ε�(ū)
)∣∣�O()+ O(h�(i)

)+ O(‖u− uh�(i)‖C0
(
[0,�];Rd

)).
Then, by passing to the limit wheni tends to+∞, we will infer with (2.12) that

∣∣(u̇(t̄ − )− u̇(t̄ + ), ε�(ū)
)∣∣�O()

and, when tends to zero, we will obtain

∣∣(u̇(t̄ − 0)− u̇(t̄ + 0), ε�(ū)
)∣∣ = |��|�0

which gives a contradiction.
Let  ∈ (0,1] such thatt̄ ±  ∈ (0, �) \D. For all i�0 we define

ni =
⌊
t̄ − 
h�(i)

⌋
+ 1, pi =

⌊
t̄ + 
h�(i)

⌋
.

Then, for allnh�(i) ∈ [t̄ − , t̄ + ], we have ni �n�pi and we infer from (2.4) that

V n−1 − V n + h�(i)F
n ∈ NK(U

n+1).

Hence there exist non-positive numbers(�n
�)�∈J (Un+1) such that

V n−1 − V n + h�(i)F
n =

∑
�∈J (Un+1)

�n
�∇��(U

n+1).
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With (2.21) we obtain that� �∈ J (Un+1) and thus

(
V n−1 − V n + h�(i)F

n, ε�(U
n+1)

)
=

 ∑

�∈J (Un+1)

�n
�e�(U

n+1), ε�(U
n+1)


 = 0.

It follows that

(
V ni−1 − V pi , ε�(ū)

)
=

pi∑
n=ni

(
V n−1 − V n, ε�(ū)

)

=
pi∑

n=ni

(
V n−1 − V n, ε�(U

n+1)
)
+

pi∑
n=ni

(
V n−1 − V n, ε�(ū)− ε�(U

n+1)
)

= −
pi∑

n=ni

h�(i)

(
Fn, ε�(U

n+1)
)
+

pi∑
n=ni

(
V n−1 − V n, ε�(ū)− ε�(U

n+1)
)
.

Let us observe now thatV ni−1 = u̇h�(i) (t̄ − ) andV pi = u̇h�(i) (t̄ + ). We obtain

∣∣(u̇h�(i) (t̄ − )− u̇h�(i) (t̄ + ), ε�(ū)
)∣∣

�
pi∑

n=ni

h�(i)M1M2 +
pi∑

n=ni

‖V n−1 − V n‖∥∥ε�(ū)− ε�(U
n+1)

∥∥,
whereM1 andM2 are defined by (2.8) and (2.19).

Moreover

‖ū− Un+1‖ = ∥∥u(t̄)− uh�(i)

(
(n+ 1)h�(i)

)∥∥
�
∥∥u(t̄)− uh�(i) (t̄ )

∥∥+ ∥∥uh�(i) (t̄ )− uh�(i)

(
(n+ 1)h�(i)

)∥∥
� ‖u− uh�(i)‖C0

(
[0,�];Rd

) + C
∣∣t̄ − (n+ 1)h�(i)

∣∣
� ‖u− uh�(i)‖C0

(
[0,�];Rd

) + C
(
 + h�(i)

)
,

whereC is the constant obtained at Proposition2.1. Hence,

∣∣(u̇h�(i) (t̄ − )− u̇h�(i) (t̄ + ), ε�(ū)
)∣∣

�M1M2(pi − ni + 1)h�(i)
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+��
(‖u− uh�(i)‖C0

(
[0,�];Rd

) + C( + h�(i))
) pi∑
n=ni

‖V n−1 − V n‖

�M1M2(2 + h�(i))+ C′�ε�

(‖u− uh�(i)‖C0
(
[0,�];Rd

) + C( + h�(i))
)
,

whereC′ is the constant defined at Proposition2.4 and�ε� is the modulus of continuity
of ε� on B(ū, r), which achieves the proof.�

We come now to the last step of the proof of Proposition2.9.

Lemma 2.11. Let � ∈ J (ū) be such that�� �= 0. Then

(∇��(ū), u̇
+) = 0.

Proof. Let � ∈ J (ū) such that�� �= 0. Sinceu̇+ ∈ TK(ū) we have
(∇��(ū), u̇

+)�0
and it remains to prove that

(
u̇+,∇��(ū)

)
�0. The main idea of the proof is to obtain

an estimate of
(
u̇(t̄+),∇��

(
u(t̄+)

))
and to pass to the limit when tends to zero.

More precisely, let ∈ (0, ̄] such thatt̄ +  ∈ (0, �) \D. We have

u̇(t̄ + ) = lim
hi→0

u̇hi (t + ) = lim
hi→0

V pi with pi =
⌊
t̄ + 
hi

⌋
∀i�0.

Observing that

∥∥u(t̄ + )− Upi+1
∥∥ �

∥∥u(t̄ + )− uhi (t̄ + )
∥∥+ ∥∥uhi (t̄ + )− uhi

(
(pi + 1)hi

)∥∥
� ‖u− uhi‖C0

(
[0,�];Rd

) + Chi

the continuity of∇�� on B(ū, r) implies that

(
u̇(t̄ + ),∇��

(
u(t̄ + )

)) = lim
hi→0

(
u̇hi (t̄ + ),∇��(U

pi+1)
)

= lim
hi→0

(
V pi ,∇��(U

pi+1)
)

and we will prove that

(
V pi ,∇��(U

pi+1)
)
�O()+ O(hi)+ O(‖u− uhi‖C0

(
[0,�];Rd

)). (2.22)

Let us apply the previous lemma: there existsh ∈ (0, h2] such that, for allhi ∈
(0, h], there existsnhi ∈ [t̄ − , t̄ + ] such that��(U

n+1)�0 and we defineNi as
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the last time step in[t̄ − , t̄ + ] at which the constraint�� is active. More precisely,
let i be such thathi ∈ (0, h] and defineNi by

Ni = max
{
n ∈ N; nhi ∈ [t̄ − , t̄ + ] and ��(U

n+1)�0
}
.

SinceV Ni ∈ −TK(U
Ni+1) and � ∈ J (UNi+1), we infer that

(
V Ni ,∇��(U

Ni+1)
)
�0.

By definition of the scheme, for alln ∈ {1, . . . , N}, we have

V n−1 − V n + hiF
n ∈ NK(U

n+1)

and there exist non-positive numbers(�n
�)�∈J (Un+1) such that

V n−1 − V n + hiF
n =

∑
�∈J (Un+1)

�n
�∇��(U

n+1).

Thus, for allhi ∈ (0, h] we get

(
V pi ,∇��(U

pi+1)
)

=
(
V Ni ,∇��(U

pi+1)
)
+

pi∑
n=Ni+1

(
V n − V n−1,∇��(U

pi+1)
)

�
(
V Ni ,∇��(U

pi+1)− ∇��(U
Ni+1)

)

+
pi∑

n=Ni+1

(
hiF

n,∇��(U
pi+1)

)

+
pi∑

n=Ni+1

∑
�∈J (Un+1)

(
−�n

�∇��(U
n+1),∇��(U

pi+1)
)

� C
∥∥∇��(U

pi+1)− ∇��(U
Ni+1)

∥∥+ (pi −Ni)hiM1M2

+
pi∑

n=Ni+1

∑
�∈J (Un+1)

(
−�n

�∇��(U
n+1),∇��(U

pi+1)
)
.

Let us estimate the last term. We observe first that (2.16) and (2.18) imply that
J (Un+1) ⊂ J (ū) for all nhi ∈ [t̄ − ̄, t̄ + ̄] and by definition ofNi , we have also
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� �∈ J (Un+1) for all n ∈ {Ni + 1, . . . , pi }. Moreover, assumption (H5) implies that

(∇��(ū),∇��(ū)
) = (e�(ū), e�(ū))�0 ∀� ∈ J (ū) \ {�}

and thus

pi∑
n=Ni+1

∑
�∈J (Un+1)

(
−�n

�∇��(U
n+1),∇��(U

pi+1)
)

�
∑

�∈J (Un+1)

pi∑
n=Ni+1

(−�n
�)
{(
e�(U

n+1), e�(U
pi+1)

)− (e�(ū), e�(ū))}.

Let us denote by�e� the modulus of continuity ofe� on B(ū, r) for all � ∈ J (ū) and
let � = max

�∈J (ū)
�e� . Arguing as in the previous lemma we obtain

∥∥e�(Upi+1)− e�(ū)
∥∥��e�

(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

))

and

∥∥e�(Un+1)− e�(ū)
∥∥��e�

(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

))

for all � ∈ J (Un+1) and for all n ∈ {Ni + 1, . . . , pi}. Hence

∥∥∥(e�(Un+1),e�(U
pi+1)

)− (e�(ū),e�(ū))∥∥∥�2M2�
(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

))

for all � ∈ J (Un+1) and for all n ∈ {Ni + 1, . . . , pi}. Moreover, by definition of�n
�

we have

∣∣�n
�

∣∣ = ∣∣∣(V n−1 − V n + hiF
n, ε�(U

n+1)
)∣∣∣�M2‖V n − V n−1‖ + hiM1M2

for all � ∈ J (Un+1) and for all n ∈ {Ni + 1, . . . , pi}. It follows that

pi∑
n=Ni+1

∑
�∈J (Un+1)

(
−�n

�∇��(U
n+1),∇��(U

pi+1)
)

�2dM2
2�
(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

))
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×



pi∑
n=Ni+1

‖V n − V n−1‖ + (pi −Ni)hiM1




�2dM2
2(C

′ + 2M1)�
(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

)) ,

where C′ is the constant defined at Proposition2.6. Finally, for all hi ∈ (0, h] we
have

∥∥∇��(U
pi+1)− ∇��(U

Ni+1)
∥∥

= ∥∥e�(Upi+1)− e�(U
Ni+1)

∥∥
��e�

(‖Upi+1 − UNi+1‖)��e�(2C)

and thus

(
V pi ,∇��(U

pi+1)
)

�C�e�(2C)+ 2hiM1M2

+2dM2
2(C

′ + 2M1)�
(
C + Chi + ‖u− uhi‖C0

(
[0,�];Rd

))

which proves (2.22). Passing to the limit ashi tends to zero, we obtain

(
u̇(t̄ + ),∇��

(
u(t̄ + )

))
�C�e�(2C)+ 2dM2

2(C
′ + 2M1)�(C).

Then, passing to the limit as tends to zero, we conclude the proof.�

Appendix A

Lemma A.1. Let h1 ∈ (0, 1/L) and (�n)n�0 be defined by

�0 = ‖v0‖ +M� + 1

1− Lh
,

�n = 1

1− Lh


‖v0‖ +M� + 1+ Lh

n−1∑
k=0

�k + 2Lh2
n∑

k=1

k−1∑
p=0

�p


 ∀n�1.

There existsC1 > 0 and � > 0 such that

0��n�C1e
�nh ∀n�0 ∀h ∈ (0, h1].
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Proof. Let h ∈ (0, h1]. By definition of the sequence (�n)n�0, w e h a v e

(1− Lh)�n+1 + (Lh− 2− 2Lh2)�n + �n−1 = 0 ∀n�1.

Let us denote by� and � the roots of the characteristic equation

(1− Lh)X2 + (Lh− 2− 2Lh2)X + 1 = 0

i.e.

� = 1+ h
L+ 2Lh+√8L+ L2(1− 2h)2

2(1− Lh)
= 1+ hx1(h)

and

� = 1+ h
L+ 2Lh−√8L+ L2(1− 2h)2

2(1− Lh)
= 1+ hx2(h).

Then we have

�n = a�n + b�n ∀n�0

with (a, b) given by the relations




�0 = a + b = C0

1− Lh
,

�1 = a� + b� = C0

1− Lh

(
1+ h

L+ 2Lh

1− Lh

)

andC0 = ‖v0‖ +M� + 1. We infer that

a = C0√
8L+ L2(1− 2h)2

(
L+ 2Lh+√8L+ L2(1− 2h)2

2(1− Lh)

)

and

b = C0√
8L+ L2(1− 2h)2

(
−L+ 2Lh−√8L+ L2(1− 2h)2

2(1− Lh)

)
.
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It follows that a and b are two continuous functions ofh, which remain non-negative
and bounded on[0, h1]. Thus there existsC1 > 0 such that

0�a� C1

2
, 0�b� C1

2
∀h ∈ [0, h1].

For the same reason, the functionsx1 and x2 are bounded on[0, h1] and there exists
� > 0 such that

0�����e�h, ∀h ∈ [0, h1].

Finally we get

0��n�a�n + b�n�(a + b)e�nh�C1e
�nh ∀n�0 ∀h ∈ (0, h1]. �

Lemma A.2. Let K be defined by

K = {q ∈ Rd;��(q)�0, � = 1, . . . ,�
}

with functions��, � = 1, . . . ,�, belonging toC1(Rd ,R) and satisfying(H4). Then for
all q0 ∈ K, there exist	 > 0, r > 0 and a ∈ Rd such that,for all q ∈ B(q0, 2	):

B(a, r) ⊂ TK(q) (A.1)

and

∥∥z− Proj
(
TK(q), z

)∥∥� 1

2r

(‖z− a‖2 − ∥∥Proj
(
TK(q), z

)− a
∥∥2) ∀z ∈ Rd . (A.2)

Proof. First, let us prove (A.1).
Let q0 be in K and recall that, for allq ∈ Rd ,

J (q) = {� ∈ {1, . . . ,�};��(q)�0
}
.

Since the functions(��)�=1,...� are continuous, we infer that there exists	1 > 0 such
that, for all � �∈ J (q0), we have

��(q) > 0 if ‖q − q0‖�	1.

It follows that J (q) ⊂ J (q0) for all q ∈ B(q0, 	1).
Consequently, ifJ (q0) = ∅, we have J (q)= ∅ for all q ∈ B(q0, 	1) and (A.1) is

satisfied for	 = 	1/2 and for alla ∈ Rd and r > 0.
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Let us assume now thatJ (q0) �= ∅. For all � ∈ J (q0) we define�� : Rd ×Rd → R

by

��(q, y) =
(∇��(q), y

) ∀(q, y) ∈ Rd × Rd

and � : Rd × Rd → R by

�(q, y) = min
�∈J (q0)

��(q, y) ∀(q, y) ∈ Rd × Rd .

Since �� ∈ C1(Rd) for all � ∈ {1, . . . ,�}, we obtain that the mappings are continu-
ous. Moreover, since

(∇��(q0)
)
�∈J (q0)

is linearly independent, we can define a basis

(ei)1� i�d of Rd such that

e� = ∇��(q0) ∀� ∈ J (q0).

Let us denote by(εi)1� i�d the dual basis of(ei)1� i�d and let

a =
∑

�∈J (q0)

ε�.

Then, for all � ∈ J (q0), we have

��(q0, a) =
(∇��(q0), a

) =

e�, ∑

�∈J (q0)

ε�


 = 1

and �(q0, a) = 1. By continuity, it follows that there existr > 0 and	2 > 0 such that

�(q, y) > 0 ∀(q, y) ∈ B(q0, 	2)× B(a, r).

Let 	 = 1
2 min(	1, 	2). For all q ∈ B(q0, 2	) we have

J (q) ⊂ J (q0), �(q, y) = min
�∈J (q0)

(∇��(q), y
)
> 0 ∀y ∈ B(a, r)

which implies that

B(a, r) ⊂ TK(q) =
{
y ∈ Rd; (∇��(q), y

)
�0 ∀� ∈ J (q)

}
and (A.1) is satisfied.
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Then we observe that (A.2) is a direct consequence (with the choiceH = D = Rd ,
C = TK(q) and S = Proj(C,·)) of the following result due to J.J.Moreau:

Lemma A.3 (Moreau [6]). Let D be a subset of a real Hilbert space H and letS :
D → D be such that

‖Sz− Sz′‖�‖z− z′‖ ∀(z, z′) ∈ D2.

Let a ∈ H and r > 0 such thatB(a, r) ⊂ {z ∈ D : Sz = z}. Then

‖z− Sz‖� 1

2r

(‖z− a‖2 − ‖Sz− a‖2) ∀z ∈ D. �
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