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Using High Definition Maps to Estimate GNSS Positioning Uncertainty

Franck Li1,2, Philippe Bonnifait1 and Javier Ibanez-Guzman2

Abstract— Map-matching can be used to estimate the Hor-
izontal Uncertainty Level (HUL) of GNSS position fixes. In-
tegrity monitoring is indeed an important issue for autonomous
vehicles navigation. The method is based on the use of a
high definition map that stores accurate information about the
road network. This additional source of information is crucial
for autonomous navigation. The matched position is computed
using proprioceptive sensors from the car and GNSS fixes that
are handled using a precautionary principle with Horizontal
Protection Levels (HPL). A Particle Filter is used for its ability
to manage multiple hypotheses if needed. Estimating different
likely map-matched hypotheses allows to determine the level
of uncertainty of the GNSS which is defined as the maximum
distance between a map-matched hypothesis and a given GNSS
position. This distance can be seen as a Map-Aided Horizontal
Uncertainty Level (MA-HUL), providing a confidence indicator
to the vehicle for integrity monitoring. This paper presents
the multi-hypotheses map-matching algorithm and a method to
compute the MA-HUL values in real-time. Experimental results
carried out in open road conditions support the evaluation and
show that this metric provides reliable confidence information.

I. INTRODUCTION

Positioning integrity is getting more and more attention
with the progress made on intelligent vehicles for au-
tonomous navigation [1], [2], a domain where the system
must be sure of its position. Research began to apply
Receiver Autonomous Integrity Monitoring (RAIM) meth-
ods coming from the aeronautics community that compute
in real-time Horizontal Protection Levels (HPL) by using
probabilistic approaches [3] [4]. For road vehicles, RAIM
methods can output very pessimistic and sometimes unreli-
able values especially in urban environments [5] even when
using Isotropy-Based Protection Levels [6] [7].

Several extension of the RAIM methods using maps
have been proposed. In [8], a bounded-errors method has
been proposed to merge elevation maps with pseudoranges
GNSS measures. More recently, the authors of [9] have pro-
posed an algorithm for computing “urban trench” Protection
Levels with a higher reliability compared to conventional
approaches whose open sky assumption is often violated.

Recently High Definition (HD) maps with lane level
information have begun to be available, bringing crucial
information for positioning integrity. Indeed, they provide
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geometrical information with dedicated attributes detailing
connectedness and adjacency.

In this paper, we propose a new method to compute
confidence position domains that are called Horizontal Un-
certainty Levels (HUL) instead of Protection Levels since
they are computed without considering the satellite geometry.
Indeed, an HUL is computed thanks to a high accuracy HD-
Map and a parallel process that performs a map-matching
with dead-reckoning sensors (e.g. yaw rate and wheel speed).
The positions computed by the GNSS receiver are introduced
in the algorithm using a precautionary principle by using a
HPL domain computed by the receiver itself that plays the
role of a gating process.

The paper is organized as follows. First, we show how
a Particle Filter (PF) can be designed to handle a HD-
map information and how the map-matched candidates are
computed by the PF. Secondly, we present a method to use
these candidates to estimate the uncertainty on a GNSS fix
called Map-Aided Horizontal Uncertainty Level (MA-HUL).
Finally, we report experiments that show that this confidence
indicator is consistent with ground truth in particular when
GNSS positions are affected by large errors.

II. LANE-LEVEL MAP-MATCHING

Accurate road maps are useful for many intelligent vehi-
cles applications, multiple representations of the road net-
work have been proposed, such as clothoidal models [10],
Lanelets [11], among many others. This sections gives details
about the map used in this paper and the Particle Filter based
Map-Matching.

A. Lane-Level Road Maps

In [12], the road map used is a mesoscale [13] lane-
level road map (see Fig. 1). This scale, situated between
the macroscale (e.g. road guidance maps) and microscale
(e.g. dense point cloud from perception sensors), is the
most suitable for intelligent vehicle as it bears accurate
information without being too dense to be easily used. The
prototype map used in this paper, made by a mapmaker,
covers 4 km of public roads in Compiègne with an absolute
accuracy of 2 cm. The map’s SQLite database contains the
following relevant information:

• Road Geometric Information: as for any road maps
(brown lines on Fig 1). Polylines describe the geometry
of the driving lanes in a local Cartesian frame. The
road network is split into Links representing a segment
of road bearing the same properties (e.g. width, lane
markings, etc).
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Fig. 1: Detail of the map of a roundabout in Compiègne,
France. The centerline of the lanes are drawn in brown and
the lane markings in blue. Complete connectedness is notably
visible in the roundabout entrances and exits.

• Lane Markings: each drivable lane has information on
the nature of the markings delimiting it (blue lines on
Fig 1). A geometric description is given and additional
information are included such as the type of marking
(e.g. solid line).

• Road Connectedness: to navigate in the Links network,
information about connected links (i.e. previous and
next accessible links) is given. This gives a more
efficient way to determine which link is reachable along
the track of the current position (respecting traffic rules)
without costly distance calculation.

• Road Adjacency: as the previous property, this allows
determining if there are lanes on the side of the cur-
rent one available form cross-track evolution, i.e lane
changing.

All these information are available easily and at low comput-
ing cost for any Link in the map, being a relational database.
The filter described next relies on this to perform efficiently.

B. Particle Filter

The map-matching is based on a Particle Filter (PF). This
matching method is commonly used for this purpose [14],
[15], [16], but the integrity of the result is more rarely
discussed. PF’s nature to manage multiple hypotheses is
interesting in this context to provide a certain level of
integrity, especially in ambiguous situations. The notion of
map-matching integrity can be defined as follows: a reliable
multi-hypothesis map-matching method provides in real-time
a set of likely matched lanes in which the correct lane is
highly likely to make part. The size of this set has to be
kept as small as possible.

This section describes succinctly the filtering process, for
more details please refer to [12].

1) Car State Model: The car is modeled by its 2D pose
(Cartesian 2D coordinates and orientation) and an the ID of
the map link it is matched to (see Eq. 1). Additionally, each
particle possesses a weight wi characterizing its likelihood
as a matching solution.

Xi = (Xi
p,ml

i) = (xi, yi, ψi,mli) (1)

2) Dynamic Model: Eq. 2 defines the car’s dynamic
model. It is a classic unicycle model using as inputs the
vehicle’s speed and yaw rate from proprioceptive sensors.

These come respectively from the wheel speed sensors,
used for systems such as Anti-lock Braking Systems (ABS)
and gyrometers, used for the Electronic Stability Program
(ESP). Those systems equipping every modern consumer car,
the model can be considered as adaptable to any vehicle. xit = xit−1 + vt ·∆t · cosψi

t−1

yit = yit−1 + vt ·∆t · sinψi
t−1

ψi
t = ψi

t−1 + ωt ·∆t
(2)

3) GNSS positions as HPL: The other input of the filter is
the GNSS position. It is only used during the calculation of
the particles’ weight (i.e. their likelihood). During this step,
the particles getting too far away from the GNSS position
will be eliminated. The GNSS position acts therefore as a
HPL, gating the particles in order to keep only those staying
in the protection level (i.e. meaningful regarding the GNSS
information). This step involves further the GNSS in the
map-matching process. The HPL value is chosen preferably
large (for a small integrity risk of 10−3 for instance) to
limit its impact on the algorithm. Its role is only to keep
the particle set as compact as possible and compensate the
dead-reckoning drift.

4) Filter Implementation: The calculation load of a PF is
directly link to the number of particles used. The algorithm
is thus structured to be computation efficient, as the number
of particles impacts directly the result of the filter.

Two parts have to be distinguished: the initialization step
and the main filtering loop (see Fig. 2). Heavy calculation is
only done during the initialization. For initial map-matching
(point-to-curve strategy [13]), particles are generated on a
disk around a GNSS fix, corresponding to the HPL (for
instance, a 50 m radius to cope with the unknown GNSS
uncertainty) and each one is matched to the closest map link.
This demands a lot of distance calculation for each particle
but has to be done only once.

Once the initialization is done, these heavy computation
stages do not need to be repeated during the main processing
loop. This is made possible using extensively the road map:
once matched, a particle uses the information contained in
the map to evolve. Changes are computed directly using
the connectedness and adjacency information. For instance,
when a particle detects that it is leaving the currently matched
link, a query will be done to determine the following link
on which the particle’s matching will be updated.



Yaw Rate Wheel Speed

State PredictionMatching
Filter

Initialization

Map
Loading

GNSS Position

Road Map

Weight Update

Neff >
ceil?

Resampling

yes

no

Fig. 2: Flowchart of the filter. Heavy calculation is kept out
of the main processing loop (on the right) and done in the
initialization step (on the left)

C. Hypotheses Estimation

For a particular time instant, estimated particles are visible
in Fig. 3a. This is the result of the evolution process
following the map. The color of the particles denotes the
matched link. In this case, only 2 hypotheses are present
(see Fig. 3b).

To estimate hypotheses, the particles are clustered by
matched link and a weighted mean is performed to determine
the pose of the hypothesis:

Xhypj =
∑
i

(wi
j ·X

i
p),

Xhypj
is the jth matching hypothesis, wi

j is the hypothesis-
normalized weight of the ith particle of the jth hypothesis
(the sum of the particles’ weight equals to 1 for a given hy-
pothesis) and Xi

p, its pose. The likelihood of each hypothesis
is the sum of the non-normalized weight whypj

=
∑

i w
i
j , in

order to have
∑

j whypj
= 1.

III. MAP-AIDED UNCERTAINTY LEVEL

A. Map-Aided HUL

The goal is to quantify the GNSS positioning level of
uncertainty using the HD-map. This section adapts the worst-
case principle of Horizontal Uncertainty Level and Protection
Level (HUL and HPL), using the previously described map-
matching. Positioning integrity can be described as being
able to give a spatial interval that is guaranteed to contain the
true position to a certain level of risk. This is well illustrated
by a circle around the estimated GNSS position representing
the HPL.

The Map-Aided HUL (MA-HUL) is an estimation of
the position uncertainty that takes into account the actual

(a) All particles displayed.

(b) Mean particles displayed. Two hy-
potheses are likely here.

Fig. 3: Two Matching Hypotheses are clearly visible here
(displayed in different colors): Fig. 3a shows the whole
particles clouds; whereas Fig. 3b shows the mean particles,
corresponding to the matching estimations of the clouds. The
GNSS position estimates are displayed in white.

estimates without considering the satellite geometry. The
information redundancy is brought by the multi-hypothesis
map-matching algorithm that has been set to provide all
the likely hypotheses for the current location given the
proprioceptive information gathered from the car sensors,
such as the one presented previously.

B. Matching Error As Uncertainty

The proposed map-matching algorithm relies mainly on
the car’s odometry and on the map’s data, the GNSS position
fixes having little influence in comparison since they are
used only to prune very unlikely map-matching hypotheses.
The hypotheses returned can thus be considered as another
source of positioning. This provides redundancy, allowing an
estimation of the error made by the GNSS receiver.

MA-HUL is based on the assumption that the map is
accurate. An estimation of the uncertainty level of the GNSS
position is then its distance to the matching hypotheses.
This gives a measurement of the uncertainty confronting the
GNSS and the map data (odometry-based map-matching).
Fig 4 shows an example of MA-HUL: GNSS trace is
represented in white, while two matching hypotheses are in
purple and yellow; the MA-HUL is represented by the red
line. To keep a conservative level of integrity, the method
chooses the farthest hypothesis for the MA-HUL calculation
(for instance, the yellow one in Fig 4), the result is then



Fig. 4: Biased GNSS position and associated matching
hypotheses at the same time index (the GNSS track is
displayed in white). The MA-HUL is denoted by the red line,
representing the largest distance between the GNSS position
and a matching hypothesis.

given by:

MA-HUL = max
j
||XgnssXhypj

||2

IV. EXPERIMENT
A. Public Road Acquisition

The Pacpus framework1 allows quick prototyping on tests
vehicles: it provides an interface with a number of sensors
and gives access to CAN bus information. Data recording
capabilities allows easier algorithm development thanks to
real-time data replay “on desk”. To validate the method
presented in this paper, real data has been recorded using
Pacpus on a test vehicle equipped with a GNSS receiver.
Recorded data is composed of:

• GNSS position from a Septentrio PolaRx4 receiver used
in standalone mode (i.e. without correction or post
processing),

• Proprioceptive information: yaw rate and wheel speed

B. Peri-Urban Environment
The test trajectory is representative of a peri-urban travel.

The itinerary follows 2 lanes, one way roads, with multiple
roundabouts. It is interesting concerning GNSS coverage as
there are high-rise buildings on the side of the road at a point
of the travel, causing multpath issues (see Fig. 5).

1developed at Heudiasyc. More info at pacpus.hds.utc.fr

Fig. 5: Erroneous GNSS positions due to multipath, caused
by nearby high-rise buildings on the side of the road. An
error of up to 4.5 m can be observed.

V. RESULTS

Fig. 6 shows the results of the Map-aided HUL calculation
on the test trajectory (in blue). It shows that the MA-HUL
is an upper bound of the GNSS error, therefore fulfilling its
purpose. Note that it is not optimal as its value is visibly
higher than necessary. This is due to the map-matching
algorithm being set to be very conservative in keeping
multiple hypotheses.

Another reason for this overestimation of the HUL is that
the filter does not have input concerning the longitudinal
position of the car on the road. This is observable as
the particles have a high longitudinal spread, especially in
straight roads, that diminishes during turns, in which the filter
reduces the along-track position uncertainty.

The use of the GNSS positioning in the operation of the
filter does not affect significantly the HUL as its value is a
lot less than the HPL used (50 m vs mean of 7.5 m).

Fig 7 plots the MA-HUL evolution when different values
of the GNSS-HPL positions are used in the map-matching
algorithm. It shows that high HPL values – i.e. very uninfor-
mative GNSS positions – bear similar results (25 m in light
blue and 50 m in dark blue). But, when the HPL is set to
a smaller value (of the order of the maximum error made
by the GNSS receiver), a significant improvement can be
noticed (red curve). For instance, at t=460 s, the MA-HUL
reaches a value of 15 m for a 25 m HPL when it is contained
to 7 m for a 10 m HPL. The latter HUL value corresponds
more closely to what intelligent vehicles applications expect

pacpus.hds.utc.fr
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Fig. 6: GNSS error, computed by comparing with a ground truth (in green) and the corresponding MA-HUL (in blue).

from a positioning system (the mean MA-HUL is 4.7 m with
a standard deviation of 1 m). It has to be noticed that for
the different values of the GNSS-HPL, the HUL is always
consistent and conservative which indicates that this metric
is a good candidate to do integrity monitoring.

Significant differences occur in straight lines in the record-
ing. This indicates that the main effect of a tighter HPL is the
reduction of the particles spread, especially longitudinally.
The particles being more concentrated, their mean positions
(i.e. the matched hypothesis) are closer to the GNSS position
and therefore the MA-HUL calculated is reduced.

This exposes the sensitivity of the MA-HUL to high
particle spread. Spreading appears in all direction, but most
of it happens longitudinally. From this perspective, decou-
pling the longitudinal (along-track) and lateral (cross-track)
uncertainty could be valuable to give more adjusted value of
the Uncertainty Level.

Fig. 8 displays the correlation between the number of
hypotheses and the value of the MA-HUL. The latter tends to
follow the same evolution as the former: when the number of
hypotheses rises, the MA-HUL value tends to increase. For
instance, situation such as roundabout create hypotheses that
tend to diverge (e.g. a hypothesis staying in the roundabout
and another leaving it). This creates a spreading of the
hypotheses themselves and thus, mathematically makes the
MA-HUL grow.

Other creations of hypotheses are present when passing
from a link to the following: as the particles are spread
longitudinally, they do not all change simultaneously of link,
creating a new hypothesis while the old one is still present.
This also in turn creates a spreading of new hypotheses. This
observation clearly encourages the separation of the MA-
HUL into separate cross-track and along-track consideration.

VI. CONCLUSION

This paper has presented the concept of Map Aided HUL
(MA-HUL) and the necessary concept to implement it on-

board vehicles equipped with dead-reckoning sensors and
HD-maps. The first results are encouraging as this metric
provides a reliable upper bound of the positioning error,
allowing integrity monitoring of the GNSS position, using
only available proprioceptive sensors and map data. Further
improvement has to be made to give a better estimate of
the HUL. Indeed the map matching method is currently
being improved to give better results both longitudinally and
laterally. For instance, exteroceptive information such as lane
marking detection from a camera sensor could be integrated
to narrow down the lateral uncertainty.

A difference between the lateral and longitudinal uncer-
tainty has also been noted. It opens the idea to separate
the uncertainty level into two parts: cross-track and along-
track. This will be developed for the next development of
this method.
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