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aUniv Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, LYON, France
bLaboratoire d’Etude des Microstructures, UMR 104 Onera - CNRS, 29 avenue de la division Leclerc,

92322 Châtillon, France

Abstract

We propose a framework to study thermally-activated processes in dislocation glide.
This approach is based on an implementation of the nudged elastic band method in a nodal
mesoscale dislocation dynamics formalism. Special care is paid to develop a variational for-
mulation to ensure convergence to well-defined minimum energy paths. We also propose
a methodology to rigorously parametrize the model on atomistic data, including elastic,
core and stacking fault contributions. To assess the validity of the model, we investigate
the homogeneous nucleation of partial dislocation loops in aluminum, recovering the acti-
vation energies and loop shapes obtained with atomistic calculations and extending these
calculations to lower applied stresses. The present method is also applied to heterogeneous
nucleation on spherical inclusions.

Keywords: Dislocation dynamics, dislocation nucleation, nudged elastic band method,
coherency loss

1. Introduction

The plastic behavior of metals and alloys depends strongly on temperature because of
the role played by thermally-activated processes in dislocation movement. Examples include
the nucleation of kink pairs on high Peierls stress dislocations, the cross-slip of screw dis-
locations and the climb of edge dislocations in creep conditions [1, 2, 3]. The temperature
dependence is even stronger in nanostructures, because in absence of bulk sources, disloca-
tions are nucleated from interfaces [4, 5], revealing another example of thermally-activated
process.

So far, thermally-activated processes involving dislocations have been studied numerically
mainly at the atomic scale, using saddle point search methods, such as the nudged elastic
band (NEB) method [6, 7, 8] or the activation-relaxation technique [9, 10, 11]. The case
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Figure 1: Activation energy function of applied shear stress obtained from atomistic free-end NEB calcula-
tions of the homogeneous nucleation of a Shockley partial dislocation loop in aluminum. The inset shows
the saddle configuration at an applied shear stress σa = 1.4 GPa (only the defected atoms in the upper and
lower free surfaces and in the stacking fault of the loop are shown).

of dislocation nucleation has been particularly studied [12, 13, 14, 15, 16, 17] to better
understand the plastic behavior of nanostructures. As an example, we show in Fig. 1 the
activation energy as a function of an applied shear stress computed for the homogeneous
nucleation of a Shockley partial dislocation loop in aluminum, modeled with the interatomic
potential developed by Mishin et al. [18]. The inset shows the atomistic saddle configuration
found at an applied stress σa = 1.4 GPa.

The calculations in Fig. 1 used the free-end NEB method, which is briefly recalled here.
The degrees of freedom are the atomic positions stored in configuration vectors noted R
(of dimension 3 × Nat where Nat is the number of atoms in the system); Eat(R) is the
corresponding energy. The NEB method consists in building a chain of replicas interpolated
between an initial and a final state. In the present case, the initial path is formed of circular
loops of increasing radius, created using their elastic displacement field [19]. The replicas are
linked between first neighbors using springs in configuration space. The degrees of freedom
of a replica i are therefore subjected to (i) the forces F r

i derived from the replica potential
energy and projected on the hyperplane perpendicular to the chain of replicas and (ii) F s

i ,
the contribution of the spring forces associated to the NEB method:

F r
i = − (∇Eat(Ri)−∇Eat(Ri) · τi) , (1)

F s
i = kNEB (|Ri+1 −Ri| − |Ri −Ri−1|) τi, (2)

where kNEB is the elastic constant of the springs between replicas and τi the tangent to the
path defined using the improved tangent method [20]. A quenched dynamics is used to relax
the chain of replicas subjected to the forces in Eqs. (1-2), to obtain the minimum energy
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path (MEP) between the initial and final configurations. For dislocation nucleation, the last
replica representing the largest loop is not a local energy minimum. We have therefore used
the free-end NEB method [5], where this last image evolves at constant energy, while being
subjected to the spring force from its neighboring replica. The replica of maximum energy
can be treated differently with the climbing image method [21] to ensure its convergence to
the saddle point configuration. The applied stress is controlled by imposing external forces
to the atoms within the cut-off radius distance from the upper and lower free surfaces shown
in the inset of Fig. 1. The activation energy is then the energy difference between this
maximum energy image and the initial configuration. We note that the convergence of the
NEB method to a valid minimum energy path relies on the fact that the atomic forces derive
from a well-defined energy, i.e. from the variational character of atomistic calculations.

Such calculations are highly informative but are also very limited in term of size scale.
The convergence time of the NEB method increases drastically with the number of degrees
of freedom (DoFs) in the system, usually limiting its use to volumes smaller than 104 nm3

for dislocation-mediated events. As a consequence, only stresses larger than 1.4 GPa were
considered in the example above. This size-scale issue also prevents from modeling complex
heterogeneous fields emerging from a surrounding microstructure, for example, of dislocations
and/or precipitates. Moreover, atomistic calculations can only give the minimum energy path
and activation energy at T = 0 K, while material parameters such as the lattice spacing,
elastic constants and stacking fault energy vary significantly with temperature and affect
the activation energy, as shown by Ruy et al. [15] in the case of dislocation nucleation.
Temperature effects can be included in atomistic saddle-point search calculations but at a
large computational cost [22].

It is therefore highly desirable to perform saddle-point searches in higher-scale models,
with a limited number of degrees of freedom, to allow for faster calculations in large-scale
systems, but also to be able to include temperature effects in an effective way, by varying
the model parameters. In this spirit, the NEB method has been incorporated in continuous
phase-field models to investigate the nucleation barrier against martensitic transformation
[23], shape transitions of vesicles [24] and the wetting of patterned surfaces [25]. This type
of mesoscale approaches has also the advantage of averaging out the small energy barriers
related to subtle atomic rearrangements, allowing to focus on the most relevant energy
barriers for macroscopic phenomena.

For the study of dislocation-mediated mechanisms, generalized Peierls-Nabarro models
have been developed to investigate the energetics of dislocation nucleation [26, 27], incorpo-
rating the influence of the generalized stacking fault energy and elastic anisotropy. However,
these models rely on a short length-scale, representative of the core width and of the same
order as the lattice spacing. Therefore, any numerical model used to solve the boundary-
integral equations associated with this approach must rely on a very fine discretization to
represent the small length scale, making this approach intrinsically limited to the study of
dislocation processes at small length-scales. Sobie and co-workers [28, 29, 30] have very re-
cently incorporated the NEB method into a dislocation dynamics formalism to investigate
the activation energy and attempt frequency of by-pass mechanisms of a dislocation over
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irradiation defects. However, the approach employed by the authors does not rely on a vari-
ational framework (the system energy and the forces on the DoF are defined independently
from each other), making the application of the NEB method questionable, especially with-
out a careful comparison to a reference problem. In addition, their DD formalism also bears
other limitations: it does not account for elastic anisotropy nor does it incorporate the effect
of a surrounding precipitate microstructure.

In this article, we propose an implementation of the NEB method in a variational formal-
ism relying on an eigenstrain representation of the dislocations, similar to the one used in the
Discrete-Continuous Model [31, 32]. Such an approach is more general than standard DD
models because it allows to incorporate straightforwardly the effects of elastic anisotropy
and surrounding interfaces, such as grain boundaries, free surfaces, precipitate interfaces.
Moreover, it allows for a direct computation of the elastic energy. In addition, we present
a methodology to parametrize rigorously the model from atomistic data in order to predict
quantitatively activation energies. Dislocation nucleation is considered here as a textbook
application of the present approach because this relatively simple process has been exten-
sively studied in the past and can be investigated quantitatively at the same length-scale
with atomistic simulations and the continuous approach presented in this article. The ar-
ticle is organized as follows. We first describe the DD framework in section 2. Next, the
parametrization of the model on atomistic data is described in section 3. In section 4, the
parametrized model is used to investigate the homogeneous nucleation of partial disloca-
tions, recovering and extending the results shown in Fig. 1. Finally, in section 5, the model
is applied to the more complex case of heterogeneous nucleation on a misfitting precipitate.

2. Variational dislocation dynamics (VDD) model

To ensure that the NEB method converges to a valid minimum energy path, the forces
on the DoFs of the model must derive from a well-defined potential energy. While this
variational property is naturally verified by atomistic calculations, many implementations of
DD models are not variational, because the energy of the system is not a physical quantity of
great interest during typical DD simulations. For instance, in some DD implementations [33,
34], the dislocation line discretization method makes use of a regularization procedure relying
on an interpolation with neighboring segments to calculate a local line tension correction.
This correction is necessary, due to the approximation of curved dislocations by straight
segments [33], but the resulting force contribution does not derive from a well-defined energy.
Moreover, the definition of the DoF in a segment representation of dislocations is not obvious
since a configuration is defined by the position and length of the segments, which do not
evolve independently from each other.

By way of contrast, nodal DD simulations [35], where the dislocation lines are discretized
by connected nodes, are better adapted to NEB calculations because first, the DoFs are the
positions of the nodes, which define explicitly and uniquely the dislocation lines. Second,
following the work of Cai et al. [36], the nodal forces can be consistently defined in a vari-
ational framework using a non-singular elastic representation of dislocations. Here, we will
therefore employ a nodal representation of the dislocation lines and extend this approach to
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include core and fault contributions, important to model accurately the nucleation of partial
dislocations. Each of these contributions (elastic, core and fault contributions) are described
in the following paragraphs.

2.1. Elastic energy and forces

2.1.1. Theory

The classical analytical theory of dislocations, developed in the linear elasticity frame-
work, describes a dislocation line as a singularity where the stresses and elastic energy diverge
[37]. This description, in addition to being unphysical, is not suitable for the NEB method,
which needs to rely on a well-defined finite energy. This is why the non-singular description
of dislocations introduced by Cai et al. in Ref. [36] is preferred in the present study1. In
this approach, the Burgers vector density is spread out in the vicinity of the dislocation
line. Moreover, we choose an eigenstrain approach as in [32], where dislocation loops are
represented as eigenstrain surfaces delimited by the loop contour. From the position of the
nodes in the dislocation slip plane, one can build a singular eigenstrain distribution, defined
as ε̂0(r) = 1

2
(b⊗n+n⊗ b)δ(r) where δ(r) is a Dirac distribution equal to zero outside the

planar dislocation loop. To avoid the singular behavior of this description, the eigenstrain is
convoluted with the spreading function wa(r) [36] characterized by the spreading length a:

(wa ∗ wa)(r) =
15

8πa3[(||r||/a)2 + 1]7/2
, (3)

where the star symbol ∗ denotes the convolution operation and ||r|| is the norm of the position
vector r. The non-singular eigenstrain is then defined as the convolution ε0(r) = (ε̂0∗wa)(r).
This specific form of wa(r) leads to simple analytical solutions for the stress field and energy
of simple dislocation configurations [36].

Following the seminal work of Mura [39], one can solve the elastic problem associated
with an eigenstrain distribution and external boundary conditions (for instance, an applied
stress tensor σa) to obtain the strain field ε(r). Considering the case of homogeneous elastic
constants, the elastic energy of the system is:

Eel =
1

2

∫
V

{
Cijkl(εij − ε0ij)(εkl − ε0kl)

}
dV − V σaij ε̄ij, (4)

where Cijkl are the elastic constants and ε̄ij =
∫
V
εij(r)dV , the average of the strain tensor

components. The stresses are simply defined as

σij(r) = Cijkl(εkl(r)− ε0kl(r)). (5)

To obtain the stresses acting on the dislocation with a Burgers vector spread out in space,
an additional convolution with wa(r) is needed and we define the non-singular stresses as
σns(r) = (σ ∗ wa)(r) and the Peach-Koehler force acting on a point r belonging to a

1Alternatively the solution proposed in [38] could also have been used.
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Figure 2: Sketch representing the small displacement of a node.

dislocation segment (n) as fpk(r) = (σns(r) · b(n))∧ξ(n), where b(n) and ξ(n) are the segment
Burgers vector and line vector, respectively. The force on a node x(n) is then obtained from
the weighted integration of the Peach-Koehler force (force per unit length) on the adjacent
segments of lengths L(n) and L(n+1) (see Fig. 2):

f
(n)
el =

∫
L(n)

u

L(n)
fpk(u) du+

∫
L(n+1)

u

L(n+1)
fpk(u)du. (6)

As shown in Ref. [36], this definition of nodal forces satisfies rigorously:

f
(n)
el = − ∂Eel

∂x(n)
, (7)

therefore ensuring the variational character of the formalism. This property is checked
numerically in the next paragraph

2.1.2. Numerical implementation

For the sake of generality and to easily include the effects of elastic anisotropy and
of a surrounding microstructure, we solve numerically the elastic problem related to the
eigenstrain distribution defined above. We note that computing both the elastic forces on
the nodes and the elastic energy relies on convolutions, whose exact computation is important
to retain the variational character of the model. We therefore use a spectral method, where
such operations are simple multiplications in Fourier space. Alternatively, a finite element
scheme could be used, as in the discrete-continuum method [31, 32]; although in this case, one
has to carefully check that the error associated with the convolution operations performed
in real space remains negligible.

The different fields (displacements, stresses,...) are regularly discretized in space and a
staggered grid finite difference scheme is employed, where the different components of the
displacement field are defined on different grids shifted from one another [40]. We note dx
the discretization spacing, taken identical in the three spatial dimensions. This numerical
method has been shown to reproduce accurately elastic fields close to sharp variations of the
eigenstrain field [41, 42].
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For simplicity reasons, we consider a planar dislocation loop. For a given position of the
nodes, we first initialize the sharp eigenstrain field on the plane of the loop in the region
delimited by the nodes. After a Fourier transform and a convolution with wa(r), we obtain
the corresponding non-singular eigenstrain distribution. Following the resolution method
described in Ref. [42], we solve for the displacement field satisfying the elastic equilibrium:

Cijkl
∂2uk(r)

∂xl∂xj
= Cijkl

∂ε0kl(r)

∂xj
. (8)

Once the displacement field u(r) is known, deducing the strains and stresses is straight-
forward. The forces on the nodes are obtained via Eq. (6) involving integration of the Peach-
Koehler force along adjacent segments. This integration is performed numerically with the
stress field at each integration point obtained from a trilinear interpolation between nearest
grid points. Finally, the elastic energy of the system is obtained by numerical integration of
Eq. (4).

The advantage of the formalism proposed by Cai et al. [36] is to yield analytical solutions
for simple dislocation configurations. We first test the computation of the elastic energy by
considering a circular dislocation loop of radius Rloop = 10b (shown in the inset of Fig. 3.a)
and comparing with the analytical solution [36]:

Eloop = 2πRloop
µb2

8π

[
2− ν
1− ν

(
ln

(
8Rloop

a

)
− 1

)
+

1

2

]
+O

(
a2

R2
loop

)
, (9)

where µ and ν are respectively the shear modulus and Poisson’s ratio of the material and b
the loop Burgers vector. Fig. 3.a shows that the energy obtained numerically converges to
the analytical solution of Eq. (9) when the size L of the system is large compared to the loop
radius and if a & 3dx. For smaller values of a, the loop eigenstrain is not well-represented
on the finite-difference grid and the energy is larger than expected. In the following, we will
systematically use a & 3dx to avoid this numerical artifact.

We also tested the calculation of the forces and the variational aspect of the model by
calculating the forces on a 16-node loop in two different ways: (i) numerical integration
of the Peach-Koehler force (Eq. (6)), (ii) differentiation of the elastic energy after a small
displacement of the position of the nodes. Fig. 3.b shows an excellent agreement between
both methods, confirming the variational property of the model. Small discrepancies, barely
visible in Fig. 3.b, are attributed to the different approximations used when computing forces
and energies: while the stress (and thus the Peach-Koehler force) is interpolated in space
from the surrounding grid points, the computation of the energy assumes that the different
fields are constant in each voxel.

2.2. Core energy and forces

The linear elastic energy introduced in previous section can not account for the high
distortions in the dislocation cores and their associated energy. Therefore, we introduce a
core energy per unit length denoted ecore(θ), which depends on the dislocation character, i.e.
the angle θ between the line vector ξ and the Burgers vector b (θ = 0 for a screw dislocation).
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(a) (b)

L
Rloop

Figure 3: (a) Elastic energy of a circular loop of radius R = 10b as a function of the regularization parameter
a and for different system sizes. (b) Comparison of elastic forces acting on the nodes computed in two
different ways: from Eq. (6) and from an energy difference after a small displacement.

Let us examine first the symmetry properties that ecore(θ) must satisfy. A change ξ → −ξ
does not change the line energy, so ecore(θ + π) = ecore(θ). Moreover, in the case of face
centered cubic (FCC) metals of interest here, ecore(−θ) = ecore(θ), due to crystal symmetry.
Therefore, we propose to express the core energy with a cosine series:

ecore(θ) =
+∞∑
k=0

ak cos(2k θ), (10)

with θ = arccos
(
|ξ · b|
||b||

)
. This specific form was preferred because it can be conveniently

expressed as a polynomial function of the scalar α = |ξ · b|/||b||. For example, if we consider
only the first three terms of the series (k = 0, 1, 2), we have

ecore(θ) = c0 + c1α
2 + c2α

4, (11)

with c0 = a0 − a1 + a2, c1 = 2a1 − 8a2 and c2 = 8a22. In the following, we will assume that
this truncation is sufficient to describe core energies but we note that including more terms
is straightforward.

Let us now consider a node of position x(n) and the adjacent segments of lengths L(n)

and L(n+1) (see Fig. 2) with core energies

E(n)
core = ecore(θ

(n))L(n) = (c0 + c1α
2
n + c2α

4
n)L(n), (12)

E(n+1)
core = ecore(θ

(n+1))L(n+1) = (c0 + c1α
2
n+1 + c2α

4
n+1)L

(n+1). (13)

where αn = |ξ(n) · b(n)|/||b(n)||. A small displacement of the node x(n) changes both segment
lengths and orientations. The derivatives of αn with respect to the position of the nodes x(n)

and x(n+1) are given by

8



∂αn
∂x(n)

=
sgn(ξ(n) · b(n))
||b(n)||L(n)

(
b(n) − ξ(n)

(
ξ(n) · b(n)

))
(14)

∂αn+1

∂x(n)
= −sgn(ξ(n+1) · b(n+1))

||b(n+1)||L(n+1)

(
b(n+1) − ξ(n+1)

(
ξ(n+1) · b(n+1)

))
, (15)

and the force acting on a node of position x(n) coming from the core contribution is expressed
as:

f (n)
core = −∂E

(n)
core

∂x(n)
− ∂E

(n+1)
core

∂x(n)
, (16)

where

∂E
(n)
core

∂x(n)
=

∂αn
∂x(n)

(
2c1αn + 4c2α

3
n

)
L(n) + (c0 + c1α

2
n + c2α

4
n)ξ(n) (17)

∂E
(n+1)
core

∂x(n)
=
∂αn+1

∂x(n)

(
2c1αn+1 + 4c2α

3
n+1

)
L(n+1) − (c0 + c1α

2
n+1 + c2α

4
n+1)ξ

(n+1). (18)

2.3. Stacking fault energy and resulting forces

In the case of the nucleation of partial dislocations, a stacking fault forms inside the
loops. As pointed out in Ref. [14], the disregistery across the slip plane (denoted ζ) is not
necessarily equal to the Burgers vector. Accounting for this effect is important to reproduce
quantitatively the activation energy of the nucleation event because in the case of small
dislocation loops as for nucleation, the stacking fault energy contribution becomes compa-
rable to the elastic energy. We note egsf (ζ) the generalized stacking fault energy (in units
of energy per unit area) assumed to be constant in space and to depend only on a scalar
displacement jump ζ in the direction of the partial Burgers vector. For a given loop, the
energy contribution from the stacking fault is

Esf = egsf (ζ)A({x(n)}), (19)

where A({x(n)}) is the loop area, computed from the nodal positions. We make the simpli-
fying assumption that the core energy does not vary with the amplitude of the disregistery
ζ. A small displacement of a node x(n) changes the area of the loop and the resulting force
depends on the length and orientation of the neighboring segments:

f
(n)
sf = − ∂Esf

∂x(n)
= −egsf (ζ)

2
(ξ

(n)
⊥ L(n) + ξ

(n+1)
⊥ L(n+1)), (20)

where ξ
(n)
⊥ is normal to ξ(n) and oriented towards the outside of the loop (i.e. ξ(n) ∧ ξ(n)⊥ = 1

with our convention).
The disregistery ζ is another DoF of the system, which is treated differently from the

nodal positions. We assume that its evolution is fast compared to the position of the nodes
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and that it reaches instantaneously an optimum value for which the sum of the elastic and
stacking fault energies is minimum:

min
ζ

(Eel(ζ) + Esf (ζ)) . (21)

This minimization is straightforward because the elastic contribution depends quadratically
on ζ:

Eel(ζ) = W0 +W1ζ +W2ζ
2 (22)

where Wi are constants that depend on the dislocation configuration and can be computed
in the general case using volume integrals. In the particular case of an isolated loop, an
analytical calculation is possible, yielding:

W0 = −1

2
σaijε

a
ijV (23)

W1 = −[σaij ε̄
0
ijV ]/ζ (24)

W2 =

[
Eel(ζ) +

1

2
σaij
(
2ε̄0ij + ε̄aij

)
V

]
/ζ2 (25)

where ε̄0ij = 1
V

∫
V
ε0ij dV are the average eigenstrain and εaij = Sijklσ

a
kl (Sijkl are the compli-

ances). We note that the terms W1 and W2 are independent of ζ because the terms between
square brackets in their expression evolve respectively linearly and quadratically with ζ. As-
suming that the form of the generalized stacking fault energy Esf (ζ) is known, the value of
ζ minimizing the sum Eel(ζ) + Esf (ζ) can be easily found.

In this section, we have detailed the different contributions of the energy of the system
(the elastic energy, core energy and stacking fault energy), paying a particular attention to
the variational character of the model, i.e. the derivation of the forces on the DoFs from the
energy. The next step consists in parametrizing carefully these different energy contributions
in order to reproduce atomistic calculations.

3. Parametrization of the model from atomistic simulations

In order to compare the present variational dislocation dynamics (VDD) with atomistic
calculations, the interatomic potential of Mishin et al. for aluminum [18] is considered.
This potential is known to reproduce accurately several properties of aluminum, such as
the lattice parameter of the stable FCC structure and its elastic constants at T = 0 K (see
Tab. 1). These values of the elastic moduli are used to parametrize the elastic energy. In
the following, we will also use the isotropic elastic constants µ = 28.9 GPa and ν = 0.34,
obtained from the Scattergood-Bacon average [43, 44], known as the most accurate isotropic
average when dealing with the elastic properties of dislocations [2].
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From litterature [45, 46, 47] EAM potential [18]

a0 (Å) 4.05 4.05
C11 (GPa) 114 114
C12 (GPa) 61.9 61.6
C44 (GPa) 31.6 31.6
Usf (mJ/m2) 120− 144 146

Table 1: Values of the lattice parameter, elastic constants and stacking fault energy from the literature and
reproduced with the EAM potential of Mishin et al. [18]

  

x

z

y
286.4 Å

140.3 Å

(a) (b)

Figure 4: (a) Snapshot of the atomic configuration of the dislocation dipole where only the atoms belonging
to the stacking faults are shown. (b) The dissociation distance is computed by fitting the disregistery along
the dislocation glide plane against Eq. (26). Atomistic displacement jumps are plotted in red and the fitted
function as a continuous black line

3.1. Core energy of partial dislocations

In the following, we will be mostly interested in the nucleation of partial dislocations.
Then, model parameters used to defined the core energy in Eq. (10) must be calculated to
accurately reproduce Shockley partial properties. To extract core energies from atomistic
calculations, we first introduce a dipole of perfect edge dislocations into an atomistic simu-
lation cell2. The relaxation of the system leads to the dissociation of the perfect dislocations
into Shockley partials as shown in Fig. 4.a. The dissociation distance between partials (noted
d0) is extracted from the displacement jumps between the lower and upper atomic planes of
the dislocation slip plane. As shown in Fig. 4.b, the atomistic solution is well reproduced
with the Peierls-Nabarro model [37]:

∆u(x) =
b

2π

(
π + arctan

(
x− d0/2

w

)
+ arctan

(
x+ d0/2

w

))
, (26)

using the dissociation distance d0 and the core width w as fitting parameters. We display
in Tab. 2 the dissociation distance obtained for different dislocation characters (φ is the
angle between the Burgers vector of the perfect dislocation and the dislocation line), which
compare well with the results in Ref. [49].

2We use the software Babel [48] to introduce dislocations in a periodic cell
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φ d0 (Å) (this study) d0 (Å) (from [49])
0 (screw) 6.34 6.30
π/6 8.53 7.16
π/3 10.19 −

π/2 (edge) 12.19 12.03

Table 2: Values of the dissociation distance d0 obtained from the fitting procedure described herein above
and obtained from a slightly different procedure based on the Burgers density [49] using the same atomic
potential [18].

To deduce the core energy of partial dislocations, we follow the methodology proposed
by Clouet et al. [50, 51, 52] and decompose the total energy of the atomistic simulation
into different contributions. To distinguish them from the energies of the model described in
section 2, the energies associated with atomistic simulations are noted with cursive notation:

Eat = Eel(rc) + Esf + Ecore(rc). (27)

We introduce a core radius rc and distinguish the core regions, cylinders of radius rc
centered on the partials from the rest of the cell. We choose rc = b ' 2.86 Å but this
choice remains arbitrary. The contribution Eel(rc) represents the elastic energy computed
for a periodic arrangement of singular partial dislocations, excluding the core regions around
each partial; this term is calculated within the framework of linear anisotropic elasticity
using the work of Clouet et al. [48, 50, 51, 52]. This approach is based on the formalism
introduced by Eshelby et al. [53] and extended by Stroh [54]. The conditionally convergent
sums over periodic images are regularized based on the work of Cai et al. [55]. We note that
core tractions, which result from excluding the core regions for elastic energy computations,
are here included and are essential to obtain reliable core energies. Esf is the stacking
fault contribution of the atomistic system containing two stacking faults and is expressed as
Esf = 2Usfd0L‖ where L‖ is the dislocation length (i.e. the width of the simulation cell) and
Usf = 146 mJ/m2 (see table 1). The core contribution Ecore(rc) also depends on the choice of
rc and is defined as the remaining energy, representative of the large non-linear deformations
localized in the core regions.

We note that, similarly to the choice of rc, the definition of the stacking fault energy as
Esf = 2Usfd0L‖ is not unique: it could have been defined with a stacking fault width d0−2rc,
i.e. excluding the contribution of the partials core regions. Using the same definitions as
above, the core energy would be larger because of the contribution of the stacking fault
energy in the core region, but the dislocation behavior would be unchanged, provided that
the stacking fault area for a partial dislocation loop is defined consistently by excluding a
band of width rc around the dislocation loop.

Applying the above methodology for different dislocation orientations, we compute the
core contribution Ecore(rc) and check that it does not depend on the size of the atomistic cell
(see Fig. 5.a). We point out that the character of the partial (denoted θ) is different from
that of the perfect dislocations (φ). Therefore, extracting the core energy of the partials as
a function of θ relies on the knowledge of the decomposition of the perfect dislocations [37].
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(a) (b)

Figure 5: (a) Convergence of energy attributed to the core contribution in the simulated system function
of the number of atoms in the system. (b) Core energy of Shockley partial dislocations function of their
character.

For the different values of φ, we can then express the core contribution as a function of the
core energies of the partials:

Ecore(φ = 0) =
(

4Epartialcore (θ =
π

6
)
)
L‖ (28)

Ecore(φ =
π

6
) =

(
2Epartialcore (θ = 0) + 2Epartialcore (θ =

π

3
)
)
L‖ (29)

Ecore(φ =
π

3
) =

(
2Epartialcore (θ =

π

6
) + 2Epartialcore (θ =

π

2
)
)
L‖ (30)

Ecore(φ =
π

2
) =

(
4Epartialcore (θ =

π

3
)
)
L‖ (31)

Inversion of this system of equations yields the core energy of the partials as a function of
dislocation orientation. Results of this calculation are plotted in Fig. 5.b.

The next step consists in parameterizing Eq. (10) from the core energy Epartialcore (θ). This
requires an additional effort since the core energy defined from Eq. (27) accounts from the
non-linearities located within the core regions of radius rc within a singular representation of
dislocations, while the non-singular approach discussed in section 2.1 assumes linear elasticity
everywhere, including the core regions. A way to parametrize the model is to follow Ref. [56]
and choose the regularization parameter a such that the elastic energy of the regularized
dislocations matches the total energy of the atomistic calculation. Repeating this procedure
for different dislocation orientations yields a function a(θ). However, this approach is not
convenient computationally since the convolution operations by wa(r) (see section 2.1) are
global operations by nature and cannot be restricted to segments of specific orientations.
Moreover, this procedure typically yields values of a of the order of b (see Ref. [56]), which
would limit the study to small systems.

We therefore follow a different approach by considering a as a numerical parameter chosen
such that the total core and elastic non-singular energy matches its singular counterpart.
To this end, we consider a (non-atomic) system of width L‖ where we introduce a dipole of
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straight partial dislocations of orientation θ in a cell with periodic boundary conditions (no
need to consider the stacking fault here). We then compute the anisotropic elastic energy
of the system using two methods. First, we consider the partial dislocations as singular
defects and exclude cylinders of radius rc = b around them; we note Es

el(rc) the energy of
this singular representation (computed with the software Babel [48]). Second, we consider
the non-singular theory of dislocations and compute numerically the elastic energy Ens

el (a)
with the present elastic solver for different values of a. The ’non-singular’ core energy (per
unit of length) is then defined as the difference:

ecore(θ, a) = Epartialcore (θ, rc) +
1

2L‖
(Es

el(θ, rc)− Ens
el (θ, a)). (32)

Finally, for the different values of a, we determine the coefficients c0, c1 and c2 of Eq. (11)
by fitting ecore(θ, a) with Eq. (11). The values of ecore(θ, a) obtained from Eq. (32) and the
fitted functions are represented in Fig. 6.a for different values of a.

  

(a) (b)

Figure 6: (a) Core energy obtained for different values of the parameter a. The dots represent the data
obtained from the procedure explained in the text and the continuous lines are the fits performed against
Eq. (11). (b) Core and elastic contributions for different regularization parameters a of a circular loop of
radius Rloop = 50Å in a periodic cubic system of size L = 200Å.

To check the validity of this core energies parametrization, we considered a circular
dislocation loop of radius Rloop = 50 Å in a periodic cubic system of size L = 200 Å and
computed both the elastic and core energies for different values of a. The results are displayed
in Fig. 6.b and show that for increasing values of a, the elastic energy of the system decreases
(as expected) and the core energy compensates for this drop such that the total energy varies
by less than 2% in the range of a values explored here.

3.2. Generalized stacking fault

The generalized stacking fault (GSF) energy egsf (ζ) introduced in section 2.3 is classically
obtained [57] by shifting two half crystals along a {111} plane in the [112̄] direction and
relaxing the atomic positions in the [111] direction only. Performing these relaxations for
different values of ζ yields the stacking fault energy represented with blue dots in Fig. 7.b.
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As shown in Ref. [14], this GSF can vary significantly with the applied shear stress and
this effect has to be taken into account in the DD simulation to reproduce the appropriate
atomistic activation energy. For simplicity reasons, we considered in the present work only
the effect of a shear stress σa in the [112̄] direction, as depicted in Fig. 7.a. The resulting
curves are shown as full lines in Fig. 7.b. We note that the position of the GSF local minimum
bp(σ

a) increases slightly with increasing stress, while the stacking fault energy Usf (σ
a) (i.e.

the value of the GSF at bp(σ
a)) decreases.
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Figure 7: (a) Sketch showing the method to compute the GSF under an applied shear stress. (b) GSF energy
in the [112̄] direction for different applied stresses and corresponding fits using Eq. (33).

A way to incorporate the GSF energy in the model is to represent the atomistic data by
a cosine series of the form:

egsf (ζ, σ
a) = a1

(
1− cos

(
πζ

bp

))
+ a2

(
1− cos

(
2πζ

bp

))
+ a3

(
1− cos

(
4πζ

bp

))
. (33)

This functional form accounts for the periodicity of the crystal lattice and forces ζ = 0
and ζ = bp to be local minima of egsf (ζ). Moreover, such analytical forms are much easier
to handle computationally than tabulated data. The parameters ai are determined with
the following procedure: we first extract different physical values from the atomistic GSF:
the amplitude of the Burgers vector bp, the shear elastic modulus C in the direction of the
Shockley Burgers vector around ζ = 0, the interplanar distance h, the value of the stacking
fault Usf and the value of the GSF for ζ = bp/2 noted U1/2. We then impose the following
conditions on the function egsf (ζ):

egsf (bp) = Usf (34)

egsf

(
bp
2

)
= U1/2. (35)

∂2egsf
∂2ζ

∣∣∣∣
ζ=0

=
C

h
(36)
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With such additional conditions, the values of the coefficients ai in Eq. (33) become uniquely
fixed. The resulting solutions calculated for different applied stresses are plotted with dashed
lines in Fig. 7.b. They reproduce accurately the atomistic curves close to the minima ζ ' 0, bp
but lack precision around the GSF maximum. The latter problem could be minimized by
expanding the cosine series of Eq. (33) but this is unnecessary in the case of partial nucleation.
Indeed, saddle configurations of the atomistic results reported in section 1 are found for well-
formed loops for which the disregistery is close to ζ = bp. Therefore, the value of the unstable
stacking energy does not influence the activation energy of the nucleation process for the
stress levels investigated in this work.

4. Homogeneous nucleation of partial dislocations

We now turn to the study of homogeneous partial dislocation nucleation by incorporating
the NEB algorithm detailed in section 1 in the variational dislocation dynamics model of
section 2 carefully parametrized on atomistic simulations. Compared to atomistic simula-
tions, the DoFs are now the positions of the nodes along the dislocation lines, with nodal
forces computed as derivatives of the system energy including elastic, core and stacking fault
contributions. In this paragraph, we wish to compare the results of VDD simulations to
atomistic calculations for the simple case of homogeneous nucleation under shear stress but
we point out that the present model is applicable to more complex cases such as heteroge-
neous nucleation discussed in section 5.

As in the atomistic simulations performed in section 1, the last replica representing the
largest loop is treated with the Free-End NEB (FENEB) method [5] and evolves at constant
energy while being subjected to the spring force from its neighboring replica. In addition,
the VDD model can not deal with loop radii Rloop . a. For this reason, the first NEB replica
also contains a loop of finite size, which is evolved at constant energy using the FENEB
method. Thus, the first and final configurations, chosen on both sides of the energy barrier,
evolve during the NEB minimization, but are not allowed to reach a minimum because they
are constrained to remain at a constant energy.

We note that, in contrast with most dislocation dynamics models, we rely here on a fixed
number of DoFs in the different replicas of the NEB path. The number of nodes along the
dislocation line is thus fixed along the NEB path. With other dislocation mechanisms (e.g.
bowing out of a dislocation), the dislocation shape and topology may evolve significantly
along the NEB path, and fixing the number of DoFs might become an obstacle to obtain
reliable results. To treat such cases, the present NEB approach could be extended to incor-
porate a varying number of DoFs along the path, for example by splitting nodes in regions
of high curvature and linking one DoF in a replica to two or more DoFs in the neighboring
replica.

To avoid global translations of the replicas, the forces are corrected to remove transla-
tional modes. The replica of maximum energy is treated with the climbing image method
[21] to ensure its convergence to the saddle configuration. The quenched dynamics relax-
ation algorithm is run until all nodal forces are below a threshold. The latter, noted fth,
is physically chosen by computing the minimum segment length, Lmin, in all replicas and
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bp bp

Figure 8: NEB calculations performed at σa = 1.6 GPa, a = 4 Å and Nrep = 8 replicas of a loop with
Nnodes = 16 nodes: (a) initial path, (b) final relaxed path, (c) energy of the replicas in the initial and final
paths and the disregistry along the final path in the inset.

setting fth = σthbLmin, where σth = 20 MPa is of the same order of magnitude as the Peierls
stress in aluminum [58].

We first consider the case of elastic isotropy. The initial path is composed of 8 circular
loops of increasing radii. The system size varies from Lx = 12 nm to Lx = 30 nm, depending
on the applied stress and on the size of the critical loop. Elastic fields are computed on a
regular cubic grid of 2563 grid points. For each system size, the regularization parameter a
is taken such that 3dx < a < 2Rmin, such that even the smallest replica of radius Rmin is
described accurately.

As an example, Fig. 8 displays the initial and final paths obtained at a stress σa = 1.6 GPa
with a = 4Å, as well as the energy of the initial and relaxed paths (Fig. 8.c). As expected,
the minimum energy path is a series of loops elongated in the direction of the Burgers
vector, because the elastic line energy is minimum in the screw orientation. One can notice
that the FENEB treatment for the first and last replicas allows a modification of the loop
shapes at constant energy. We also note that after minimization, the disregistery of the
saddle configuration (replica #2) is ζ = 0.914 bp, significantly lower that the full Burgers
vector bp, revealing the importance of including the generalized stacking fault energy and
the minimization of Eq. (21) in the numerical model.

We performed similar simulations at different stress levels and compare in Fig. 9 the
resulting activation energies with atomistic calculations. We find an excellent agreement
between both approaches in the stress range where both are applicable. The agreement is
all the more satisfactory that there is no fitting parameter: the parameters of the VDD
model were carefully chosen based on atomistic data but none were fitted to reproduce this
specific result. In addition, it is noticeable that the methodology applied to parametrize the
dislocation core energy (see section 3.1) involves straight dislocations but is able to reproduce
atomistic data involving curved dislocations. Lastly, it must be noted that, as expected,
the present model allows to explore smaller applied stresses than atomistic simulations: at
1200 MPa, the saddle configuration is found for a 20 nm diameter loop, at the computational
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limit of atomistic NEB calculations.
Looking carefully at Fig. 9, we notice that the activation energies predicted by the VDD

model underestimate slightly the atomistic results. This can be attributed to small dif-
ferences between the VDD and atomistic calculations. First, as shown in Fig. 7.a, in the
atomistic calculations the elastic shear constant (proportional to the second derivative of
the GSF at ζ = 0) increases with stresses, making the material stiffer at high stresses. This
effect was not incorporated in the VDD model where the elastic constants were assumed
independent of the applied stress. Secondly, slightly different boundary conditions may also
have a small influence: while the VDD simulations are tri-periodic, the atomistic simulations
include free surfaces in ±z 3. We also note that the VDD simulations can not explore dislo-
cation nucleation at stresses higher than 1.9 GPa because at these high stress levels, when
solving Eq. (21) for the first image of the NEB path, the optimum value of ζ is found close
to 0 instead of bp and the minimization procedure fails to find the minimum energy path.
However, this region of high-stresses is not the target of the present method since atomistic
calculations are then applicable. We note that this limitation is expected to be less severe
in the case of other FCC metals where the stacking fault energy is lower than in aluminum.

A noticeable advantage of the VDD model compared to atomistic calculations is its effi-
ciency: at σa = 1.6 GPa, the VDD calculation takes about 1 day on a single processor while
atomistically, it takes about 1 week on 8 processors (i.e. a ×56 speed up). This is attributed
to the number of DoFs that is considerably reduced from atomistic (10 replicas with 133056
atoms, i.e. 3991680 DoFs in total) to VDD calculations (8 replicas with 16 nodes, i.e. 256
DoFs in total). In the appendix, we present a more detailed analysis of the numerical effi-
ciency of the VDD approach compared to atomistic simulations. We show in particular that,
in constrast with atomistic simulations, our VDD model enables to investigate thermally
activated processes occuring on large length-scales at no additional computational cost.

As explained in section 3, the regularization parameter a is considered here as a numerical
parameter. Therefore, the results should only depend marginally on its value. This is checked
in Fig. 10.a where the activation energy is shown as a function of a for different stresses. We
note the weak effect of this parameter on the results, varying within a 10% range despite
the large variation of a.

Another numerical parameter in these calculations is the number of nodes along the
loops. Fig. 10.b shows that the activation energy does not vary significantly when increasing
the number of nodes, confirming that 16 nodes are enough to properly describe the loops.

An advantage of solving the elastic problem numerically using an eigenstrain formalism
is that elastic anisotropy can be incorporated straightforwardly. To investigate its influence,
we performed anisotropic simulations starting from the minimum energy paths found with
isotropic elasticity. As shown in Fig. 11.a, the energy changes very slightly between the
anisotropic and isotropic case. This result must be attributed to the weak anisotropic factor
of aluminum.

3Using tri-periodic atomistic cells is possible but would require to apply the NEB method in cells of
different shapes along the path, which is technically difficult and requires additional computational time.
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Figure 9: Activation energy for loop nucleation as a function of applied stress from atomistic (dash line) and
VDD calculations. Different values of the regularization parameter a were used, as indicated in the legend.

  

(a) (b)

Figure 10: Variation of the activation energy as a function of the regularization parameter (a) and the
number of nodes (b). The activation energies found in atomistic simulations are shown as dashed lines.
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(a) (b) (c)

Figure 11: (a) Effect of elastic anisotropy on the activation energy for various values σa and a. Circular
(resp. square) data points are obtained from isotropic (resp. anisotropic) elasticity. (b-c) Comparison of
the loop shapes for (b) σa = 1.4 GPa and (c) σa = 1.6 GPa between atomistic calculations (black lines) and
VDD calculations with isotropic (blue dots) and anisotropic (red squares) elasticity.

Fig. 11.b-c shows the loop shapes obtained from atomistic and VDD calculations with
both isotropic and anisotropic elasticity. The atomistic loop shape is obtained by extracting
the defected atoms and plotting their convex envelope. Once again, we highlight the very
good agreement between the VDD and atomistic calculations. The slight differences between
the two methods are attributed to assumptions of the VDD model. In particular, the increase
of the elastic moduli with the applied stresses (as shown in Fig. 7) is not incorporated in
the VDD approach, and the softer elastic constants in the VDD simulations lead to smaller
critical nucleii compared to the atomistic calculations. Another source of discrepancy might
come from the Peierls potential acting on partial dislocations. While this effect is neglected
in the VDD simulations where the energy is translation-invariant, the lattice friction might
have an influence on the atomistic results. Moreover, variation of the Peierls potential with
dislocation orientation may also influence the loop shape by ”trapping” some dislocation
character more than others.

Also, comparing closely the loop shapes obtained with isotropic and anisotropic elasticity,
we notice that the latter is slightly asymmetric (the x-axis is no longer an axis of symmetry
of the loop). This asymmetry is a weak effect in the case of Al but remains a physical effect
of elastic anisotropy that has already been pointed out in dislocation dynamics simulations
in iron [59].

5. Heterogeneous nucleation around precipitates.

An advantage of the present NEB calculations in a DD simulation code making use of the
eigenstrain theory is that the effect of heterogeneous stresses coming from a misfitting particle
or other types of defects is straightforward to incorporate. In particular, the present model
can be applied to investigate the nucleation of dislocations around misfitting precipitates,
a process that has long been proposed to lead to coherency loss of precipitates with the
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surrounding matrix [60, 61, 62, 40]. As examples, we can mention precipitation hardened
aluminum alloys such as Al-Sc and Al-Zr alloys, where misfitting Al3Sc and Al3Zr precipitates
loose their coherency with the matrix upon thermal treatment [63, 64]. This property is
known to affect both the coarsening behavior of the particles and the mechanical properties
of the resulting alloy [65, 66].

In this section, we propose to use our new model to investigate the nucleation of a
dislocation loop in the vicinity of a misfitting particle and compute the corresponding energy
barrier. This work allows to go beyond the estimate proposed by Ashby and Johnson [61]
by letting the NEB algorithm find the shape of the loop along the minimum energy path.

We note that such a problem could be studied using the quasi-continuum approach
[67, 68]: the large dislocation-free part of the system can be modeled elastically with a
finite-element solver while an atomistic small volume is incorporated close to the precipitate
interface to investigate the nucleation process, provided that the hybrid scheme remains
variational. We mention also the approach of Kim et al. [69] that incorporates a tempera-
ture accelerated method in a quasi-continuum approach, which could in principle be used to
investigate dislocation nucleation events in the vicinity of a precipitate.

For simplicity reasons, we consider precipitates with a misfit ε0 = 3% and isotropic elastic
constants identical to the aluminum matrix. We point out however than the elastic solver
used for the VDD calculations could be extended to treat heterogeneous elastic moduli by
using an iterative method in Fourier space [70, 71, 72]. To avoid sharp variation of the
stresses around the precipitate interface, we introduce a finite interface width in the range
wi = 0.5− 2 nm, depending on the grid spacing dx and satisfying R � wi ' 2dx. The
coherency loss mechanism can either involve the nucleation of a partial dislocation loop
as discussed above or the nucleation of a perfect dislocation. The model was therefore
adjusted to treat the nucleation of perfect dislocations: following the procedure described in
section 3.1, we computed the core energy of perfect dislocations and parametrized the model
accordingly.

We first consider a precipitate of radius Rppt = 66 nm and introduce a small partial
dislocation loop of circular shape at a height z = 46.67 nm from the center of the precip-
itate (i.e. at an angle ψ = 45◦ with respect to the equatorial plane of the inclusion). A
notable difference with homogeneous nucleation is that because the stress decreases away
from the precipitate, the dislocation loop reaches an equilibrium configuration after nucle-
ation. The system is then relaxed using quenched dynamics until the nodal forces reach
the threshold value fth. The resulting stable configuration is shown in Fig. 12.a. Starting
from this equilibrium configuration, we then build a path formed of smaller concentric loops.
The free-end NEB is applied to the smaller loop while the larger one is maintained fixed.
The minimization procedure converges towards the minimum energy path represented in
Fig. 12.b, with the energy of the initial and final paths shown in Fig. 12.c. We checked that
the same solution was found starting from different initial paths, therefore showing that the
converged path does not depend on the initial configuration. We also point out that the
saddle configuration (replica #2 represented with a thick black line in Fig. 12.b) does not
fit closely the precipitate interface but takes a rather circular shape ahead of the interface.
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(a) (b) (c)

Figure 12: (a) Equilibrium configuration of a partial Shockley dislocation around a spherical inclusion of
radius R = 66 nm and eigenstrain ε0 = 3%. (b) Relaxed NEB path for the nucleation of a partial dislocation
loop. The precipitate interface is shown with a dashed line. (c) Energy of the replicas in the initial and final
paths (the 0 eV state corresponds to the dislocation-free system).

We now turn to the activation energy of the nucleation process depending on the loop
position with respect to the precipitate interface. Previous studies [60, 61, 62] have assumed
nucleation to occur at an angle ψ = 45◦, where the shear stress at the interface is maximum.
However, the saddle configuration such as the one shown in Fig. 12.b has a finite size and
the entire stress profile around the precipitate affects the activation energy rather than
the maximum stress alone. Therefore, we investigated the nucleation events at different
angles ψ defined in Fig. 13.a. In the case of partial nucleation, Fig. 13.b and c show that
the minimum activation energy is found for ψ ' 50◦ and ψ ' 55◦ for partial and perfect
dislocations respectively. This can be explained by examining the stress field in front of the
precipitate, or more precisely the following integral

Wpk =

∫ Rppt(1+cosψ)

Rppt cosψ

∫ +Rppt/2

−Rppt/2

bσppt23 (x, y, z)dxdy (37)

= −
2(1 + ν)µε0zbR

3
ppt

(1− ν)

∫ Rppt(1+cosψ)

Rppt cosψ

∫ +Rppt/2

−Rppt/2

y dxdy

(x2 + y2 + z2)5/2
,

representing the work of the Peach-Koehler force coming from the precipitate stress field σppt23

when considering the expansion of a square shaped loop depicted in Fig. 13.d. Assuming this
simple square for the nucleated dislocation yields an analytical expression for this integral
and the difference Wpk(ψ)−Wpk(45◦) is represented as a function of the angle ψ in Fig. 13.d
for different precipitate radii. It shows that Eq. (37) is minimum for ψ ' 71◦ for the different
precipitate radii, clarifying why the activation energies reported in Fig. 13.b and c present
minima for ψ > 45◦. We note that, in addition to the work of the Peach-Koehler force,
the calculations show that other energy contributions (self-energy of the loop, stacking fault
energy and core energy) have a significant effect on the activation energy.

As shown in Fig. 13.b and 13.c, the activation energy decreases with increasing precipitate
radius Rppt. This is expected since the characteristic length scale of the stress field around
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Figure 13: (a) Snapshot of Fig. 12.a seen from the side and showing the definition of the angle ψ. (b)
Activation energy function of the angle ψ for different precipitate sizes in the case of partial (b) and perfect
(c) dislocations. (d) Sketch of the precipitate seen from above and the simplified geometry of the loop (shown
in pale red) considered in Eq. (37). (e) Difference Wpk(ψ)−Wpk(45◦) defined in Eq. (37) as a function of ψ
for different loop radii. (f) Minimum activation energy found in the case of partial and perfect dislocations
function of the precipitate radius.
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the precipitate scales with the precipitate radius. Therefore, the activation energy is lowered
due to an increase of the work of the Peach-Koehler force.

The minimum activation energy is shown in Fig. 13.f as a function of the precipitate
radius for both partial and perfect dislocations. We note that, in both cases, there is a
threshold precipitate radius Rth, respectively Rth = 15 nm for perfect and Rth = 58 nm for
partial dislocations, below which any dislocation is unstable in the vicinity of the precipitate:
for any loop sizes and positions, the self energy of the loop is larger than the work of the
Peach-Koehler force and the loop collapses. The value of this threshold radius is much
higher in the case of partials due to the contribution of the stacking fault energy. Moreover,
we did not investigate the nucleation process for every precipitate radii above Rth: for
values Rppt � Rth, the saddle configuration becomes very small compared to the size of the
simulation and the calculation necessitates a small value of the regularization parameter a
to describe accurately this saddle configuration, making these simulations difficult to achieve
computationally. We therefore restricted ourselves to values of Rppt just above Rth as shown
in Fig. 13.f that can be investigated with a 2563 grid. This prevents us to conclude definitely
on the coherency loss mechanisms (either through partial or perfect nucleation) but we note
that the nucleation of partial is much less likely since partial loops are stable only for large
precipitate radii.

Finally, the activation energies reported in Fig. 13.b and 13.c are unreasonably high for
both the partial and perfect cases. These high-energy barriers can be discussed in light of
a recent study focusing on dislocation nucleation on voids [73] using the finite-temperature
string method. The authors also obtain very high nucleation energy barriers for reasonable
applied stresses and conclude that nucleation on voids is unlikely to occur under ordinary
experimental conditions. However, a limitation of both studies lies in the interface, which
remains idealized. Indeed, the presence of defects (vacancy, ledges, etc.) at the interface
and fluctuations of the interface shape may lower the activation energy of the nucleation
process considerably, facilitating the formation of interface dislocations, as mentioned by
Ashby and Johnson [61]. The influence of these defects are however difficult to take into
account in our model where the complexity of the crystal structure has been simplified to
promote computational efficiency.

Conclusion

In this work, we have incorporated the nudged elastic band method in a dislocation
dynamics formalism. A nodal representation of dislocations has been employed and a careful
attention has been paid to the variational character of the model. The model parameters
such as the dislocation core energy and the generalized stacking fault energy were obtained
from atomistic simulations using an interatomic potential for aluminum. We applied our
calibrated model to textbook problems of thermally activated dislocation nucleation. A
remarkable agreement is found between the results of our model and atomistic calculations
for the homogeneous nucleation of partials. We have also investigated the influence of elastic
anisotropy, having a weak effect in the case of aluminum. Then, we have applied our model to
investigate dislocation nucleation around a spherical precipitate; our main result being that
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the minimum activation energy is found above the plane oriented at ψ = 45◦ like assumed
in previous studies.

The main advantage of our continuous approach compared to atomistic calculations relies
on its computational efficiency. As illustrated in the Appendix below, the present model
can be used to investigate dislocation-mediated mechanisms at large length-scales for no
additional computational cost thanks to our parametrization procedure, which allows to
use fixed grid sizes for increasing simulated volumes. This is in contrast with atomistic
NEB, whose convergence time increases drastically with the simulated volume. Moreover,
while atomistic calculations are usually performed at 0 K, the parameters of the VDD model
can be chosen to account for finite temperature material properties, enabling to obtain the
temperature-dependent term of the activation energy, known to lower significantly the energy
barrier for dislocation nucleation [15].

We also note that the NEB approach presented here is directly transferable to standard
nodal dislocation dynamics models [33, 74], where the stresses and energy are computed
based on analytical equations valid in an infinite medium. However, a prerequisite for the
application of the NEB method must be that the formalism is variational and the forces are
derivatives of the energy. Such a model would be less general than the present approach
because the elastic influence of interfaces (grain boundaries, precipitate interfaces, etc.) and
elastic anisotropy would be more difficult to incorporate, but the computation of forces and
energies would be significantly faster, allowing to investigate thermally activated events in
large dislocation microstructures.

The implementation of the nudged elastic band method in DD simulations opens the way
to the study of many other thermally activated processes in microstructures of dislocations
out of the reach of atomistic simulations. As a matter of examples, we mention dislocation
bowing and passing features in persistent slip band [75] or the motion of low angle grain
boundary, encountered during recrystallization [76]. Moreover, our variational approach is
a framework of choice to transfer other numerical methods from atomistic systems to the
study of dislocation ensembles: the activation-relaxation technique [9, 10, 11] and acceler-
ated dynamics methods [77, 78, 79] could allow to investigate thermally activated events in
complex systems when the final state is unknown. The variational aspect of the model also
makes possible a self-consistent coupling between dislocation dynamics and other physical
phenomena such as phase transformations and fracture, thus enabling to investigate the in-
teractions between dislocations, precipitate evolution and crack propagation in a quantitative
self-consistent way.
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Figure 14: (a) Comparison of the convergence behavior of VDD simulations for different numbers of DoFs
and corresponding atomistic calculations for the homogeneous nucleation event at σa = 1500 MPa. (b) Log-
log plot of the convergence time for VDD and atomistic calculations as a function of the simulated volume.
The average behavior is shown with a dashed line

Appendix: computational efficiency

One of the advantages of the VDD model is the reduction of the number of DoFs compared
to atomistic calculations, where the position of each atom has to be tracked down. On the
other hand, computing the elastic equilibrium with our spectral method comes at a rather
elevated computational cost - especially with the fine grid used to describe the dislocation
core - raising the question of the computational advantage of the VDD method compared to
atomistic calculations.

In both VDD and atomistic calculations, the nudged elastic band method stops when
the maximum component of the force Fmax acting on the system becomes lower than a given
threshold denoted Fth. Fig. 14.a displays the ratio Fmax/Fth as a function of simulation time
(measured as CPU hours) for different VDD simulations and for an atomistic simulation. We
first point out the jagged behavior of the curves, attributed to the frequent updates of the
NEB tangent during the minimization procedure. Second, we note that the computational
time associated to the VDD simulations increases significantly with the number of nodes
along the line. This behavior is characteristic of the NEB method for which the convergence
time strongly increases with the number of DoFs. However, this convergence time also
strongly depends on the initial path, on the convergence criteria, on the algorithm used for
the minimization (see [80]) and on the problem at hand. A reliable scaling of the NEB is
therefore difficult to obtain. Fig. 14 also shows that in the case of homogeneous nucleation,
the convergence behavior of the atomistic simulation is much slower than VDD simulations.

To compare in more details the simulation times of VDD and atomistic calculations, we
show in Fig. 14.b the CPU time as a function of the simulated volume. As expected, the con-
vergence time of atomistic simulations increases rapidly with the volume, due to the increase
of the number of DoFs in the system. In contrast, the VDD simulation time does not increase
significantly because we keep the same number of DoF and the same 2563 underlying grid to
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solve the elastic problem. This is possible thanks to the parametrization procedure detailed
in section 3.1, which considers the regularization parameter a as a numerical parameter,
which can be chosen freely and does not influence the results significantly (see Fig. 10.a).
Therefore, when going to larger volumes, an increasing parameter a can be chosen, such that
the dislocation core remains well described on our 2563 grid.
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