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 18 

Abstract: Climate change impact studies necessitate the estimation of climate variables 19 

evolution in the future. These are given by climate model simulations made under different 20 

greenhouse gas and aerosol emission scenarios agreed at the international level. However 21 

climate model outputs have biases, especially at the local scale, and need to be corrected against 22 

observations. Common bias-correction methods are distribution based and form the well-known 23 

quantile mapping approaches. This paper presents a generalization of such techniques to the 24 

consideration of multivariate distributions. This approach uses the basic lemma of Lévy-25 

Rosenblatt which allows the transport of a distribution on another one, in every dimension. It 26 

needs convenient non parametric estimations of conditional repartitions. The approach is first 27 

tested in a controlled framework, by use of statistical simulations, then in the real setting of 28 

climate simulation, in the bivariate case. An important issue of these types of distribution 29 

corrections is the different kinds of hypotheses of stationarity over a long enough period: 30 

stationarity of the link between model and observations whatever the period or stationarity of 31 

the change between present and future for model and observations. This choice differentiates 32 

approaches like Quantile Mapping and CDFt for example in the univariate framework, and 33 

makes them more efficient, in the univariate as well as in the multivariate context, when the 34 

data to be corrected best verify the assumed hypothesis.  35 

Keywords: climate change, statistics, multivariate distributions, bias adjustment 36 

1 Introduction 37 

Since climate change is now attested (IPCC, 2013), and mitigation still underway, adaptation 38 

has to be anticipated in parallel to mitigation. The first step in adaptation is an estimation of the 39 

possible consequences of climate change at the scale of human societies and their activities. 40 

These estimations are commonly done through impact studies, based for example on specific 41 

models run with climatic variables. Observed variables are used to represent current conditions, 42 
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while climate model outputs are used to project future conditions. Climate models are numerical 43 

tools based on physical representations of the dynamics of the components, atmosphere, ocean, 44 

ice or land surface, and of their interactions, through physical or biochemical processes. 45 

Although such tools are more and more sophisticated, including more and more detailed 46 

processes, their outputs may still differ significantly from the local observations commonly 47 

used by impact models. Therefore, bias correction and downscaling techniques have become 48 

an active area of research in the last decade or so. The approach here, like other quantile 49 

mapping approaches, can be used for bias adjustment or bias adjustment and downscaling 50 

depending on the spatial scale of the reference dataset. When used with local observations it 51 

aims at predicting, in statistical terms, local climate variables using more global data provided 52 

by a climate model working at a larger scale. 53 

Statistical bias correction methods are widely used to correct the distribution of the climate 54 

model variables so that they match that of some local observations. Such techniques are 55 

commonly recommended for impact studies (Teutschbein and Seibert, 2012; Gudmundsson et 56 

al., 2012; Chen et al., 2013). The most used techniques are the so called quantile mapping 57 

approaches (Panofsky and Brier, 1958; Haddad and Rosenfeld, 1997; Wood et al. 2004; Déqué 58 

2007; Piani et al. 2010), and their variants like CDFt (Michelangeli et al., 2009). A limitation 59 

of such techniques is however that the correction is applied independently to the different 60 

variables when more than one climatic variable is needed for an impact study, with the risk of 61 

degrading the consistency between them. Recent approaches have been proposed to tackle this 62 

caveat, and correct two variables, essentially temperature and rainfall, in a consistent way 63 

(Zhang and Georgakakos, 2012; Piani and Hearter, 2012; Li et al., 2014). Vrac and Friederichs, 64 

2014 go further and propose an approach, based on the empirical copula (by reordering 65 

univariate bias-corrected variables), potentially able to tackle both the inter-variable and spatial 66 

consistencies. One issue with the approach is however that it can only reproduce the historical 67 
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temporal sequencing, which is an important limitation for climate impact studies. Cannon, 2016 68 

suggests a methodology based on the correction of the marginal distributions again by quantile 69 

mapping with then an iterative scheme to push either the Pearson correlation dependence 70 

structure or the Spearman rank correlation dependence structure towards observed values. 71 

The approach proposed and tested in this paper is a generalization of the quantile mapping 72 

techniques to the correction of multivariate distributions. The chosen setting is the typical 73 

problem faced with impact studies: over an historical period, time series of different climate 74 

variables are available from both climatic databases and climate model simulations, while for a 75 

future period, necessarily, only the climate model time series are available. Then, as climate 76 

model outputs have biases compared to the observations, the aim of the correction is to estimate 77 

for the future period, specific characteristics of time series at the desired location closer to that 78 

of the observations. Then, what is expected is not the precise sequencing in time of the variables, 79 

which is not an expected result of climate models, but rather characteristics as their distribution, 80 

which are quite invariant for time periods with adequate length, not too long to be able to neglect 81 

climate trends but not too short to be able to estimate characteristics like distributions. The 82 

methodology will be described in the fully multivariate context, considering p dimensions, but 83 

in practice, a dimension larger than 2 means much longer time series for the distribution 84 

estimations. This methodology uses as basic trick the transportation of a distribution on ℝ𝑝onto 85 

another one fixed in advance. This is done by repeated applications of the lemma of Levy –86 

Rosenblatt (Grandjacques 2015, Grandjacques et al. 2015). This approach allows to clarify 87 

which kind of stationarities are required and also gives a natural way of making clear which 88 

period lengths are concerned by all these approaches. 89 

The theory underlying the methodology is presented in section 2, and section 3 explains the 90 

estimation choices made. Then, section 4 presents an application in a controlled framework, by 91 

use of bivariate Gaussian distributions, in order to evaluate when our bivariate bias-correction 92 
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is best justified. Bivariate Gaussian distributions are easy to handle, although climate variables 93 

are generally not normally distributed. The aim here is only to better understand the involved 94 

transformations. Finally, section 5 is devoted to an application to real climate variables, before 95 

coming to the conclusion and discussion in section 6. 96 

2 Theoretical framework 97 

2.1 The problem to be solved 98 

As previously exposed, the aim here is to simultaneously bias correct different climatic 99 

variables according to available observations. We have then 2 time series with values in ℝ𝑝: 100 

- a time series (Yt)tP0 given over the period P0=(1, … , n0) only, and corresponding 101 

to the observations 102 

- a time series (Xt) over a much larger period and given by a numerical climate model 103 

simulation for example. 104 

The aim is then to obtain for a future period P, later than P0, a projection of some characteristics 105 

of (Yt)tP, based on assumptions made about the link between X and Y. In order to make it easier 106 

in the following, we will suppose that P and P0 are of same length and P corresponds to Pk = 107 

{kn0+1, … , (k+1)n0}.  108 

The proposed methodology is based on the following assumptions. 109 

 110 

 Hypothesis H1: for each kℕ, there is a process Xk,t, restriction of Xt when tPk, which 111 

is stationary and weakly mixing. Similarly, it is supposed that there is a process (Yt)t  112 

stationary and weakly mixing, for which (Yt)tP0 is a restriction to the period P0. 113 

H1 allows to deal with the intrinsic non stationarity of the data by selecting long enough periods 114 

over which it can reasonably be considered as stationary. If n0 is large enough, this assumption 115 

allows valid estimations for some characteristics such as the distributions of (Yt)tP0 or (Xk,t)tPk 116 

for k in ℕ, since both processes have good ergodic properties. “Large enough” here means 117 
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sufficiently large to apply the law of large number for the needed estimations but not too large 118 

to avoid too strong trend effects. The distributions of (Yt)tP0 and (Xk,t)tPk are respectively noted 119 

F0 and Gk. 120 

 121 

 Hypothesis H2: distributions F0 and Gk are continuous with densities f0 and gk 122 

respectively, with f0 and gk, k ℕ strictly positive on the interior of their support. 123 

H2 avoids having to take conventions to compute inverse functions for the Cumulative 124 

Distributions Functions (CDFs), which we will have to consider in the methodology (in fact 125 

there is of course no inverse repartition in dimension>1 but a set of p one dimensional ones 126 

which are defined later using the Levy-Rosenblatt lemma). Such conventions would lead to 127 

very complex formulations. If one of the components of Yt is continuous with the exception of 128 

a mass on one point, as is the case for rainfall, what follows can easily be extended to consider 129 

such a behavior. 130 

 131 

2.2 Distribution transfer on ℝ𝑝 132 

Definition: If F and G are distributions defined on ℝ𝑝 and verifying H2, and UP the uniform 133 

distribution on ℝ𝑝, product of p uniform distributions on ℝ, then transferring distribution G to 134 

F will be defined as an application T : ℝ𝑝 → ℝ𝑝 such that T(G) = F, T(G) being the distribution 135 

image of G through T. 136 

In what follows T is first defined as an application T : ℝ𝑝 → ℝ𝑝 and then used as operator on 137 

distributions, defined for any borelian set I by T(G)(I)=G( TH
-1 (I)), H being the distribution of 138 

I.   139 

The notations used for the conditional distributions and their inverses are the following: 140 
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If Z is a vector with distribution H on ℝ𝑝, Z = (Z1, Z2, … , ZP), F1 is the distribution of Z1 and 141 

for each k in {2, …, p}, Fk/1,…,k-1(z1, …, zk) is the conditional distribution of Zk for fixed Z1, .., Zk-142 

1. Thus,  143 

𝐹𝑘
1,..,𝑘−1⁄

(𝑧1, … , 𝑧𝑘−1, 𝑧𝑘) = 𝑃(𝑍
𝑘 ≤ 𝑧𝑘|𝑍

1 = 𝑧1, … , 𝑍
𝑘−1 = 𝑧𝑘−1)  144 

Then the inverse function of each strictly increasing function h: ℝ → ℝ is noted h-1. 145 

The following lemma proven by Paul Lévy and better known as the Rosenblatt lemma 146 

(Grandjaques, 2015, Grandjacques et al., 2015) defines a transfer function for each distribution 147 

H (verifying H2 in our case) on ℝ𝑝. H is used here for genericity and stands for any distribution 148 

as F or G mentioned earlier. 149 

Lemma 1: if U is defined as  150 

{
 
 

 
 

𝑈1 = 𝐻1(𝑍
1)

𝑈𝑘 = 𝐻𝑘
1,…,𝑘−1⁄

(𝑍1, … , 𝑍𝑘)

𝑈𝑝 = 𝐻𝑝
1,…,𝑝−1⁄

(𝑍1, … , 𝑍𝑝)

 151 

then the distribution of U = (Uk)k=1,..,P is UP, uniform with independent marginal distributions. 152 

Thus if TH is the above described transformation, TH(H) = Up and its inverse TH
-1: ℝ𝑝→ 153 

ℝ𝑝 , such that TH
-1(UP) = H is defined as: 154 

{
 
 

 
 

𝑍1 = 𝐻1
−1(𝑈1)

𝑍𝑘 = 𝐻𝑘
1…𝑘−1⁄

−1 (𝑈1, … ,  𝑈𝑘)

𝑍𝑝 = 𝐻𝑝
1…𝑝−1⁄

−1 (𝑈1, … ,  𝑈𝑝)

 155 

Remark: TH is obviously not the only transformation allowing a distribution transfer, different 156 

versions can be proposed depending for example on the order according to which each 157 
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component of Z is considered. TH is sequential with respect to the space dimension; this is a 158 

useful property in the applications. Note that in the Gaussian case it is not at all the classical 159 

transformation obtained by diagonalization of the covariance matrix, which is not sequential. 160 

The analogy is more with a Gramm-Schmidt orthogonalization (Greub, 1975). 161 

Lemma 2: transfer of G onto F 162 

If  𝑇𝐺,𝐹 = 𝑇𝐹
−1(𝑇𝐺) then TG,F transfers the distribution G onto the distribution F, because 163 

TG(G)=U and TF
-1(U)=F. 164 

2.3 Application to the projection of the distribution of Y over the future period 165 

Pk 166 

The projection of the distribution of Yt over the future period Pk relies on another assumption 167 

H3 complementing H2 and which relates the dynamics of X and Y. 168 

At this stage, different hypotheses concerning time invariance can be made: 169 

 Hypothesis H3-1: let TGk,Fk  k≥1 be the transformation transferring the distribution Gk of 170 

(Xk,t) tPk, restriction of Xt over Pk, to that of (Yk,t), restriction of Y over Pk, then TGk,Fk does not 171 

depend on k. 172 

TGk,Fk = TG,F for each k in ℕ 173 

Thus: 174 

𝑇𝐹
−1(𝑇𝐺) = 𝑇𝐹𝑘

−1(𝑇𝐺𝑘)  and  𝑇𝐹𝑘
−1 = 𝑇𝐹

−1(𝑇𝐺 (𝑇𝐺𝑘
−1)) 175 

and the projection over future period Pk can be obtained through: 176 

   𝑌̂𝑘,𝑡 = 𝑇𝐹𝑘
−1(𝑇𝐺𝑘(𝑋𝑘,𝑡)) = 𝑇𝐹

−1(𝑇𝐺(𝑋𝑘,𝑡)) with kℕ, tPk 177 
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This hypothesis means that the link between both series is invariant in time or that it does not 178 

depend on trends. 179 

For univariate bias-correction, this is the hypothesis leading implicitly to the same estimation 180 

as with the techniques linked to Empirical Quantile Matching (Déqué et al., 2007). 181 

 Hypothesis H3-2: The transformation between two periods is the same for the 182 

observation and for the climate model  183 

It is therefore quite different from our hypothesis H3-1, which states that the transformation 184 

between X and Y is invariant in time. 185 

TF,Fk = TG,Gk for every k in ℕ 186 

Thus: 187 

   𝑇𝐹
−1(𝑇𝐹𝑘) = 𝑇𝐺

−1(𝑇𝐺𝑘) and 𝑌̂𝑘,𝑡 = 𝑇𝐺
−1(𝑇𝐺𝑘(𝑌0,𝑡)) 188 

However, if Yk,t in the future is directly computed from the observations recorded over the 189 

observation period, then it will keep the observed interannual variability, since the distribution 190 

only is corrected. Thus to avoid this unrealistic behavior, because there is no reason that 191 

interannual variability in the future will mimic that of the recent past period, one can rather 192 

compute: 193 

𝑇𝐹𝑘 = 𝑇𝐹(𝑇𝐺
−1(𝑇𝐺𝑘)) 194 

and the desired bias corrected time series over future period Pk can be obtained through: 195 

   𝑌̂𝑘,𝑡 = (𝑇𝐹𝑘)
−1
(𝑇𝐺𝑘(𝑋𝑘,𝑡)) = (𝑇𝐺𝑘)

−1
(𝑇𝐺(𝑇𝐹

−1 (𝑇𝐺𝑘(𝑋𝑘,𝑡)))  with kℕ, 196 

tPk 197 
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For univariate bias correction, this estimation is the same as the one obtained by the CDFt 198 

correction for example (Cumulative Distribution Function transform, Michelangeli et al., 199 

2009).  200 

We use both approaches in the generalization to multivariate bias correction. 201 

H1 means that the distributions are stationary over long enough periods Pk. H3 hypotheses mean 202 

either that the link between the deformations of the distributions of the modeled time series Xt 203 

and of the observed ones Yt over these periods of stationarity does not vary over time (H3-2), or 204 

that the link between the distributions of Xt and Yt does not depend on time t (H3-1). But, as H3 205 

only concerns instantaneous distributions, it does not imply the transfer of the entire dynamic 206 

from one time series to the other. This could be done partially for example if what has been 207 

previously described is not applied to F and G but to the distributions of (Yt-1,Yt) and (Xt-1,Xt), 208 

which could be possible according to H2. Nevertheless, intuitively, it can be seen that some 209 

trajectory properties will bring additional consistency between F0 and Fk. For example, if F has 210 

2 components, Yt
1 and Yt

2, such consistency is due to the consideration of the whole temporal 211 

dependency, for example that of Yt
1 and Yt-1

2. 212 

This justifies the idea proposed by different authors (Vrac and Friederich, 2014) of reordering 213 

the time series Yk,t, kℕ, tPk with regard to Yt, tP0. Remaining in dimension 2, if  214 

Rt = (rt
1,rt

2), tP0 is the rank vector computed for each component independently,  215 

then the transformations to period Pk are the simple permutations such that 216 

 (rt
1, tPk) = (rt

1, tP0) and (rt
2, tPk) = (rt

2, tP0). 217 

However, this implies that the temporal sequencing of the variables over period P0 is imposed 218 

to the future period Pk, which means in particular that the interannual variability in the period 219 

Pk remains that of period P0. This is a very strong assumption, probably too strong because it is 220 
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physically very unlikely that this will be the case for climate time series. This is not the case 221 

for two historical periods, and it can be anticipated that climate change will impact not only the 222 

mean, but also the variability, and even the whole dynamics, both daily and interannually. 223 

With our proposed approach, we have: 224 

Yt = TF
-1(Ut) for tP0 225 

Yk,t = TFk
-1(Uk,t) for tPk, with: 226 

 𝑈𝑘,𝑡 = 𝑇𝐹𝑘(𝑌𝑡)  and Vk,t = TGk(Xt) 227 

The components of Ut and Vt are independent, which allows reordering and applying the 228 

reordering transformation independently for each component. Such a reordering could be 229 

added, but there is still a strong risk of over fitting. This will not be considered here but rather 230 

left for a forthcoming paper. 231 

2.4 Validation 232 

Once the estimations have been made using functional estimations described in section 2, 233 

validation is undertaken in the following way. 234 

The historical period P0 is divided into two sub-periods Q0 and Q1. Then, Q0 is used to calibrate 235 

F and G and Q1 is used for validation. If 𝑌̂𝑡, tQ1 is the corrected time series, the aim is to 236 

validate the bias-correction using both hypotheses H3-1 and H3-2, then either 237 

 𝐹̂1
−1 = 𝑇𝐹0

−1(𝑇𝐺0(𝐺1
−1)) 238 

or 239 

 𝐹̂1 = 𝑇𝐹0(𝑇𝐺0
−1(𝐺1 ))  240 

F0 and G0 being the distribution functions over Q0 and G1 over Q1. 241 
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Validation consists then in comparing 𝐹̂1 to F1 which can be estimated here. If d is a distance 242 

between distributions in ℝ𝑝, the level of correction will be defined as: 243 

  𝑟 =
𝑑(𝐹1,𝐹̂1)

𝑑(𝐹1,𝐺1)
 244 

Then the choice of d may be quite arbitrary. If 𝐻(𝑧) = 𝑃(𝑍1 ≤ 𝑧1, … , 𝑍𝑝 ≤ 𝑧𝑝) is the 245 

distribution associated to the distribution H of Z on ℝ𝑝, the distance which naturally generalizes 246 

the distance on ℝ for continuous distributions is given by 𝑑(𝐻,𝐾) = 𝑠𝑢𝑝𝑧∈ℝ𝑝|𝐻(𝑧) − 𝐾(𝑧)|. 247 

Under the assumption that H and K have densities and , a distance Lp like   248 

 𝑑𝑝(𝐻, 𝐾) = (∫ |𝜑(𝑧) − 𝜓(𝑧)|𝑝
ℝ𝑝

)
1
𝑝⁄

can be used. 249 

These distances have been chosen here but others could have been used like the “divergences” 250 

proposed by Rust et al, 2010.  251 

3 Distribution estimations 252 

The distributions F, G and Gk are at first unknown and still to be estimated so that the 253 

transformations TF, TG and TGk can be obtained explicitly. This implies the estimation of one 254 

dimensional conditional distributions, but with a conditioning on 2 to p-1 dimensions. 255 

According to hypothesis H1 and H2, all considered distributions have a probability density 256 

function on ℝ𝑝, which allows the use of non-parametric smoothing methods like kernel density 257 

estimation techniques. Two main approaches exist to estimate conditional distributions: 258 

- direct use of a kernel estimator adjusted through an indicator function (Hall et al., 259 

1999 ) 260 

- estimation of a conditional density and integration afterwards (Hyndmann et al., 261 

1996) 262 
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We will use this last approach, which allows the computation of different validation criteria. 263 

The numerical examples in parts 3 and 4 are given for 2 variables (p=2). Even if the theory is 264 

general and valid regardless of the number of dimensions, in practice the number of values 265 

necessary for a reliable estimation of the densities increases in a polynomial way with 266 

dimension p. 267 

Let us consider a time series Xt = (Xt
1,Xt

2) which verifies hypotheses H1 and H2. The estimation 268 

of the density of Xt
1 is classical and has good asymptotical properties (for a sufficiently large 269 

number of data) thanks to hypothesis H1. This density will be noted g1(x
1) and its estimator 270 

𝑔̂1(𝑥
1). 271 

Then, 𝑔2
1⁄
(𝑥1, 𝑥2) =

𝑔(𝑥1,𝑥2)

𝑔1(𝑥1)
. The classical kernel density estimator is given by: 272 

 𝑔̂2
1⁄
(𝑥1, 𝑥2) =

1

𝑛ℎ(1)ℎ(2)
∑ 𝐾(1)

|𝑥1−𝑋𝑖
1|

ℎ(1)
𝐾(2)

|𝑥2−𝑋𝑖
2|

ℎ2
𝑛
𝑖=1

1

𝑛ℎ1
∑ 𝐾(1)

|𝑥1−𝑋𝑖
1|

ℎ(1)
𝑛
𝑖=1

 273 

where the kernels K(1) and K(2) are positive functions ℝ → ℝ, with integral 1 and whose square 274 

can be integrated. The smoothing parameters h(1) and h(2) are chosen according to the data used 275 

for the estimation. 276 

Different types of kernels are generally used: 277 

- Gaussian: 𝐾(𝑥) =
1

√2𝜋
exp (−

𝑥2

2
), 278 

- Epanechnikov: 𝐾(𝑥) =
3

4
(1 − 𝑥2)1{|𝑥|≤1}, 279 

- Student:  
1

√𝜋

Γ((ν+1) 2)⁄

Γ(𝜈 2⁄ )
(1 +

𝑥2

𝜈
)
−
𝜈+1

2
 280 

We have chosen the Gaussian kernel. 281 
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To estimate parameters h(1) and h(2) we use the R package “hdrcde” developed by R. Hyndmann 282 

and based on the methods described in Hyndmann et al., 1996, Bashtannyck and Hyndmann, 283 

2001, Hall et al., 1999, Fan et al., 1996, De Gooijer and Gannoun, 2000, Liebscher, 1996 and 284 

Hyndmann and Yao, 2002, valid under hypotheses H1 and H2. The choice of h(1), h(2) is then 285 

made either by using asymptotical results based on H2 to which a condition C2 (stating that all 286 

partial derivatives of g have to be twice continuously differentiable) has to be added, or by 287 

cross-validation using blocks in order to deal with the weak dependence. The criterion to be 288 

minimized in order to choose h(1) and h(2)  is generally the L2 norm between the densities and 289 

their estimates. We have also used methods based on sub-sampling and regression (Hall et al., 290 

1999) or kernels with polynomial weights (Bashtannyck and Hyndmann, 2001), and in practice, 291 

the approach used in the R package “hdrcde” (which mixes regression and sub-sampling for 292 

kernel estimation Hyndmann et al., 1996, Bashtannyck and Hyndmann, 2001, Hyndmann and 293 

Yao, 2002) is efficient, that is easy to handle and giving good results in a reasonable computing 294 

time. 295 

4 When is it justified? 296 

The previously described methodology aims at bias-correcting the joint distribution of 2 or 297 

more variables at the same time. This brings more complexity and needs more data than the 298 

usual univariate distribution correction. Thus, in order to judge if there are best suited conditions 299 

for the use of such a technique, it has been decided to first test the approach with statistically 300 

simulated data.  301 

4.1 Design of the simulation study 302 

Since shuffling is not considered here, the corrections are only based on the distribution of the 303 

data. So, it has been decided to test the approach with data generated by chosen parametric 304 

distributions. 305 



15 
 

The aim is thus to simulate 4 bivariate distributions: 306 

- 1 corresponding to the observations over the current period: F0 307 

- 1 corresponding to the model simulation over the same current period: G0 308 

- 1 corresponding to the model simulation over a future period: Gk 309 

- 1 corresponding to the observations over a future period, which is not known a 310 

priori and only used to validate the approach: Fk 311 

It has been decided to simulate bivariate Gaussian distributions, which is a simple design. 312 

4.2 Design of the tests 313 

The parameters for the bivariate Gaussian distribution of the current period observations F0 314 

have been chosen based on summer temperature distributions for 2 distant points in Europe, 315 

chosen arbitrarily as Hamburg and Orly. The means, variances and co-variances are estimated 316 

from the EOBS daily mean temperature time series over the period 1979-2014 for the month of 317 

July: 318 

 m1 = 17.5 m2 = 20.0 v11 = 10 v22 = 9  v12 = v21 = 6 319 

with m1 and m2 respectively the means for variables 1 and 2, v11 and v22 their variances and v12 320 

their co-variance. This leads to a linear correlation between both variables. 321 

The values corresponding to the observations over current period are thus simulated by a 322 

bivariate Gaussian distribution with the above mentioned parameters and 2000 values are 323 

produced. 324 

Then, some hypotheses have to be made to simulate the data for the model simulations (current 325 

and future periods) and for the observations over future period used for verification. 326 

To do so, model errors have first been postulated, additive for the means and multiplicative for 327 

the variances and co-variances, noted em1 and em2 for the mean errors and es11, es22 and es12 328 



16 
 

for the variance, co-variance errors. The data corresponding to the model simulations for each 329 

variable over current period (2000 values) are thus produced by a bivariate Gaussian 330 

distribution G0 with parameters: 331 

 m1+em1 m2+em2 v11 x es11 v22 x es22 v12 x es12 (=v21 x es21) 332 

Then, climate shifts due to climate change are postulated in the same way, that is as additive 333 

for the means and multiplicative for the variances and co-variances, and noted dm1, dm2, ds11, 334 

ds22 and ds12 respectively. The 2000 values corresponding to the model simulation over future 335 

period are produced by a bivariate Gaussian distribution Gk with parameters: 336 

 m1+em1+dm1 ; m2+em2+dm2 ; v11 x es11 x ds11 ; v22 x es22 x ds22 ; v12 x es12 x ds12 337 

and the data corresponding to the observations over future period (2000 values) are produced 338 

by a bivariate Gaussian distribution Fk with parameters: 339 

 m1+dm1 m2+dm2 v11 x ds11 v22 x ds22 v12 x ds12 (=v21 x ds21) 340 

The validation criterion is the ratio r defined in section 1.4 with both L1 and L∞ norms, which 341 

is the distance between bias-corrected and observed distributions divided by the distance 342 

between simulated and observed distributions, both estimated over the future period. 343 

The aim of the applied bias corrections, either univariate or bivariate, is to estimate the bivariate 344 

distribution of the observations for a future period (𝐹̂𝑘) from that of the observations and model 345 

simulation over current period (F0 and G0) and of model simulation over future period (Gk). 346 

Then, the previously defined ratio r measures the performance of the correction in making the 347 

corrected distribution closer to that of the observations over future period Fk than was the 348 

distribution of the model simulation over future period Gk if r<1. 349 

Six bias corrections are applied and compared:  350 
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- each variable is independently corrected under hypothesis H3-1 (stationarity of the 351 

transformation between model and observations) 352 

- each variable is independently corrected under hypothesis H3-2 (stationarity of the 353 

transformation between present and future periods) 354 

- bivariate correction under hypothesis H3-1 with variable 1 corrected first 355 

- bivariate correction under hypothesis H3-1 with variable 2 corrected first 356 

- bivariate correction under hypothesis H3-2 with variable 1 corrected first 357 

- bivariate correction under hypothesis H3-2 with variable 2 corrected first 358 

denoted respectively UH, UV, B12H, B21H, B12V, B21V. 359 

UH and UV are similar to empirical quantile mapping and CDFt respectively. Here since we 360 

only deal with distributions, the bivariate distribution correction under hypothesis H3-2 is 361 

computed directly from Y0 through 𝑇𝐺
−1(𝑇𝐺𝑘). The univariate bias corrections are computed in 362 

the same way as the correction of the first variable in the bivariate corrections, and not taken 363 

from the R packages for Quantile Mapping or CDFt, in order to remain consistent in the 364 

comparisons. 365 

Two cases have been considered in order to better discriminate hypotheses H3-1 and H3-2 and 366 

the consequences of using a correction technique which may not be the best adapted. As a 367 

matter of fact, when dealing with climate model simulations, it is difficult to test which 368 

stationarity is best verified (because we do not have the observations in the future), and Quantile 369 

Mapping or CDFt are generally indifferently used. The chosen cases correspond to: 370 

- one case with model errors larger than climate change 371 

- one case with climate change larger than model errors 372 

In order to be able to test the order of variable corrections in the bivariate corrections, the errors 373 

and climate change shifts are not equal for each variable. The test cases are made with: 374 
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- em1=4; em2=5; es11=es22=es12= 0.5 and dm1=2; dm2=1.5; ds11=ds22=1.2 ; ds12= 1 375 

- em1=1; em2=1.5; es11=0.8 ;es22=0.75 ;es12= 0.9 and dm1=4; dm2=5; ds11=ds22=1.5; 376 

ds12= 1 377 

The choices have been made in considering observed model errors and climate change changes: 378 

climate models tend to underestimate the variances and in summer, both the means and the 379 

variances increase. Then this behavior has been exaggerated to produce large errors and large 380 

climate shifts. 381 

4.3 Results 382 

As previously described, we first simulate 2000 values with Gaussian bivariate distributions 383 

using fixed means and variances/co-variances, from which we then non-parametrically estimate 384 

bivariate distributions to compute distances and compare the different bias corrections. The 385 

non-parametrical estimation is based on the R function “kde2d” of package MASS, and with 386 

2000 values only, such an estimation is uncertain. It has thus first been verified that the distances 387 

between the bivariate distributions with the chosen errors and climate change shifts are 388 

significantly larger than the distances between 2 sets of 2000 points taken from the same 389 

distribution. This is preferred to the consideration of a much larger number of values, because 390 

firstly, this considerably increases computing time for the corrections and secondly, in climate 391 

change studies, when corrections have to be made it is generally done on a monthly basis, we 392 

do not dispose of much more values. Thus 4 sets of 2000 points are produced by use of a 393 

bivariate Gaussian distribution: one mimicking 2 variables as observed under current climate 394 

conditions, another for current climate as simulated by a climate model and the 2 other sets 395 

mimicking observed and modeled variables under future climate conditions. Then the 396 

previously defined 6 bias corrections are applied to the set corresponding to the modeled 397 

variables under future climate conditions so that its distribution gets closer to that of the 398 
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variables corresponding to the observed ones under future climate conditions (as we are here in 399 

an academic situation where all 4 distributions are simulated). This is done 30 times and the 400 

distributions of the r ratios are examined. 401 

4.3.1 Errors larger than climate change  402 

In order to test for the best suited stationarity hypothesis, the transformations based on 403 

hypotheses H3-1 and H3-2 are applied to the same sample. H3-1 states that 𝑇𝐹
−1(𝑇𝐺) = 𝑇𝐹𝑘

−1(𝑇𝐺𝑘)   404 

thus both 𝑇𝐹
−1(𝑇𝐺) and 𝑇𝐹𝑘

−1(𝑇𝐺𝑘) are applied to the sample obtained with G0. Then, the distance 405 

between the obtained distributions is computed (as L1 or L∞ norm). Similarly, H3-2 postulates 406 

that 𝑇𝐹
−1(𝑇𝐹𝑘) = 𝑇𝐺

−1(𝑇𝐺𝑘) thus both 𝑇𝐹
−1(𝑇𝐹𝑘) and 𝑇𝐺

−1(𝑇𝐺𝑘) are applied to the sample obtained 407 

with F0 and the distance between the obtained distributions is computed. Each transformation 408 

is computed with variable 1 first and with variable 2 first, and 30 generations are considered. 409 

Then, the distance corresponding to H3-1 is compared to that corresponding to H3-2 to infer the 410 

best verified hypothesis. In this case, the average L1 distances corresponding to each 411 

transformation for the 30 tests are as follows: 412 

 distance according to H3-1 with variable 1 first: 6.2 10-4 413 

 distance according to H3-1 with variable 2 first: 6.3 10-4 414 

 distance according to H3-2 with variable 1 first: 7.5 10-4 415 

 distance according to H3-2 with variable 2 first: 8.4 10-4 416 

The distances after H3-1 are lower, so hypothesis H3-1 seems best verified. Each of the six 417 

corrections are then applied to estimate Fk and figure 1 presents the boxplots of the r ratio for 418 

each correction using either L1 (top panel) or L∞ (bottom panel) distances. It shows that, as 419 

expected, both univariate and bivariate corrections based on hypothesis H3-1 (UH, B12H and 420 

B21H) perform better than those based on hypothesis H3-2 (UV, B12V and B21V), although 421 
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these last corrections bring some improvement too. In this case, the correction is very efficient 422 

(mean ratios around 0.2) and the bivariate correction does not bring substantial improvement. 423 

4.3.2 Climate change larger than model errors 424 

In this case, the mean distances between the different transformations are as follows: 425 

distance according to H3-1 with variable 1 first: 6.5 10-4 426 

 distance according to H3-1 with variable 2 first: 8.2 10-4 427 

 distance according to H3-2 with variable 1 first: 2.9 10-4 428 

 distance according to H3-2 with variable 2 first: 3.6 10-4 429 

Hypothesis H3-2 is here best verified. Again, the obtained results after applying each of the six 430 

distribution corrections (figure 2) confirm that the corrections based on hypothesis H3-2 perform 431 

better in this case. The corrections are however much less efficient than in the previous setting, 432 

with best ratios around 0.5 while they were around 0.2 in the previous case, but this may be due 433 

to the chosen parameters. Actually, the choices made for the model errors and climate change 434 

shifts are not symmetrical. Here, choosing the least verified hypothesis may lead to ratios higher 435 

than 1 (no corrections). Here, bivariate correction, at least when starting with variable 1, brings 436 

some improvement compared to independent univariate corrections. 437 

In both cases, the improvements due to the most suited correction appear more clearly with 438 

distance L∞. Distance L1 is an average over the whole distribution (or at least its estimation on 439 

some grid) while distance L∞ corresponds to a single value: the maximal one. As here, the 440 

introduced errors imply distribution shifts, the corrections reduce the shift and thus have a 441 

greater impact on L∞ than on L1.  442 

4.3.3 The role of correlation strength 443 
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Another question arising in this context is the role of the correlation strength between the 444 

variables in the importance and performance of multivariate bias correction. In order to 445 

investigate this point, the previous tests have been performed again with lower covariances 446 

between both variables: 447 

 v12=v21=3 which leads to a linear correlation coefficient around 0.3 448 

 v12=v21=1 which leads to a linear correlation coefficient  around 0.1 449 

respectively called medium and low correlation, while the previous test is called high 450 

correlation. The results are presented for L1 and L∞ norms in figure 3, in keeping only the best 451 

corrections in each case (H for hypothesis H3-1 in the case of larger model errors than climate 452 

shifts and V for hypothesis H3-2 in the reverse case). They show that the correlation strength 453 

does not have any significant impact on the performance of the corrections, even though, in the 454 

case of climate shifts larger than model errors, bivariate correction performs better than 455 

univariate correction in the strong correlation case but equally well otherwise. Correlation has 456 

been compared too (figure 4). While univariate correction does not really change the model 457 

correlation, bivariate correction does, and generally in the right way. However, bivariate 458 

correction seems to underestimate the correlation coefficient when covariance (and correlation) 459 

is high, especially when hypothesis H3-2 is concerned. Moreover, bivariate correction shows 460 

more variable results than univariate correction among the 30 bivariate Gaussian distribution 461 

generations. This is most probably due to the fact that bivariate correction needs more 462 

distribution estimations than univariate correction, which increases statistical errors.  463 

Now, when both model errors and climate shifts are moderate: 464 

em1=1; em2=1.5; es11=0.8; es22=0.75; es12= 0.9 and dm1=2; dm2=1.5; ds11=ds22=1.2; ds12= 1 465 

then both corrections perform as well, as can be seen in figure 5, because both hypotheses are 466 

quite equally verified.  However, the dispersion for the bivariate correction is higher again, 467 
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which may be linked to the uncertainty in the bivariate distribution estimation when the 468 

correlation is high. As a matter of fact, with these parameters, the correlation between both 469 

variables is 0.63 for F0 and goes to 0.73 for G0. This was the same for the case with higher 470 

climate shifts than model errors, which showed a similar behavior (figure 2). 471 

5 Test with climate data 472 

The goal of the developed approach is the bias-correction of climate data, thus the next step 473 

consists in testing it with observed and model variables. As all here is defined for continuous 474 

distributions, and in order to test the approach with different distributions for each variable, it 475 

has been decided to work with temperature and wind speed. Long time series of observed daily 476 

mean temperature and wind speed have been obtained for the city of Hamburg in Germany 477 

from the ECA&D project web site (http://eca.knmi.nl/dailydata/) (Klein Tank et al., 2002). In 478 

order to maximize the chance that the time series are homogeneous, they will be considered 479 

from 1950 to 2015 (66 years). Then, the climate model simulation of the IPSL-CM5-MR model 480 

(Dufresne et al., 2013) has been arbitrarily chosen in the CMIP5 database as a test model, and 481 

the time series of the nearest grid box to Hamburg has been extracted from the historical run 482 

(1950-2005) and the RCP 8.5 projection run (2006-2100), to compute time series of daily mean 483 

temperature and wind speed over the same period P0=1950-2015. This period is then divided 484 

into two 33-year sub-periods, Q1=1950-1982, chosen as calibration period, and Q2=1983-2015 485 

chosen as validation period. 486 

As the approach is valid for stationary time series over the defined periods, the correction is 487 

applied on a monthly basis, in order to get rid of the annual cycle. It is always difficult to 488 

consider that climatic variables are stationary over a defined period, because of both climate 489 

change and interannual variability. The World Meteorological Organization recommends to 490 

consider at least 30 years to define the climate of an area, thus considering 33-year periods 491 

seems a reasonable choice. 492 

http://eca.knmi.nl/dailydata/
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First, the distances after transformations of the same sample according to each H3-1 and H3-2 493 

hypothesis are computed for each month to infer which one is best verified. Table 1 summarizes 494 

the results for each month, together with an indication of the correlation between wind and 495 

temperature as observed over period Q1 according to the linear Pearson correlation coefficient 496 

or the rank Spearman one. Except for July, for which H3-1 seems clearly best verified, for all 497 

other months, either H3-1 show a small preference or it is difficult to discriminate both 498 

hypothesis. Therefore, the multivariate correction will be applied according to H3-1, which 499 

corresponds to estimations similar as those made by Empirical Quantile Mapping, since 500 

between 2 recent past periods the climate shift is not too high. Here, the functions of the R 501 

package qmap have been used for the univariate corrections in order to compare our proposed 502 

approach to standard ones used in climate studies. Daily temperature and wind speed are 503 

generally moderately correlated (positively in winter, negatively in summer) except in 504 

September. 505 

5.1 Temperature first, then wind 506 

The first test is made by correcting temperature first, and then wind according to temperature 507 

as described in sections 1 and 2. The ratios of the distance between the bivariate distribution of 508 

the corrected variables and the observed ones divided by the distance between the modeled 509 

variables and the observed ones over the validation period are compared for both bivariate and 510 

independent univariate bias-corrections for each month (table 2). Here only the L1 norm is 511 

considered as both used norms lead to the same conclusions in the previous section. The first 512 

outcome is that, generally bias-correction improves the distance to the observations (ratio <1), 513 

and bivariate correction gives slightly better results than univariate corrections for 7 months. 514 

The worst correction is obtained for the month of May, while the best occurs in July, both for 515 

univariate and bivariate corrections. Figure 6 allows the comparison of the bivariate 516 

distributions in May, for observations and model over the calibration (Q1) and validation (Q2) 517 
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periods and for Q1 and Q2 for the model and the observations. It shows that the model errors are 518 

rather low, and that there is very little change between both periods, for the model as well as 519 

for the observations. It is thus not surprising that the correction is modest in this case, as shown 520 

in figure 7. On the contrary, in July (figure 8) the model errors are quite large, and climate 521 

change is modest. The situation is more similar to that of our academic case with large model 522 

errors and moderate climate shift which previously lead to the best corrections based on 523 

hypothesis H3-1 (section 4.3.1). Figure 9 illustrates the distributions before and after corrections 524 

and shows that bivariate correction brings some improvement. As far as correlation is 525 

concerned, univariate bias correction does not have any impact on the model correlation, 526 

whereas bivariate correction does, and generally improves the correlation. This can be seen in 527 

table 2 for example for May, when the model anti-correlation is stronger than observed and this 528 

is better after bivariate correction or for July when model anti-correlation is weaker than 529 

observed and increased by the bivariate bias correction. This is shown for the Spearman rank 530 

correlation coefficient but the results are similar with the Pearson correlation coefficient. Thus 531 

bivariate corrections clearly improve the situation if the correlations for observation and model 532 

are different enough to allow the correction being larger than the statistical errors due to the 533 

dimension. 534 

5.2 Wind first then temperature 535 

The same corrections have then been tested again but by correcting wind speed first, and then 536 

temperature according to wind speed. The ratios of distances after and before correction are 537 

summarized in table 3, together with the Spearman rank correlation coefficients. The results are 538 

similar even though the months for which univariate correction gives slightly better results are 539 

not always the same. July shows again the best performance for the corrections while May 540 

remains the worst corrected, with a small advantage to bivariate correction though.  541 

6 Conclusion and perspectives 542 
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In this paper, a new approach for bias-correcting multivariate distributions of climate model 543 

simulations according to observations has been proposed and tested in controlled conditions, 544 

by use of statistical simulations, and in real conditions, with a climate model simulation and 545 

observations for wind speed and temperature. This approach is based on the Lévy-Rosenblatt 546 

lemma and generalizes the univariate distribution corrections like empirical quantile mapping 547 

or CDFt. 548 

The development of the technique first showed that depending on the hypothesis made 549 

(invariance of the transformation between model and observations in time or invariance of the 550 

transformation between two periods for observed and model variables), the correction is similar 551 

to empirical quantile mapping or to CDFt.  552 

Then, the tests with bivariate Gaussian distributions allowed to compare the performances of 553 

the corrections in controlling the model errors and climate shifts, as well as the strength of the 554 

variables correlation. The parameters are based on observed and model July temperature for 555 

two distant points, and willingly exaggerated in order to better see the differences in the 556 

approaches. It shows that the verification of the chosen stationary hypothesis: H3-1 (stationarity 557 

of the link between model and observations) or H3-2 (stationarity of the link between present 558 

end future conditions) has a stronger importance for the correction performance than univariate 559 

or bivariate correction, whatever the correlation strength between both variables. Furthermore, 560 

the order of variable corrections does not seem to have important consequences in this 561 

framework.  562 

Then a last test is made in a more real setting, with daily mean temperature and wind speed 563 

time series observed over period 1950-2015 and simulated by the IPSL-CM5-MR model in 564 

Hamburg. The corrections are applied on a monthly basis, in order to meet as closely as possible 565 

the hypothesis of stationarity, in a cross-validation setting, 1950-1982 being the calibration 566 

period and 1983-2015 the validation period. Daily temperature and wind speed are moderately 567 
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correlated in each month, with a positive correlation in winter and a negative one in summer, 568 

with lower correlation in fall and spring (and almost no correlation in September). As the 569 

periods are close, the conditions of a more reliable application of corrections based on 570 

hypothesis H3-1 are generally met and this technique is applied. The results show that bivariate 571 

correction generally leads to a slightly better correction. 572 

This study opens some questions before the application of such a correction can be generalized. 573 

First it can be extended to the case of at least one variable with non-continuous distribution. 574 

Most applications have to deal with temperature and rainfall rather than temperature and wind 575 

speed. Two ways can be tested to do so:  576 

- Correction of the number of rainy days (based on the differences between model and 577 

observations if H3-1 is considered or on the change between present and future if H3-578 

2 is considered), then of the amount of rainfall on rainy days and finally of 579 

temperature according to rainfall (in managing again rainy and non-rainy days) 580 

- Transformation of the rainfall distribution so that it becomes more continuous as 581 

proposed in Vrac et al 2016 582 

Then although the methodology is generic and theoretically works regardless of the number of 583 

variables, extension to more than two variables will need more data for the estimations to be 584 

reliable. Furthermore, the need to estimate more distributions increases the statistical errors and 585 

the improvement is more obvious if the discrepancies to be corrected are large. 586 

Lastly, the very important question of stationarity remains. Applying the correction on a 587 

monthly basis is the easiest solution. However, because of interannual variability, it is necessary 588 

to calibrate the correction over a long enough period (at least 30 years). Then in the climate 589 

change context, the conditions of application of empirical quantile mapping like approaches 590 

(based on hypothesis H3-1), that the distributions are invariant in time, cannot hold, and then, 591 
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CDFt like approaches (based on hypothesis H3-2) are more adapted, but may bring a lower 592 

improvement. Besides, using Quantile Mapping like corrections in such cases may worsen the 593 

situation. It seems then important to think at techniques able to stationarize the distributions 594 

and let them be closer in time and between observation and model. This can be done by 595 

removing seasonalities and trends, at least in the mean and the variance. However, part of the 596 

bias is embedded in the estimation of such quantities for the model time series and they have to 597 

be corrected too. In a univariate context, this can be made in an additive or multiplicative way. 598 

But in a multivariate context, this implies to think at a way of consistently correcting these parts 599 

of the signal as well. Future work will consist in clarifying these questions of non stationarity 600 

by working with a parameterization of the two kinds of dynamic deformations we have 601 

formalized in hypotheses H3-1 and H3-2. Such parameterization should be more complex than a 602 

simple shift but still simple enough to be applied routinely.  603 
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TABLES 689 

 690 

Month H3-1  
T first 

H3-1 w 
first 

H3-2  
T first 

H3-2 w 
first 

correlation 

observations IPSL simulation 

 L1 
(10-4) 

L1 
(10-4) 

L1 
(10-4) 

L1 
(10-4) 

Pearson Spearman Pearson Spearman 

January 7.0 6.6 9.5 9.0 0.47 0.50 0.50 0.54 

February 7.0 6.3 10.5 8.1 0.36 0.35 0.40 0.43 

March 14.7 13.2 14.0 13.8 0.11 0.10 0.17 0.18 

April 18.0 17.1 17.1 17.3 -0.15 -0.15 -0.07 -0.06 

May 13.7 12.6 19.0 17.6 -0.17 -0.17 -0.32 -0.33 

June 21.5 20.8 21.6 21.3 -0.28 -0.28 -0.27 -0.26 

July 13.2 12.2 26.2 28.5 -0.37 -0.39 -0.19 -0.15 

August 15.0 16.2 17.3 20.0 -0.21 -0.22 -0.32 -0.30 

September 14.5 14.8 19.3 22.9 -0.01 0.00 -0.14 -0.13 

October 13.3 9.6 10.5 9.3 0.17 0.16 0.10 0.11 

November 8.2 11.6 12.2 13.3 0.33 0.33 0.39 0.40 

December 9.4 8.7 11.7 11.2 0.46 0.48 0.47 0.50 

Table 1: L1 distance between the bivariate distributions obtained with transformations based 691 

on hypothesis H3-1 with temperature (T) or wind (w) first (first two columns) and between the 692 

bivariate distributions obtained with transformations based on hypothesis H3-2 with 693 

temperature (T) or wind (w) first (columns 3 and 4), correlation between temperature and 694 

wind (Pearson and Spearman coefficients for the observations (columns 6 and 7) and for the 695 

IPSL model simulation (columns8 and 9) for each month 696 

  697 



33 
 

 698 

Month correlation Bivariate correction Univariate correction 

 observations IPSL model Distance 
ratio 

correlation Distance 
ratio 

correlation 

January 0.55 0.55 0.522 0.62 0.563 0.55 

February 0.44 0.43 0.328 0.39 0.301 0.43 

March 0.11 0.18 0.758 0.17 0.771 0.18 

April -0.08 -0.05 0.713 -0.14 0.712 -0.05 

May -0.11 -0.30 0.992 -0.21 1.098 -0.30 

June -0.26 -0.29 0.496 -0.33 0.483 -0.29 

July -0.31 -0.16 0.179 -0.40 0.244 -0.16 

August -0.20 -0.34 0.600 -0.36 0.606 -0.34 

September 0.05 -0.12 0.855 -0.03 0.845 -0.12 

October 0.15 0.12 0.934 0.17 0.952 0.12 

November 0.32 0.36 0.788 0.36 0.849 0.36 

December 0.49 0.47 0.671 0.45 0.650 0.47 

Table 2: correlation (Spearman rank correlation coefficient) over the validation period and 699 

ratio of the distance (between the bivariate distributions of the corrected and observed 700 

variables divided by that of the modeled and observed variables) and correlation over the 701 

validation period after bivariate bias correction with temperature corrected first and 702 

independent univariate bias-correction. Bold indicates the lowest ratios obtained when 703 

correction is efficient  704 
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 706 

Month correlation Bivariate correction Univariate correction 

 observations IPSL model Distance 
ratio 

correlation Distance 
ratio 

correlation 

January 0.55 0.55 0.532 0.48 0.563 0.55 

February 0.44 0.43 0.316 0.33 0.301 0.43 

March 0.11 0.18 0.729 0.12 0.771 0.18 

April -0.08 -0.05 0.695 -0.11 0.712 -0.05 

May -0.11 -0.30 0.968 -0.19 1.098 -0.30 

June -0.26 -0.29 0.523 -0.35 0.483 -0.29 

July -0.31 -0.16 0.196 -0.39 0.244 -0.16 

August -0.20 -0.34 0.571 -0.36 0.606 -0.34 

September 0.05 -0.12 0.853 -0.09 0.845 -0.12 

October 0.15 0.12 0.970 0.19 0.952 0.12 

November 0.32 0.36 0.819 0.30 0.849 0.36 

December 0.49 0.47 0.601 0.58 0.650 0.47 

Table 3: same as table 2 but for wind corrected first, then temperature according to wind 707 
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FIGURES 710 

 711 

 712 

Figure 1: boxplots of the correction ratios obtained with 30 simulations with bivariate 713 

Gaussian distributions in the case of larger model errors than climate shifts, based on distance 714 

L1 (top panel) and L∞ (bottom panel). U refers to univariate correction, B to bivariate starting 715 

by variable 1 (12) or 2 (21) and H is for hypothesis H3-1 and V for hypothesis H3-2 716 
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 718 

 719 

Figure 2: boxplots of the correction ratios obtained with 30 simulations with bivariate 720 

Gaussian distributions in the case of larger climate shifts than model errors, based on distance 721 

L1 (top panel) and L∞ (bottom panel). U refers to univariate correction, B to bivariate starting 722 

by variable 1 (12) or 2 (21) and H is for hypothesis H3-1 and V for hypothesis H3-2 723 
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 725 

Model errors > climate shifts 

 

Model errors < climate shifts 

 

Figure 3: boxplots of the correction ratios obtained with 30 simulations with bivariate 726 

Gaussian distributions in both cases (larger model errors than climate shifts, top panel and 727 

larger climate shifts than model errors, bottom panel) based on distances L1 and L∞ and for 728 

different correlation strengths between the variables: high (red), medium (orange) and low 729 

(blue). U refers to univariate correction, B to bivariate starting by variable 1 (12) or 2 (21) and 730 

H is for hypothesis H3-1 and V for hypothesis H3-2 731 
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Model errors > climate shifts 

 

Model errors < climate shifts 

 

Figure 4: boxplots of the correlation coefficients obtained with 30 simulations with bivariate 733 

Gaussian distributions in both cases (larger model errors than climate shifts, top panel and 734 

larger climate shifts than model errors, bottom panel) and for different covariance strengths 735 

between the variables: high (red), medium (orange) and low (blue). Yf refers to the 736 

observations over the validation period, Xf to the simulation over the same period, U refers to 737 

univariate correction, B to bivariate starting by variable 1 (12) or 2 (21) and H is for 738 

hypothesis H3-1 and V for hypothesis H3-2 739 
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 742 

 743 

Figure 5: boxplots of the correction ratios obtained with 30 simulations with bivariate Gaussian 744 
distributions in the case of moderate climate shifts and model errors, based on distance L1 (top panel) 745 
and L∞ (bottom panel). U refers to univariate correction, B to bivariate starting by variable 1 (12) or 2 746 
(21) and H is for hypothesis H3-1 and V for hypothesis H3-2 747 
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 749 

 750 

Figure 6: Top line: comparison between observed (black) and modeled (cyan) bivariate distributions 751 
of temperature and wind speed in Hamburg for each period (calibration period: left panel, validation 752 
period: right panel); bottom line: comparison between calibration (black) and validation (cyan) 753 
bivariate distributions of temperature and wind speed in Hamburg for the model and the observations 754 
(IPSL model: left panel; observations: right panel) for the month of May 755 
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 757 

Univariate correction 

 
Bivariate correction Temperature first then Wind speed 

 
Bivariate correction wind speed first then temperature 

 
Figure 7: comparison between observed (black) and modeled (cyan) bivariate distributions of 758 
temperature and wind speed in Hamburg for the validation period before correction (left panels) and 759 
after univariate correction (top right), bivariate correction with temperature first (medium right) and 760 
wind speed first (bottom right) for the month of May 761 

 762 

 763 



42 
 

 764 

Figure 8: same as figure 6 but for the month of July 765 

  766 



43 
 

 767 

Univariate correction 

 

Bivariate correction Temperature first then Wind speed 

 

Bivariate correction wind speed first then temperature 

 

Figure 9: same as figure 7 but for the month of July 768 


