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We are interested in mechanical systems with a finite number of degrees of freedom submitted to frictionless unilateral constraints. We consider the case of a convex, non-smooth set of admissible positions given by K ={q ∈ R d ; (q) 0, 1

},

1, and we assume inelastic shocks at impacts. We propose a time-discretization of the measure differential inclusion which describes the dynamics and we prove the convergence of the approximate solutions to a limit motion which satisfies the constraints. Moreover, if the geometric properties ensuring continuity on data hold at the limit, we show that the transmission of velocities at impacts follows the inelastic shocks rule.

Introduction and statement of the result

We consider a mechanical system with d degrees of freedom which unconstrained motion is described by the following ODE ü = f (t, u, u), where u ∈ R d is the representative point of the system.

We assume that the trajectory must remain in a given closed subset K of R d i.e.

u(t) ∈ K for all t ∈ [0, ].
This unilateral constraint may lead to some discontinuities for the velocity. Indeed let us assume for instance that u(t) ∈ Int(K) for all t ∈ (t 0 , t 1 ) ∪ (t 1 , t 2 ) ⊂ [0, ] and u(t 1 ) ∈ *K. Then the constraint implies that

u(t 1 -0) ∈ -T K u(t 1 ) , u(t 1 + 0) ∈ T K u(t 1 ) ,
where T K (q) denotes the tangent cone to K at q given by T K (q) = ∪ >0 (K -q).

Hence, if u(t 1 -0) ∈ T K u(t 1 ) , it is clear that u is discontinuous at t = t 1 . It follows that the equation of motion has to be modified by adding a measure to the right-hand side i.e. ü = f (t, u, u) + .

This measure describes the reaction force due to the unilateral constraint and Supp( ) ⊂ t ∈ [0, ]; u(t) ∈ *K .

Let us assume moreover that the constraint is perfect i.e. frictionless. We infer (see [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF]) that

-∈ T K (u) ⊥ = N K (u)
and the motion is described by the following measure differential inclusion (MDI) = ü -f (t, u, u) ∈ -N K (u).

(1.1)

The discontinuities of the velocity at impacts are now characterized by u(t + 0) ∈ T K u(t) , u(t -0) ∈ -T K u(t) , u(t -0) -u(t + 0) = -{t} ∈ N K u(t) but these equations do not define uniquely u(t + 0) and we have to complete the description of the motion. Following Moreau [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF] (see also [START_REF] Paoli | Penalty approximation for non smooth constraints in vibroimpact[END_REF][START_REF] Paoli | Penalty approximation for dynamical systems submitted to multiple nonsmooth constraints[END_REF] for a mathematical justification of this impact law by a penalty method) we assume inelastic impacts i.e.

u(t + 0) = Proj T K u(t) , u(t -0) (1.2)
for all t ∈ (0, ).

Remark. We may observe that

N K u(t) = {0}, T K u(t) = R d
if t ∈ (0, ) and u(t) ∈ Int(K): in this case the impact law (1.2) implies simply that u is continuous at t.

Let (u 0 , v 0 ) ∈ K × T K (u 0 ) be admissible initial data. We consider the following Cauchy problem (P): Problem (P). Find u : [0, ] → R d ( > 0) such that (P1) u is continuous with values in K, (P2) u belongs to BV (0, ; R d ), (P3) the measure = ü -f (t, u, u) is such that Supp( ) ⊂ t ∈ [0, ]; u(t) ∈ *K and the MDI (1.1) is satisfied in the following sense (see [START_REF] Rockafellar | Integrals which are convex functionnals II[END_REF]):

, v -u 0 ∀v ∈ C 0 [0, ]; K , (P4) the initial data are satisfied in the following sense: u(0) = u 0 , u(0 + 0) = v 0 , (P5) for all t ∈ (0, )

u(t + 0) = Proj T K u(t) , u(t -0) .
The existence of a solution for this Cauchy problem is still an open problem in the general case. When the boundary of K is smooth enough, the set K can be described at least locally with a single inequality u ∈ K ⇐⇒ (u) 0.

In this case (single-constraint case), several existence results have been obtained. The corresponding proofs rely on the study of a sequence of approximate solutions which are built either by means of a time-discretization of the MDI (see [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF][START_REF] Monteiro-Marques | Chocs inélastiques standards: un résultat d'existence Séminaire d'analyse convexe[END_REF][START_REF] Monteiro-Marques | Differential Inclusions in Non-smooth Mechanical Problems: Shocks and Dry Friction[END_REF][START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF][START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF][START_REF] Paoli | Approximation et existence en vibro-impact[END_REF][START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF]) nor by means of a penalization (see [START_REF] Paoli | Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie[END_REF][START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF]). The convergence of the sequence of approximate solutions gives both a theoretical result of existence and a numerical method to compute approximate solutions of (P).

In a more general case, when K is described by several inequalities (multi-constraint case) i.e.

K = q ∈ R d ; (q) 0 ∀ ∈ {1, . . . , } , 1
the existence of a solution has been established by Ballard in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] if all the data are analytical. His proof uses a very different technic based on existence results for ODE and variational inequalities. Unfortunately, this very nice proof does not yield directly a numerical method. Observing that the time-discretization schemes proposed by M. Monteiro-Marques or L. Paoli and M. Schatzman in the single-constraint case can be also defined in the multi-constraint case, it is natural to try to extend their convergence proofs in order to complete P.Ballard's result when the data are not analytical and to obtain well-suited numerical methods. For this last point another question arises immediately: what do we know about continuity on data? In the analytical case, Ballard has proved (see [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]) that continuity on initial data holds if the active constraints along the limit motion remain orthogonal. Moreover, the study of the model problem of a free material point in an angular domain K of R 2 shows that continuity on data does not hold in general if the active constraints create an obtuse angle and leads to the opposite conjecture in case of acute angles (see [START_REF] Paoli | A numerical scheme for impact problems with inelastic shocks: a convergence result in the multi-constraint case[END_REF]). The proof of this last result is given in a very recent paper (see [START_REF] Paoli | Continuous dependence on data for vibro-impact problems[END_REF]).

In this framework, we will extend in this paper the convergence result of the timediscretization scheme proposed in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF][START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF] to the multi-constrained case. More precisely, we assume that (H1) f is a continuous function from [0, ] × R d × R d to R d ( > 0) and is Lipschitz continuous in its last two arguments; (H2) K is a closed convex subset of R d with a non-empty interior, given by

K = q ∈ R d ; (q) 0 ∀ ∈ {1, . . . , } , 1 (1.3) with ∈ C 1 (R d ; R) such that ∇ does not vanish in a neighborhood of {q ∈ R d ; (q) = 0}.
For all q ∈ R d we define the set of active constraints at q by J (q) = ∈ {1, . . . , };

(q) 0 and we assume that (H3) for all q ∈ K, ∇ (q) ∈J (q) is linearly independent.

Let F be a function such that (H4)

F is continuous from [0, ] × R d × R d × R d × [0, h * ] to R d (h * > 0), F is
Lipschitz continuous in its second, third and fourth arguments and is consistent with respect to f i.e.

F (t, q, q, v, 0) = f (t, q, v) ∀(t, q, v) ∈ [0, ] × R d × R d .
We define a time-discretization of the Cauchy problem (P) with initial data (u 0 , v 0 ) ∈ K × T K (u 0 ) as follows:

U 0 = u 0 , U 1 = Proj K, u 0 + hv 0 + hz(h) with lim h→0 z(h) = 0, (1.4) 
and, for all n ∈ 1, . . . , /h

U n+1 = Proj K, 2U n -U n-1 + h 2 F n (1.5)
with

F n = F nh, U n , U n-1 , U n+1 -U n-1 2h , h . (1.6)
Let us denote by L the Lipschitz constant of F. Then, by applying Banach's fixed point theorem, we can prove easily that, for all h ∈ (0, h * ] ∩ (0, 2/L) and for all n ∈ 1, . . . , /h the system (1.5)-(1.6) admits an unique solution. Possibly decreasing h * we will assume from now on that h * ∈ (0, 2/L) and hence the scheme is correctly defined for all h ∈ (0, h * ].

We may observe that the projection on K ensures that all the approximate positions satisfy the constraints and, if 2U n -U n-1 + h 2 F n belongs to Int(K), then Eq. (1.5) reduces to

U n+1 -2U n + U n-1 h 2 = F n ,
which is simply a centered scheme for the unconstrained motion.

We define now the sequence of approximate solutions (u h ) h∈(0,h * ] by

u h (t) = U n + (t -nh) U n+1 -U n h if t ∈ nh, (n + 1)h ∩ [0, ] (1.7) 
for all h ∈ (0, h * ].

We prove the following result: If we assume moreover that

(H5) ∇ u(t) , ∇ u(t) 0 ∀( , ) ∈ J u(t) 2 , = ∀t ∈ (0, ),
where (v, w) denotes the euclidean scalar product of the vectors v and w in R d , then the function u satisfies also the impact law (P5) and is a solution of the Cauchy problem (P).

Remark. Assumption (H5) is the condition which ensures continuity on data (see [START_REF] Paoli | A numerical scheme for impact problems with inelastic shocks: a convergence result in the multi-constraint case[END_REF][START_REF] Paoli | Continuous dependence on data for vibro-impact problems[END_REF]).

Proof of the convergence of the scheme

Let us outline the main steps of the proof of Theorem 1.1. First, in Section 2.1, we establish a priori estimates for the discrete velocities and accelerations. Then, in Section 2.2, we pass to the limit as h tends to zero and applying Ascoli's and Helly's theorem, we infer that there exists a subsequence of approximate solutions, denoted

(u h i ) h i >0 , such that    u h i → u strongly in C 0 [0, ]; R d , uh i → u weakly* in L ∞ (0, ; R d ) and a.e in (0, ), üh i → ü weakly* in M 1 (0, ; R d ).
Moreover, we prove that u satisfies the properties (P1)-(P2)-(P3)-(P4).

Finally, in Section 2.3, we study the reflexion of u at impacts: we show that the right velocities are given by Moreau's rule for inelastic shocks when assumption (H5) is satisfied.

Thoughout this section we will meet some technicalities which cannot be avoided. In order to make the essential ideas as clear as possible, the proof of some lemmas is given in the Appendix A.

A priori estimates

For all h ∈ (0, h * ] we define the discrete velocities by

V n = U n+1 -U n h ∀n ∈ {0. . . . , N}, N = h .
We prove first a uniform estimate for the velocities (V n ) 0 n N .

Proposition 2.1.

There exists h 1 ∈ (0, h * ] and C > 0 such that

V n C ∀n ∈ {0, . . . , N} ∀h ∈ (0, h 1 ]. (2.1) 
Proof. Let us define M by

M = max F (t, u 0 , u 0 , 0, h) ; t ∈ [0, ], h ∈ [0, h * ] (2.2)
and recall that L is the Lipschitz constant of F with respect to its second, third and fourth arguments.

As a first step we prove the following estimate: Lemma 2.2. Let h ∈ (0, h * ]. For all n ∈ {1, . . . , N}, we have

V n V 0 + M + Lh n k=0 V k + 2Lh 2 n k=1 k-1 p=0 V p . (2.3)
Proof. Let h ∈ (0, h * ] and n ∈ {1, . . . , N}. By definition of the scheme we have

U n+1 = Proj K, 2U n -U n-1 + h 2 F n which implies that 2U n -U n-1 + h 2 F n -U n+1 , z -U n+1 0 ∀z ∈ K i.e. V n-1 -V n + hF n , z -U n+1 0 ∀z ∈ K. (2.4)
Furthermore, we have also

U n ∈ K, thus V n-1 -V n + hF n , U n -U n+1 = -h V n-1 -V n + hF n , V n 0. (2.5)
We infer immediately that

V n V n-1 + h F n and V n V 0 + h n k=1 F k . (2.6)
Since F is L-lipschitzian with respect to its second, third and fourth arguments, for all k ∈ {1, . . . , N}, we have

F k F kh, U k , U k-1 , V k + V k-1 2 , h F (kh, u 0 , u 0 , 0, h) + L U k -U 0 + U k-1 -U 0 + V k + V k-1 2 .
The first term of the right-hand side can be estimated with the constant M defined by (2.2), thus we get

F k M + L k-1 p=0 hV p + L k-2 p=0 hV p + L V k + V k-1 2 M + 2Lh k-1 p=0 V p + L 2 V k + L 2 V k-1
and relation (2.6) yields

V n V 0 + nhM + 2Lh 2 n k=1 k-1 p=0 V p + Lh 2 n k=1 V k + V k-1 V 0 + M + Lh n k=0 V k + 2Lh 2 n k=1 k-1 p=0 V p . Since lim h→0 z(h) = 0, there exists h 1 ∈ (0, h * ] such that z(h) 1 ∀h ∈ (0, h 1 ]
and, recalling that u 0 = U 0 ∈ K, for all h ∈ (0,h * ], we obtain

V 0 = Proj(K, U 0 + hv 0 + hz(h) -U 0 h v 0 + z(h) v 0 + 1.
Moreover, (2.3) implies that, for all n ∈ {1, . . . , N} and for all h ∈ (0, h 1 ]

V n (1 -Lh) v 0 + M + 1 + Lh n-1 k=0 V k + 2Lh 2 n k=1 k-1 p=0 V p .
Possibly decreasing h 1 , we may assume without loss of generality that h 1 ∈ (0, 1/L). Then, for all h ∈ (0, h 1 ], we define

0 = v 0 + M + 1 1 -Lh , n = 1 1 -Lh   v 0 + M + 1 + Lh n-1 k=0 k + 2Lh 2 n k=1 k-1 p=0 p   ∀n 1.
A trivial induction shows that V n n for all n ∈ {0, . . . , N}. Moreover, we have the following result: Lemma 2.3. There exist C 1 > 0 and > 0 such that

0 n C 1 e nh ∀n 0 ∀h ∈ (0, h 1 ]. Proof. See Lemma A.1 in Appendix A. It follows that V n n C 1 e nh C = C 1 e ∀n ∈ {1, . . . , N}, ∀h ∈ (0, h 1 ]
which concludes the proof.

Let us establish now an estimate for the discrete accelerations.

Proposition 2.4. There exist h

* 1 ∈ (0, h 1 ] and C > 0 such that N n=1 V n -V n-1 C ∀h ∈ (0, h * 1 ]. (2.7) 
Proof. Let h 1 and C be defined as in Proposition 2.1 and K 1 and M 1 be defined by

K 1 = K ∩ B(u 0 , C )
and

M 1 = max F (t, u, u , v, h) , t ∈ [0, ], (u, u ) ∈ K 2 1 , v C, h ∈ [0, h * ] . (2.8)
By definition of scheme, we have U n ∈ K for all n ∈ {0, . . . , N + 1} and, using Proposition 2.1

U n -u 0 = U n -U 0 = h n-1 k=0 V k Cnh C .
Thus U n ∈ K 1 for all n ∈ {0, . . . , N + 1} and F n M 1 for all n ∈ {1, . . . , N}. By Lemma A.2, we infer that, for all q ∈ K 1 , there exist a q ∈ R d and two strictly positive numbers q and r q such that, for all q ∈ B(q, 2 q ) B(a q , r q ) ⊂ T K (q )

(2.9) and

z -Proj T K (q ), z 1 2r z -a q 2 -Proj T K (q ), z -a q 2 ∀z ∈ R d . (2.10) It is obvious that K 1 ⊂ q∈K 1
B(q, q ), and a compactness argument implies that there exists (q i ) 1 i such that

K 1 ⊂ i=1 B(q i , q i ).
In the remainder of the proof we will simply write i , a i and r i instead of q i , a q i and r q i . We define

r = min 1 i r i , = min 1 i i , 1 = C . Let h * 1 ∈ 0, min(h 1 , 1 ) , h ∈ (0, h * 1 ]
and n ∈ {0, . . . , N}. Let i ∈ {1, . . . , } be such that U n+1 ∈ B(q i , i ). Then, for all m ∈ {n, . . . , p} with p = min N, n + 1 /h , we have

U m+1 -q i U m+1 -U n+1 + U n+1 -q i m k=n+1 hV k + i hC(m -n) + i + i 2 i .
By applying (2.9)-(2.10), we obtain that, for all m ∈ {n, . . . , p}, we have

B(a i , r i ) ⊂ T K (U m+1 )
and

z -Proj(T K (U m+1 ), z) 1 2r i z -a i 2 -Proj(T K (U m+1 ), z) -a i 2 ∀z ∈ R d . But, relation (2.4) implies that V m-1 -V m + hF m ∈ N K (U m+1 ).
Since N K (U m+1 ) and T K (U m+1 ) are two closed convex polar cones, we infer that (see [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF])

Proj T K (U m+1 ), V m-1 -V m + hF m = 0.
Consequently, we obtain

V m-1 -V m + hF m 1 2r i (V m-1 -V m + hF m ) -a i 2 -a i 2 1 2r i V m-1 -V m + hF m 2 -2 a i , V m-1 -V m + hF m
and thus

V m-1 -V m h F m + 1 2r i V m-1 -V m 2 + 2h F m , V m-1 -V m +h 2 F m 2 -2 a i , V m-1 -V m + hF m .
Moreover, relation (2.5) implies that

-V m-1 , V m -V m 2 + h F m , V m which yields V m-1 -V m 2 = V m-1 2 -2 V m-1 , V m + V m 2 V m-1 2 -V m 2 + 2h F m , V m .
It follows that

V m-1 -V m h F m + 1 2r i V m-1 2 -V m 2 -2 a i , V m-1 -V m +2h F m , V m-1 -a i + h 2 F m 2 .
Thus, for all m ∈ {n, . . . , p}, we have

V m-1 -V m hC 2 + 1 2r V m-1 2 -V m 2 -2 a i , V m-1 -V m with C 2 = M 1 1 + C + a r + M 2 1 h * 2r , a = max 1 i a i .
By summation we obtain

p m=n+1 V m-1 -V m (p -n)hC 2 + 1 2r V n 2 -V p 2 -2 a i , V n -V p (p -n)hC 2 + 1 2r V n 2 -V p 2 + 4Ca .
Recalling that p = min N, n + 1 /h , we infer that

N m=1 V m-1 -V m NhC 2 + 1 2r V 0 2 -V N 2 + (k 1 + 1)4Ca,
where

k 1 ∈ N is such that k 1 1 h N < (k 1 + 1) 1 h .
Observing that k 1 /( 1 -h), we can conclude the proof with

C = C 2 + C 2 r + 4Ca 1 -h * 1 + 1 .

Passage to the limit as h tends to zero

Thanks to Proposition 2.1, we know that the functions u h , 0

< h h * 1 , are C-Lipschitz continuous on [0, ]. Hence, (u h ) 0<h h *
1 is a bounded and equicontinuous family of functions of C 0 ([0, ]; R d ). Applying Ascoli's theorem we may extract a subsequence, denoted (u h i ) 0<h i h * 1 , such that:

u h i → u strongly in C 0 ([0, ]; R d ), uh i → u in L ∞ (0, ; R d ) weak*.
Since U n ∈ K for all n belonging to {0, . . . , N +1}, we infer that, for all h i ∈ (0, h * 1 ] and for all t ∈ [0, ]:

dist(u h i (t), K) h i max 0 j N V j h i C.
Passing to the limit when h i tends to 0, we obtain that u(t) ∈ K for all t ∈ [0, ] and u satisfies the property (P1). The measure üh is a sum of Dirac's measures on (0, ), more precisely, we have

üh (t) = N n=1 (V n -V n-1 ) (t -nh) ∀h ∈ (0, h * 1 ].
Consequently, the total variation of uh on (0, ) is equal to

T V ( uh ) = N n=1 V n -V n-1
and estimate (2.7) implies that ( uh ) 0<h h * 1 is a bounded family of BV (0, ; R d ). Using Helly's theorem and possibly extracting another subsequence, we may conclude that ( uh i ) 0<h i h * 1 converge, except perhaps on a countable set of points, to a function of bounded variation. Hence u ∈ BV (0, ; R d ), uh i → u except perhaps on a countable set of points D and

üh i → ü weakly* in M 1 (0, ; R d ).
It follows that (P2) is also satisfied. Moreover, let us define the sets (D i ) i 0 and D ∞ by

D i = (0, ) ∩ h i N, D ∞ = t ∈ (0, ); u(t -0) = u(t + 0)
and let

D = i 0 D i ∪ D ∞ ∪ D.
(2.11)

Since u ∈ BV (0, ; R d ), D ∞ and D are denumerable and, for all t ∈ (0, ) \ D we have

u(t -0) = u(t + 0) = u(t), uh i (t -0) = uh i (t + 0) = uh i (t) ∀i 0 and u(t) = lim h i →0 uh i (t).
(2.12)

Let F h be the measure defined on (0, ) by

F h (t) = N n=1 hF n (t -nh) ∀h ∈ (0, h * 1 ]. Lemma 2.5. The sequence (F h i ) 0<h i h * 1 converges weakly* in M 1 (0, ; R d ) to f (t, u, u). Proof. We know that ( uh i ) 0<h i h * 1 converges to u in BV 0, ; R d ).
In particular Lebesgue's theorem implies that ( uh i ) 0<h i h * 1 converges to u in L 1 0, ; R d ). We extend uh i and u to R by 0 outside of [0, ] and still denote the respective extensions uh i and u. The set { uh i :

h i ∈ (0, h * 1 ]} ∪ { u} is a compact subset of L 1 (R; R d ). The classical characterization of compact subsets of L 1 (R; R d ) implies that lim →0 sup 0 h i h * 1 R uh i (t -) -uh i (t) dt = 0.
Letting = h i , we can see that uh i (.

-h i ) converges to u in L 1 R; R d ).
Let us define an approximate velocity v h i on R by

v h i (t) = uh i (t -h i + 0) + uh i (t + 0) 2 ∀t ∈ R. The sequence (v h i ) 0<h i h * 1 converges to u in L 1 R; R d . Moreover, estimate (2.1) implies that v h i (t) C ∀t ∈ R ∀h i ∈ (0, h * 1 ].
Let ∈ C 0 [0, ]; R d . By definition of F h i we have

F h i , = N n=1 h i F n , (nh i ) = N-1 n=1 (n+1)h i nh i F n , (t) dt + Nh i F N , (t) dt + N-1 n=1 (n+1)h i nh i F n , (nh i ) -(t) dt + h i F N , (Nh i ) - Nh i F N , (t) dt. ( 2.13) 
Recalling that F n M 1 for all n ∈ {1, . . . , N} we can easily estimate the last two terms:

h i F N , (Nh i ) h i M 1 C 0 [0, ];R d and Nh i F N , (t) dt ( -Nh i )M 1 C 0 [0, ];R d h i M 1 C 0 [0, ];R d .
Moreover, we denote the modulus of continuity of on [0, ]. We get

N-1 n=1 (n+1)h i nh i F n , (nh i ) -(t) dt M 1 (N -1)h i (h i ) M 1 (h i ).
Let us compare now the two first terms of the right-hand side of (2.13) with 0 f t, u(t), u(t) , (t) dt.

For all n ∈ {1, . . . , N} and t ∈ nh i , (n + 1)h i ∩ [0, ] we have

F n = F nh i , U n , U n-1 , V n + V n-1 2 , h i = F nh i , u h i (nh i ), u h i (nh i -h i ), v h i (t), h i thus F n -f t, u h i (t), v h i (t) F nh i , u h i (nh i ), u h i (n -1)h i , v h i (t), h i -F nh i , u h i (t), u h i (t), v h i (t), h i + F nh i , u h i (t), u h i (t), v h i (t), h i -f nh i , u h i (t), v h i (t) + f nh i , u h i (t), v h i (t) -f t, u h i (t), v h i (t) .
The first term on the right-hand side is estimated by

L u h i (nh i ) -u h i (t) + L u h i (n -1)h i -u h i (t) 3LCh i .
Let us denote by F the modulus of continuity of F on the compact set

[0, ] × B(u 0 , C ) 2 × B(0, C) × [0, h * ].
The second term is equal to

F nh i , u h i (t), u h i (t), v h i (t), h i -F nh i , u h i (t), u h i (t), v h i (t), 0
and can be estimated by F (h i ). Then, by denoting f the modulus of continuity of f on the compact set [0, ] × B(u 0 , C ) × B(0, C), the third term can be estimated by f (h i ).

Therefore, using the Lipschitz continuity of f with respect to its last two arguments we get

F h i , - 0 f t, u(t), u(t) , (t) dt 0 f t, u h i (t), v h i (t) -f t, u(t), u(t) (t) dt +2h i M 1 C 0 [0, ];R d + M 1 (h i ) + 3LCh i + F (h i ) + f (h i ) 0 (t) dt L C 0 [0, ];R d 0 u h i (t) -u(t) + v h i (t) -u(t) dt +2h i M 1 C 0 [0, ];R d + M 1 (h i ) + 3LCh i + F (h i ) + f (h i ) 0 (t) dt.
(2.14)

With the previous results we know that (u h i ) h

* 1 h i >0 converges to u in C 0 [0, ]; R d and (v h i ) h * 1 h i >0 converges to u in L 1 (R; R d ).
Thus, the first integral term on the right-hand side of (2.14) tends to 0 as h i tends to 0. The convergence to zero of the other terms is clear.

Let us define

h = üh -F h i.e. h = N n=1 (V n -V n-1 -hF n ) (t -nh) ∀h ∈ (0, h * 1 ].
With all the previous results, we know that ( h i ) 0<h i h * 1 converges to = ü-f (t, u, u) weakly* in M 1 (0, ; R d ). At the limit, we obtain the equality

ü = f (t, u, u) + in M 1 (0, ; R d ).
Let us prove now that the measure satisfies property (P3).

Proposition 2.6. The measure satisfies property (P3) i.e.

Supp(

) ⊂ t ∈ [0, ]; u(t) ∈ *K and , v -u 0 ∀v ∈ C 0 [0, ]; K . Proof. Let us prove first that , v -u 0 ∀v ∈ C 0 [0, ]; K .
Let v be continuous from [0, ] to K. By definition of and h i we have

, v -u = lim h i →0 h i , v -u = lim h i →0 N n=1 V n -V n-1 -h i F n , v(nh i ) -u(nh i ) .
Let h i ∈ (0, h * 1 ]. Using (2.4), we have

h i F n -V n + V n-1 , z -U n+1 0 ∀z ∈ K ∀n ∈ {1, . . . , N}.
Since v(nh i ) ∈ K for all n ∈ {1, . . . , N}, we obtain

N n=1 V n -V n-1 -h i F n , v(nh i ) -u(nh i ) N n=1 V n -V n-1 -h i F n , U n+1 -u(nh i ) = N n=1 V n -V n-1 -h i F n , hV n + u h i (nh i ) -u(nh i )
and estimates (2.1) and (2.7) yield

h i , v -u = N n=1 V n -V n-1 -h i F n , v(nh i ) -u(nh i ) - N n=1 h i M 1 + V n -V n-1 h i C + u -u h i C 0 [0, ];R d -( M 1 + C ) h i C + u -u h i C 0 [0, ];R d ,
where M 1 is defined by (2.8). Passing to the limit when h i tends to zero, we may conclude the first part of the proof. Let us prove now that Supp( ) ⊂ t ∈ [0, ]; u(t) ∈ *K .

Let ∈ C 0 [0, ]; K be such that ≡ 0 and Supp()

⊂ [0, ] \ t ∈ [0, ]; u(t) ∈ *K = t ∈ [0, ]; u(t) ∈ Int(K) .
Then, for all t ∈ Supp(), there exists r t > 0 such that B u(t), r t ⊂ K. 

z -u(t k ) z -u(t) + u(t) -u(t k ) r + C|t -t k | r t k . Hence z ∈ B u(t k ), r t k ⊂ K. Let us define now v ± = u ± r C 0 [0, ];R d . It is clear that v ± ∈ C 0 [0, ]; K and,
with the first part of the proof,

, v ± -u = ± r C 0 [0, ];R d , 0.
Thus , = 0 which enables us to conclude.

Let us conclude this subsection with the proof of property (P4).

Proposition 2.7. The initial conditions (u 0 , v 0 ) are satisfied i.e.

u(0) = u 0 , u(0 + 0) = v 0 . Proof. Since u h i (0) = U 0 = u 0 for all h i ∈ (0, h * 1 ]
, the first equality is an immediate consequence of the uniform convergence of (u h i ) h * 1 h i >0 to u on [0, ]. In order to prove the second equality, we begin with the following lemma.

Lemma 2.8. Under the previous assumptions we have

v 0 -u(0 + 0), z -u 0 0 ∀z ∈ K.
Proof. Let z ∈ K and ∈ (0, ) \ D, where D is defined by (2.11). We will prove that

v 0 -uh i ( ), z -u 0 O( ) + O z(h i ) + O(h i ).
Passing to the limit as h i tends to zero first, then as tends to zero, we will obtain the announced result.

Let 0 < h i < min(h * 1 , ). By definition of u h i we have

v 0 -uh i ( ), z -u 0 = v 0 -V p , z -u 0 with p = h i
which we rewrite as

v 0 -V p , z -u 0 = v 0 -V 0 + z(h i ), z -u 0 -z(h i ), z -u 0 + p n=1 V n-1 -V n + h i F n , z -u 0 - p n=1 h i F n , z -u 0 .
Using relation (2.4), we know that for all n ∈ {1, . . . , N}

V n-1 -V n + h i F n , z -U n+1 0 and, since U 1 = Proj u 0 + h i v 0 + h i z(h i ) , we have also h v 0 -V 0 + z(h i ), z -U 1 = u 0 + h i v 0 + h i z(h i ) -U 1 , z -U 1 0.
Thus we get

v 0 -uh i ( ), z -u 0 v 0 -V 0 + z(h i ), U 1 -u 0 -z(h i ), z -u 0 + p n=1 V n-1 -V n + h i F n , U n+1 -u 0 - p n=1 h i F n , z -u 0 .
Let us estimate each term of the right-hand side of this inequality. Using the estimates (2.1) and (2.7), we obtain

U n+1 -u 0 n k=0 h i V k C(n + 1)h i C( + h i ) ∀n ∈ {1, . . . , p} and p n=1 V n-1 -V , U n+1 -u 0 p n=1 V n-1 -V n U n+1 -u 0 CC ( + h i ).
Moreover, we have

F n M 1 ∀n ∈ {1, . . . , N}
with M 1 defined by (2.8). Thus

p n=1 h i F n , U n+1 -u 0 - p n=1 h i F n , z -u 0 p n=1 h i F n U n+1 -u 0 + z -u 0 ph i M 1 C( + h i ) + z -u 0 M 1 C( + h i ) + z -u 0 .
Finally,

V 0 = U 1 -u 0 h i = 1 h i Proj(K, u 0 , +h i v 0 + h i z(h i ) -u 0 v 0 + z(h i )
and

v 0 -V 0 + z(h i ), U 1 -u 0 = h i v 0 -V 0 + z(h i ), V 0 2h i v 0 + z(h i ) 2 .
Thus, we get

v 0 -uh i ( ), z -u 0 CC ( + h i ) + M 1 C( + h i ) + z -u 0 + z(h i ) z -u 0 + 2h i v 0 + z(h i ) 2
which concludes the proof.

The previous lemma implies that v 0 -u(0 + 0), w 0 ∀w ∈ T K (u 0 ).

If u 0 ∈ Int(K) then T (u 0 ) = R d and the conclusion follows immediately. Otherwise, by choosing successively w =˙u(0 + 0) and w = v 0 , we obtain

v 0 2 u(0 + 0), v 0 u(0 + 0) 2 .
With (2.6) we have also

uh i ( ) = V p V 0 + h i p k=1 F k v 0 + z(h i ) + M 1 with p = h i
for all ∈ (0, ) \ D and for all h i ∈ 0, min(h * 1 , ) . By passing to the limit as h i tends to zero, then as tends to zero, we get

u(0 + 0) v 0 .
Hence

v 0 2 = u(0 + 0), v 0 = u(0 + 0) 2 ,
and v 0 = u(0 + 0).

Transmission of the velocities at impacts

In this subsection, we study the behavior of the limit of the scheme at impacts. We will assume from now on that the limit motion satisfies property (H5), i.e.

(H5) ∇ u(t) , ∇ u(t) 0 ∀( , ) ∈ J u(t) 2 , = ∀t ∈ (0, )
and we will prove that u satisfies Moreau's rule for inelastic shocks, i.e.

u(t + 0) = Proj T K u(t) , u(t -0) ∀t ∈ (0, ). (2.15) 
More precisely, let t ∈ (0, ) and denote ū = u(t), u+ = u(t + 0), u-= u(t -0). Since u(t) ∈ K for all t ∈ [0, ], we have

u+ ∈ T K ( ū), u-∈ -T K ( ū).
Thus, if u+ = u-, we get u-∈ T K ( ū) and the impact law is satisfied. Otherwise, we have {t} = u+ -u-= 0 and the measure has a Dirac mass at t.

Let us decompose with respect to Lebesgue's there exists g ∈ L 1 (0, ; R d ) such that

d = g dt + d s ,
where s is a singular measure with respect to Lebesgue's measure. Using Radon-Nicodym's theorem we infer that there exists a | s |-integrable function h s such that

d s = h s d| s |.
Then, property (P3) implies that (see [START_REF] Rockafellar | Integrals which are convex functionnals II[END_REF])

g(t) ∈ -N K u(t) dt a-e on (0, ), h s (t) ∈ -N K u(t) | s | a-e on (0, ).

It follows that

u+ -u-= {t} ∈ -N K ( ū).
Thus ū ∈ *K and J ( ū) = ∅.

In order to prove that (2.15) holds also in this case, we will perform a precise study of the discrete velocities V n in a neighbourhood of t. Let us introduce some new notations.

From assumption (H3) we know that ∇ ( ū) ∈J ( ū) is linearly independent. Hence there exists (e ) ∈{1,...,d}\J ( ū) such that the family ∇ ( ū), ∈ J ( ū) ∪ e , ∈ {1, . . . , d} \ J ( ū) is a basis of R d .

For all ∈ {1, . . . , d} and for all q ∈ R d we define e (q) by

e (q) = ∇ (q) if ∈ J ( ū), e if ∈ J ( ū).
Since the functions , 1 , belong to C 1 (R d ; R), we infer that there exists r > 0 such that e (q) =1,...,d is a basis of R d for all q ∈ B( ū, r). We define the dual basis ε (q) =1,...,d for all q ∈ B( ū, r). It is clear that the mappings ε , 1 d, are continuous on B( ū, r). Moreover, we recall that ( ū) > 0 for all ∈ J ( ū). Since the functions , 1 , are continuous, possibly decreasing r, we may assume without loss of generality that

(q) > 0 ∀ ∈ J ( ū) ∀q ∈ B( ū, r) i.e. J (q) ⊂ J ( ū) ∀q ∈ B( ū, r).
(2.16)

Then, using the continuity of u and convergence of (u i ) h * 1 h i >0 to u in C 0 [0, ]; R d , we can define ¯ > 0 and h 2 ∈ (0, h * 1 ] such that [t -¯ , t + ¯ ] ⊂ (0, ) and

u(t) ∈ B( ū, r) ∀t ∈ [t -¯ , t + ¯ ]
(2.17)

U n+1 ∈ B( ū, r) ∀nh i ∈ [t -¯ , t + ¯ ] ∀h i ∈ (0, h 2 ]. (2.18) 
Finally we define

M 2 = sup e (q) , ε (q) , q ∈ B( ū, r), 1 . (2.19)
We prove the following result.

Proposition 2.9. Let us assume that u+ = uand

∇ ( ū), ∇ ( ū) 0 ∀( , ) ∈ J ( ū) 2 , = .
Then the impact law is satisfied at t = t, i.e.

u+ = Proj T K ( ū), u-). (2.20) 
Proof. With the definition (1.3) of K we can describe T K ( ū) and N K ( ū) as follows:

T K ( ū) = v ∈ R d ; ∇ ( ū), v 0 ∀ ∈ J ( ū) , N K ( ū) = w ∈ R d ; w = ∈J ( ū) ∇ ( ū), 0 ∀ ∈ J ( ū) .
Thus, there exist non-positive numbers , ∈ J ( ū), such that

u+ -u-= ∈J ( ū) -∇ ( ū).
Recalling that u+ ∈ T K ( ū), u--u+ ∈ N K ( ū) and T K ( ū) and N K ( ū) are two polar cones, we infer that (2.20) is equivalent to

( u--u+ , u+ ) = 0 = ∈J ( ū) ∇ ( ū), u+ i.e. ∇ ( ū), u+ = 0 ∀ ∈ J ( ū).
Let us prove the following lemma.

Lemma 2.10. Let ∈ J ( ū) that = 0. Then, for all 1 ∈ (0, ¯ ] there exists h 1 ∈ (0, h 2 ] such that for all h i ∈ (0, h 1 ], there exists nh i ∈ [t -1 , t + 1 ] such that (U n+1 ) 0.

Proof. Let us assume that the announced result does not hold, i.e. assume that there exists 1 ∈ (0, ¯ ] such that, for all h 1 ∈ (0, h 2 ] there exists h i ∈ (0, h 1 ] such that (U n+1 ) > 0 for all nh i ∈ [t -1 , t + 1 ]. Hence, we can extract from (h i ) i 0 a subsequence denoted (h (i) ) i 0 such that

(U n+1 ) > 0 ∀nh (i) ∈ [t -1 , t + 1 ] ∀i 0. (2.21)
For all ∈ (0, 1 ] such that t ± ∈ (0, )\D, let us establish the following estimate:

uh (i) (t -) -uh (i) (t + ), ε ( ū) O( ) + O h (i) + O u -u h (i) C 0 [0, ];R d .
Then, by passing to the limit when i tends to +∞, we will infer with (2.12) that

u(t -) -u(t + ), ε ( ū) O( )
and, when tends to zero, we will obtain

u(t -0) -u(t + 0), ε ( ū) = | | 0
which gives a contradiction. Let ∈ (0, 1 ] such that t ± ∈ (0, ) \ D. For all i 0 we define

n i = t - h (i) + 1, p i = t + h (i) .
Then, for all nh (i) ∈ [t -, t + ], we have n i n p i and we infer from (2.4) that

V n-1 -V n + h (i) F n ∈ N K (U n+1 ).
Hence there exist non-positive numbers ( n ) ∈J (U n+1 ) such that

V n-1 -V n + h (i) F n = ∈J (U n+1 ) n ∇ (U n+1 ).
With (2.21) we obtain that ∈ J n+1 ) and thus

V n-1 -V n + h (i) F n , ε (U n+1 ) =   ∈J (U n+1 ) n e (U n+1 ), ε (U n+1 )   = 0.
It follows that

V n i -1 -V p i , ε ( ū) = p i n=n i V n-1 -V n , ε ( ū) = p i n=n i V n-1 -V n , ε (U n+1 ) + p i n=n i V n-1 -V n , ε ( ū) -ε (U n+1 ) = - p i n=n i h (i) F n , ε (U n+1 ) + p i n=n i V n-1 -V n , ε ( ū) -ε (U n+1 ) .
Let us observe now that V n i -1 = uh (i) (t -) and V p i = uh (i) (t + ). We obtain

uh (i) (t -) -uh (t + ), ε ( ū) p i n=n i h (i) M 1 M 2 + p i n=n i V n-1 -V n ε ( ū) -ε (U n+1 ) ,
where M 1 and M 2 are defined by (2.8) and (2.19). Moreover

ū -U n+1 = u(t) -u h (i) (n + 1)h (i) u(t) -u h (i) (t) + u h (i) (t) -u h (i) (n + 1)h (i) u -u h (i) C 0 [0, ];R d + C t -(n + 1)h (i) u -u h (i) C 0 [0, ];R d + C + h (i) ,
where C is the constant obtained at Proposition 2.1. Hence,

uh (i) (t -) -uh (i) (t + ), ε ( ū) M 1 M 2 (p i -n i + 1)h (i) + u -u h (i) C 0 [0, ];R d + C( + (i) ) p i n=n i V n-1 -V n M 1 M 2 (2 + h (i) ) + C ε u -u h (i) C 0 [0, ];R d + C( + h (i) ) ,
where C is the constant defined at Proposition 2.4 and ε is the modulus of continuity of ε on B( ū, r), which achieves the proof.

We come now to the last step of the proof of Proposition 2.9.

Lemma 2.11. Let ∈ J ( ū) be such that = 0. Then ∇ ( ū), u+ = 0.

Proof. Let ∈ J ( ū) such that = 0. Since u+ ∈ T K ( ū) we have ∇ ( ū), u+ 0 and it remains to prove that u+ , ∇ ( ū) 0. The main idea of the proof is to obtain an estimate of u(t + ), ∇ u(t + ) and to pass to the limit when tends to zero. More precisely, let ∈ (0, ¯ ] such that t + ∈ (0, ) \ D. We have

u(t + ) = lim h i →0 uh i (t + ) = lim h i →0 V p i with p i = t + h i ∀i 0.
Observing that

u(t + ) -U p i +1 u(t + ) -u h i (t + ) + u h i (t + ) -u h i (p i + 1)h i u -u h i C 0 [0, ];R d + Ch i the continuity of ∇ on B( ū, r) implies that u(t + ), ∇ u(t + ) = lim h i →0 uh i (t + ), ∇ (U p i +1 ) = lim h i →0 V p i , ∇ (U p i +1 )
and we will prove that

V p i , ∇ (U p i +1 ) O( ) + O(h i ) + O u -u h i C 0 [0, ];R d . ( 2 

.22)

Let us apply the previous lemma: there exists h ∈ (0, h 2 ] such that, for all h i ∈ (0, h ], there exists nh i ∈ [t -, t + ] such that (U n+1 ) 0 and we define N i as the last time step in [t -, + ] at which the constraint is active. More precisely, let i be such that h i ∈ (0, h ] and define N i by

N i = max n ∈ N; nh i ∈ [t -, t + ] and (U n+1 ) 0 . Since V N i ∈ -T K (U N i +1
) and ∈ J (U N i +1 ), we infer that

V N i , ∇ (U N i +1 ) 0.
By definition of the scheme, for all n ∈ {1, . . . , N}, we have

V n-1 -V n + h i F n ∈ N K (U n+1 )
and there exist non-positive numbers

( n ) ∈J (U n+1 ) such that V n-1 -V n + h i F n = ∈J (U n+1 ) n ∇ (U n+1 ).
Thus, for all h i ∈ (0, h ] we get

V p i , ∇ (U p i +1 ) = V N i , ∇ (U p i +1 ) + p i n=N i +1 V n -V n-1 , ∇ (U p i +1 ) V N i , ∇ (U p i +1 ) -∇ (U N i +1 ) + p i n=N i +1 h i F n , ∇ (U p i +1 ) + p i n=N i +1 ∈J (U n+1 ) -n ∇ (U n+1 ), ∇ (U p i +1 ) C ∇ (U p i +1 ) -∇ (U N i +1 ) + (p i -N i )h i M 1 M 2 + p i n=N i +1 ∈J (U n+1 ) -n ∇ (U n+1 ), ∇ (U p i +1 ) .
Let us estimate the last term. We observe first that (2.16) and (2.18) imply that J (U n+1 ) ⊂ J ( ū) for all nh i ∈ [t -¯ , t + ¯ ] and by definition of N i , we have also ∈ J(U n+1 ) for all n ∈{N i + 1,...,p i }. Moreover, (H5) implies that ∇ ( ū), ∇ ( ū) = e ( ū), e ( ū) 0 ∀ ∈ J ( ū) \ { } and thus 

p i n=N i +1 ∈J (U n+1 ) -n ∇ (U n+1 ), ∇ (U p i +1 ) ∈J (U n+1 ) p i n=N i +1 (-n ) e (U n+1
= V n-1 -V n + h i F n , ε (U n+1 ) M 2 V n -V n-1 + h i M 1 M 2
for all ∈ J (U n+1 ) and for all n ∈ {N i + 1, . . . , p i }. It follows that

p i n=N i +1 ∈J (U n+1 ) -n ∇ (U n+1 ), ∇ (U p i +1 ) 2dM 2 2 C + Ch i + u -u h i C 0 [0, ];R d ×    p i n=N i V n -V n-1 + (p i -N i )h i M 1    2dM 2 2 (C + 2 M 1 ) C + Ch i + u -u h i C 0 [0, ];R d ,
where C is the constant defined at Proposition 2.6. Finally, for all h i ∈ (0, h ] we have

∇ (U p i +1 ) -∇ (U N i +1 ) = e (U p i +1 ) -e (U N i +1 ) e U p i +1 -U N i +1 e (2C )
and thus

V p i , ∇ (U p i +1 ) C e (2C ) + 2 h i M 1 M 2 +2dM 2 2 (C + 2 M 1 ) C + Ch i + u -u h i C 0 [0, ];R d
which proves (2.22). Passing to the limit as h i tends to zero, we obtain

u(t + ), ∇ u(t + ) C e (2C ) + 2dM 2 2 (C + 2 M 1 ) (C ).
Then, passing to the limit as tends to zero, we conclude the proof.

Proof. Let h ∈ (0,h 1 ]. By definition of the ( n ) n 0 ,wehave

(1 -Lh) n+1 + (Lh -2 -2Lh 2 ) n + n-1 = 0 ∀n 1.
Let us denote by and the roots of the characteristic equation Lemma A.2. Let K be defined by K = q ∈ R d ; (q) 0, = 1, . . . , with functions , = 1, . . . , , belonging to C 1 (R d , R) and satisfying (H4). Then for all q 0 ∈ K, there exist > 0, r > 0 and a ∈ R d such that, for all q ∈ B(q 0 , 2 ): B(a, r) ⊂ T K (q) (A.1) and z -Proj T K (q), z 1 2r z -a 2 -Proj T K (q), z -a

2 ∀z ∈ R d . (A.2)
Proof. First, let us prove (A.1). Let q 0 be in K and recall that, for all q ∈ R d , J (q) = ∈ {1, . . . , }; (q) 0 .

Since the functions ( ) =1,... are continuous, we infer that there exists 1 > 0 such that, for all ∈ J (q 0 ), we have (q) > 0 if q -q 0 1 .

It follows that J (q) ⊂ J (q 0 ) for all q ∈ B(q 0 , 1 ). Consequently, if J (q 0 ) = ∅, we have J (q) = ∅ for all q ∈ B(q 0 , 1 ) and (A.1) is satisfied for = 1 /2 and for all a ∈ R d and r > 0.

Let us assume now that J (q 0 ) = ∅. For all ∈ J 0 ) we define : R d × R d → R by (q, y) = ∇ (q), y ∀(q, y) ∈ R d × R d and : R d × R d → R by (q, y) = min ∈J (q 0 ) (q, y) ∀(q, y) ∈ R d × R d .

Since

∈ C 1 (R d ) for all ∈ {1, . . . , }, we obtain that the mappings are continuous. Moreover, since ∇ (q 0 ) ∈J (q 0 ) is linearly independent, we can define a basis (e i ) 1 i d of R d such that e = ∇ (q 0 ) ∀ ∈ J (q 0 ).

Let us denote by (ε i ) 1 i d the dual basis of (e ) 1 i d and let a = ∈J (q 0 ) ε .

Then, for all ∈ J (q 0 ), we have (q 0 , a) = ∇ (q 0 ), a =   e , ∈J (q 0 ) ε   = 1 and (q 0 , a) = 1. By continuity, it follows that there exist r > 0 and 2 > 0 such that (q, y) > 0 ∀(q, y) ∈ B(q 0 , 2 ) × B(a, r). Let = 1 2 min( 1 , 2 ). For all q ∈ B(q 0 , 2 ) we have J (q) ⊂ J (q 0 ), (q, y) = min ∈J (q 0 ) ∇ (q), y > 0 ∀y ∈ B(a, r) which implies that B(a, r) ⊂ T K (q) = y ∈ R d ; ∇ (q), y 0 ∀ ∈ J (q) and (A.1) is satisfied.

Then we observe that (A.2) is a direct consequence (with the choice H = D = R d , C = T (q) and S = Proj(C, •)) of the following result due to J.J.Moreau: Lemma A.3 (Moreau [6]). Let D be a subset of a real Hilbert space H and let S : D → D be such that

Sz -Sz z -z ∀(z, z ) ∈ D 2 .
Let a ∈ H and r > 0 such that B(a, r) ⊂ {z ∈ D : Sz = z}. Then z -Sz 1 2r z -a 2 -Sz -a 2 ∀z ∈ D.

Theorem 1 . 1 .

 11 Let us assume that (H1)-(H2)-(H3)-(H4) hold. Let (u 0 , v 0 ) ∈ K × T K (u 0 ) be admissible initial data. Then the sequence (u h ) h∈(0,h * ] defined by (1.4)-(1.5)-(1.6)-(1.7) admits a converging subsequence in C 0 [0, ]; R d and the limit u satisfies the properties (P1)-(P2)-(P3)-(P4).

( 1 -C 0 8L + L 2 ( 1 -2h) 2 L

 10212 Lh)X 2 + (Lh -2 -2Lh 2 )X + 1 = 0 i.e. = 1 + h L + 2Lh + 8L + L 2 (1 -2h) 2 2(1 -Lh) = 1 + hx 1 (h) and = 1 + h L + 2Lh -8L + L 2 (1 -2h) 2 2(1 -Lh) = 1 + hx 2 (h).Then we have n = a n + b n ∀n 0 with (a, b) given by the relations Lhand C 0 = v 0 + M + 1. We infer that a = + 2Lh + 8L + L 2 (1 -2h) 2 2(1 -Lh) and b = C 0 8L + L 2 (1 -2h) 2 -L + 2Lh -8L + L 2 (1 -2h) 2 2(1 -Lh) .It follows that a and b are two continuous functions of which remain non-negative and bounded on [0, h 1 ]. Thus there existsC 1 > 0, h 1 ].For the same reason, the functions x 1 and x 2 are bounded on [0, h 1 ] and there exists > 0 such that 0 e h , ∀h ∈ [0, h 1 ].Finally we get 0 n a n + b n (a + b)e nh C 1 e nh ∀n 0 ∀h ∈ (0, h 1 ].

  ), e (U p i +1 ) -e ( ū), e ( ū) .

	Let us denote by

e the modulus of continuity of e on B( ū, r) for all ∈ J ( ū) and let = max

∈J ( ū)

e . Arguing as in the previous lemma we obtain

e (U p i +1 ) -e ( ū) e C + Ch i + u -u h i C 0 [0, ];R d and e (U n+1 ) -e ( ū) e C + Ch i + u -u h i C 0 [0, ];R d for all ∈ J (U n+1

) and for all n ∈ {N i + 1, . . . , p i }. Hence e (U n+1 ),e (U p i +1 ) -e ( ū),e ( ū)

2M 2 C + Ch i + u -u h i C 0 [0, ];R d for all ∈ J (U n+1

) and for all n ∈ {N i + 1, . . . , p i }. Moreover, by definition of n we have n

Appendix A Lemma A.1. Let h 1 ∈ (0, 1/L) and ( n ) n 0 be defined by

There exists C 1 > 0 and > 0 such that 0 n C 1 e nh ∀n 0 ∀h ∈ (0, h 1 ].