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Abstract

The Brownian web (BW) is a collection of coalescing Brownian paths (W(x,t), (x, t) ∈ R2)

indexed by the plane. It appears in particular as continuous limit of various discrete models
of directed forests of coalescing random walks and navigation schemes. Radial counterparts
have been considered but global invariance principles are hard to establish. In this paper, we
consider cylindrical forests which in some sense interpolate between the directed and radial
forests: we keep the topology of the plane while still taking into account the angular compo-
nent. We define in this way the cylindric Brownian web (CBW), which is locally similar to the
planar BW but has several important macroscopic differences. For example, in the CBW, the
coalescence time between two paths admits exponential moments and the CBW as its dual
contain each a.s. a unique bi-infinite path. This pair of bi-infinite paths is distributed as a pair
of reflected Brownian motions on the cylinder. Projecting the CBW on the radial plane, we
obtain a radial Brownian web (RBW), i.e. a family of coalescing paths where under a natural
parametrization, the angular coordinate of a trajectory is a Brownian motion. Recasting some
of the discrete radial forests of the literature on the cylinder, we propose rescalings of these
forests that converge to the CBW, and deduce the global convergence of the corresponding
rescaled radial forests to the RBW. In particular, a modification of the radial model proposed
in Coletti and Valencia is shown to converge to the CBW.
Keywords : Brownian web, navigation algorithm, random spanning forests, weak convergence
of stochastic processes.
AMS classification : Primary 60J05, 60G52, 60J65, 60D05 Secondary 60G57; 60E99.
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1 Introduction

The Brownian web, BW in the sequel, is a much fascinating object introduced in [1, 32, 17]. It
is formed by a family of coalescing Brownian trajectories (Wx,t, (x, t) ∈ R2), roughly speaking
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starting at each point (x, t) of the plane R2 (we consider only 2D objects in this paper). For
(x, t) ∈ R2,

(Wx,t(s), s ≥ t)
(d)
= x+ (B

(x,t)
s−t , s ≥ t) (1)

where B(x,t) is a standard Brownian motion (BM) starting at 0 and indexed by (x, t). The trajecto-
ries started from two different points of the time-space R2 are independent Brownian motions until
they intersect and coalesce. The BW appears as the continuous limit of various discrete models of
coalescing random walks and navigation schemes (e.g. [4, 8, 10, 12, 14, 15, 21, 23, 28, 33]).

Recently, radial (2D) counterparts of these discrete directed forests have been considered and
naturally, attempts have been carried to obtain invariance principles for these objects and define a
“radial Brownian web” (RBW; [2, 3, 9, 16, 34, 35, 25, 24, 26]). Nevertheless, the rescaling needed in
the BW case is somehow incompatible with a “nice Brownian limit” in the radial case. For directed
forests in the plane, time is accelerated by n2 say, while space is renormalized by n, for a scaling
parameter n→ +∞. In the radial case, the “space and time” parameterizations are related by the
fact that the circle perimeter is proportional to its radius. This hence prevents a renormalization
with different powers of n (2 and 1 for n2 and 1/n) unless we consider only local limits.

The main idea of this paper is the creation of the cylindric Brownian web (CBW) that allows
to involve the angular characteristic of the radial problems, while keeping a geometry close to the
plane. The usual BW is indexed by R × R, where the first component is the space component.
The CBW is an object indexed by the cylinder

Cyl = (R/Z)× R (2)

where the first component R/Z is the circle. Topologically, Cyl somehow interpolates between the
plane R × R and the plane equipped with the polar coordinate system (R/Z) × R+ suitable to
encode a RBW, as we will see.

Similarly to (1), we can define the CBW W↑ = (W↑
(x,t), (x, t) ∈ Cyl) as the family of coalescing

trajectories

(W↑
x,t(s), s ≥ t)

(d)
=
(
x+B

(x,t)
s−t , s ≥ t

)
mod 1 (3)

that is, independent Brownian motions taken modulo 1 which coalesce upon intersecting. Note
that the time will be flowing upwards in the graphical representations of this paper, and hence the
notation with the upward arrow. Later, dual objects will be defined with their inner time running
downward. Also, to distinguish between planar and cylindrical objects, cylindrical objects will be
denoted with bold letters.

In Section 2, we recall the topological framework in which the (planar) BW as introduced by
Fontes et al. [17] is defined. Many convergence results on the plane leading to the BW can be
turned into convergence results on the cylinder with the CBW as limit since the map

proj : R −→ R / Z
x 7−→ xmod 1

is quite easy to handle and to understand. We recall some criteria established in the literature that
allow to obtain the BW as limit of discrete directed forests. Then, we extend these results to the
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cylinder for the CBW. We show that the CBW can arise as the limit of a cylindrical lattice web
that is the analogous of the coalescing random walks introduced by Arratia [1]. We end the section
by showing different ways to project the CBW on the radial plane to obtain radial ‘Brownian’
webs.

In Section 3, the properties of the CBW are investigated. We show in particular that there
is almost surely (a.s.) a unique bi-infinite branch in the CBW as well as in its dual, which is a
main difference with the planar BW. Starting with a discrete lattice and taking the limit, we can
characterize the joint distribution of these two infinite branches as the one of a pair of reflected
Brownian motions modulo 1, in the spirit of Soucaliuc et al. [30]. We also prove that the coalescence
time between two (or more) branches admits exponential moment, when its expectation in the plane
is infinite. All these behaviors are closely related to the topology of the cylinder.

In Sections 4 and 5, we play with the convergences to the BW in the directed plane, to the
CBW in the cylinder and to the RBW in the “radial” plane. In the plane, several examples of
directed forests in addition to the coalescing random walks of Arratia are known to converge to
the Brownian webs, for example [14, 28]. Other radial trees such as the one introduced by Coletti
and Valencia [9] are known to converge locally to Brownian webs. We consider the corresponding
cylindrical forests and show that they converge to the CBW with a proper rescaling. For example,
in Section 5, we propose a radial forest similar to the radial forest of [9], built on a sequence of
circles on which a Poisson processes are thrown. When carried to the cylinder, this amounts to
throwing Poisson processes with different rates on circles of various heights. We show how the
rates and heights can be chosen to have the convergence of the cylindrical forest to the CBW,
which is carefully established by adapting well-known criteria (e.g. [17, 29]) to the cylinder. The
convergence for the latter model has its own interest: as the intensity of points increases with the
height in the cylinder, the convergence is obtained for the shifted forests. It is classical in these
proofs that the key ingredient for checking the convergence criteria amounts in proving estimates
for the tail distribution of the coalescence time between two paths. In our case, this is achieved by
using the links between planar and cylindrical models, and thanks to the Skorokhod embedding
theorem which connects our problem to available estimates for Brownian motions. However we
have to use clever stochastic dominations as well to obtain these estimates. Projecting the cylinder
on the (radial) plane then provides a radial discrete forests which converges after normalisation to
the radial Brownian web. This convergence is a global convergence, whereas only local convergences
are considered in [9].

2 Cylindric and Radial Brownian Web

In this Section we introduce the cylindric Brownian web, several natural models of radial Brownian
webs together with some related elements of topology, in particular, some convergence criteria. But
we start with the definition of the standard BW given in [17].

2.1 The standard Brownian Web

Following Fontes & al. [17] (see also Sun [31] and Schertzer et al. [29]), we consider the BW as a
compact random subset of the set of continuous trajectories started from every space-time point
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of R2
= [−∞,∞]2 equipped with the following distance ρ

ρ((x1, t1), (x2, t2)) = ‖A(x1, t1)−A(x2, t2)‖∞, (4)

where the map A is given by

A : R2 −→ [−1, 1]2

(x, t) 7−→ (Φ(x, t),Ψ(t)) =
(

tanh(x)
1+|t| , tanh(t)

) . (5)

For t0 ∈ R, C[t0] denotes the set of functions f from [t0,+∞] to R such that Φ(f(t), t) is
continuous. Further, the set of continuous paths started from every space-time points is

Π =
⋃
t0∈R

C[t0]× {t0}.

(f, t0) ∈ Π represents a path starting at (f(t0), t0). For (f, t0) ∈ Π, we denote by f̃ the function
that coincides with f on [t0,+∞] and which is constant equals f(t0) on [−∞, t0). The space Π is
equipped with the distance d defined by

d((f1, t1), (f2, t2)) =

(
sup
t

∣∣∣Φ(f̃1(t), t)− Φ(f̃2(t), t)
∣∣∣) ∨ |Ψ(t1)−Ψ(t2)|.

The distance depends on the starting points of the two elements of Π, as well as their global graphs.
Further, the set H of compact subsets of (Π, d) is equipped with the dH Hausdorff metric (induced
by d), and FH, the associated Borel σ-field.
The BW W = (Wx,t, (x, t) ∈ R2) is a random variable (r.v.) taking its values in (H,FH). It
can be seen as a collection of coalescing Brownian trajectories indexed by R2. Its distribution is
characterized by the following theorem due to Fontes & al. [17, Theo. 2.1]:

Theorem 2.1. There exists an (H,FH)-valued r.v. W whose distribution is uniquely determined
by the following three properties.

(o) From any point (x, t) ∈ R2, there is a.s. a unique path Wx,t from (x, t),

(i) For any n ≥ 1, any (x1, t1), . . . , (xn, tn), the Wxi,ti ’s are distributed as coalescing standard
Brownian motions,

(ii) For any (deterministic) dense countable subset D of R2, a.s., W is the closure in (H, dH) of
(Wx,t, (x, t) ∈ D).

In the literature, the BW arises as the natural limit for sequences of discrete forests constructed
in the plane. Let χ be a family of trajectories in H. For t > 0 and t0, a, b ∈ R with a < b, let

ηχ(t0, t; a, b) := Card
{
f(t0 + t) | (f, s) ∈ χ, f(t0) ∈ [a, b]

}
(6)

be the number of distinct points in R× {t0 + t} that are touched by paths in χ which also touch
some points in [a, b]×{t0}. We also consider the number of distinct points in [a, b]×{t0 + t} which
are touched by paths of χ born before t0:

η̂χ(t0, t; a, b) := Card
{
f(t0 + t) ∈ [a, b] | (f, s) ∈ χ, s ≤ t0

}
. (7)

Th. 6.5. in [29] gives a criterion for the convergence in distribution of sequences of r.v. of (H,FH)

to the BW, which are variations of the criteria initially proposed by [17]:
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Theorem 2.2. Let (χn)n≥1 be a sequence of (H,FH)-valued r.v. which a.s. consists of non-
crossing paths. If (χn)n≥1 satisfies conditions (I), and either (B2) or (E) below, then χn converges
in distribution to the standard BW.

(I) For any dense countable subset D of R2 and for any deterministic y1, · · · , ym ∈ D, there exists
paths χny1 , . . . χ

n
ym of χn which converge in distribution as n → +∞ to coalescing Brownian

motions started at y1, . . . , ym.

(B2) For any t > 0, as ε→ 0+,

ε−1 lim sup
n→+∞

sup
(a,t0)∈R2

P
(
ηχn(t0, t; a, a+ ε) ≥ 3

)
→ 0 .

(E) For any limiting value χ of the sequence (χn)n≥1, and for any t > 0, t0 ∈ R, a < b ∈ R,

E
(
η̂χ(t0, t; a, b)

)
≤ E

(
η̂W (t0, t; a, b)

)
,

where W denotes the BW.

In this paper we focus on forests with non-crossing paths. But there also exist in the literature
convergence results without this assumption: see Th. 6.2. or 6.3. in [29]. For forests with non-
crossing paths, the condition (I) implies the tightness of (χn)n≥1. The conditions (B2) or (E)

somehow ensure that the limit does not contain ‘more paths’ than the BW. In the literature,
proofs of (B2) and (E) are both based on an estimate of the coalescence time of two given paths.
However, condition (B2) is sometimes more difficult to check. It is often verified by applying FKG
positive correlation inequality [19], which turns out to be difficult to verify in some models. When
the forest exhibits some Markov properties, it could be easier to check (E) as it is explained in [23]
or [29], Section 6.1. Let us give some details. The condition (E) mainly follows from

lim sup
n→+∞

E
(
η̂χn(t0, ε; a, b)

)
< +∞ , (8)

for any ε > 0, t0 ∈ R and a < b ∈ R, which can be understood as a coming-down from infinity
property. Statement (8) shows that for any limiting value χ, the set of points χ(t0; t0 + ε) of
R × {t0 + ε} that are hit by the paths of χ(t0) – paths of χ born before time t0 – constitutes a
locally finite set. Thus, condition (I) combined with the Markov property, implies that the paths
of χ starting from χ(t0; t0 + ε) are distributed as coalescing Brownian motions. Hence,

E
(
η̂χ(t0)(t0, t; a, b)

)
≤ E

(
η̂W (t0 + ε, t− ε; a, b)

)
=

b− a√
π(t− ε)

→ b− a√
πt

= E
(
η̂W (t0, t; a, b)

)
(9)

as ε→ 0 and (E) follows. For details about the identity (9) see [29].

2.2 The Cylindric Brownian Web

We propose to define the CBW W↑ = (W↑
x,t , (x, t) ∈ Cyl) on a functional space similar to

H so that the characterizations of the distributions and convergences in the cylinder are direct
adaptations of their counterparts in the plane (when these counterparts exist! See discussion in
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Section 4.2). In particular, this will ensure that the convergences in the cylinder and in the plane
can be deduced from each other provided some conditions on the corresponding discrete forests
are satisfied.

The closed cylinder is the compact metric space Cyl = (R/Z)× R, for the metric

ρO((x1, t1), (x2, t2)) = dR/Z(x1, x2) ∨ |Ψ(t1)−Ψ(t2)| (10)

where dR/Z(x, y) = min{|x− y|, 1− |x− y|} is the usual distance in R/Z. In the sequel, we use as
often as possible the same notation for the CBW as for the planar BW, with an additional index
O (as for example ρ and ρO).

For t0 ∈ R, the set CO[t0] denotes the set of continuous functions f from [t0,+∞] to R/Z, and
ΠO the set

⋃
t0∈R CO[t0] × {t0}, where (f, t0) ∈ ΠO represents a path starting at (f(t0), t0). For

(f, t0) ∈ ΠO, we denote by f̃ the function that coincides with f on [t0,+∞] and which equals to
f(t0) on [−∞, t0). On ΠO, define a distance dO by

dO((f1, t1), (f2, t2)) =

(
sup
t
dR/Z(f̃1(t), f̃2(t))

)
∨ |Ψ(t1)−Ψ(t2)|.

Further, HO, the set of compact subsets of (ΠO, dO) is equipped with the dHO Hausdorff metric
(induced by dO), and FHO , the associated Borel σ-field. The CBW is a r.v. taking its values in
(HO,FHO ), and is characterized by the following theorem (similar to the Theo. 2.1. in Fontes &
al. [17] for planar BW).

Theorem 2.3. There is an (HO,FHO )-valued r.v. W↑ whose distribution is uniquely determined
by the following three properties.

(o) From any point (x, t) ∈ Cyl, there is a.s. a unique path W↑
x,t from (x, t),

(i) for any n ≥ 1, any (x1, t1), . . . , (xn, tn) the joint distribution of the W↑
xi,ti ’s is that of coa-

lescing standard Brownian motions modulo 1,

(ii) for any (deterministic) dense countable subset D of Cyl, a.s., W↑ is the closure in (HO, dHO )

of (W ↑x,t, (x, t) ∈ D).

As in the planar case, the CBW W↑ admits a dual counterpart, denoted by W↓ and called
the dual Cylindric Brownian Web. For details (in the planar case) the reader may refer to Section
2.3 in [29]. For any t0 ∈ R, identifying each continuous functions f ∈ CO[t0] with its graph as
a subset of Cyl, f̂ := −f = {(−x,−t) : (x, t) ∈ f} defines a continuous path running backward
in time and starting at time −t0. Following the notations used in the forward context, let us
define the set Π̂O of such backward continuous paths (with all possible starting time), equipped
with the metric d̂O (the same as dO but on Π̂O). Further, ĤO denotes the set of compact subsets
of (Π̂O, d̂O) equipped with the Hausdorff metric induced by d̂O. Theorem 2.4 of [29] admits the
following cylindric version.

Theorem 2.4. There exists an HO×ĤO valued r.v. (W↑,W↓) called the double Cylindric Brow-
nian Web, whose distribution is uniquely determined by the two following properties:

(a) W↑ and −W↓ are both distributed as the CBW.

(b) A.s. no path of W↑ crosses any path of W↓.
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Moreover, the dual CBW W↓ is a.s. determined by W↑ (and vice versa) since for any point
(x, t) ∈ Cyl, W↓ a.s. contains a single (backward) path starting from (x, t) which is the unique
path in Π̂O that does not cross any path in W↑.

For all −∞ ≤ t ≤ t′ < +∞, let us denote by F↑t,t′ the σ−algebra generated by the CBW W↑

between time t and t′:

F↑t,t′ = σ
({{

W↑
(x,s)(s

′), t < s′ ≤ t′
}
, x ∈ R/Z, t < s ≤ t′

})
. (11)

We write F↑t′ instead of F↑−∞,t′ . The CBW is Markov with respect to the filtration (F↑t )t∈R and
satisfies the strong Markov property, meaning that for any stopping time T a.s. finite, the process{{

W↑
(x,T+t)(T + s), s ≥ t

}
, x ∈ R/Z, t ≥ 0

}
is still a CBW restricted to the semi-cylinder Cyl+ := (R/Z)×R+ which is independent of ∩t>TF↑t .
In the same way, we can also define the σ−algebra F↓t,t′ , where t ≥ t′, with respect to the dual
CBW W↓.

The convergence criteria [29, Th. 6.5] or Theorem 2.2 above has hence a natural counterpart
on the cylinder. For a, b ∈ R/Z denote by [a→ b] the interval from a to b when turning around the
circle counterclockwise, and by |a→ b| its Lebesgue measure (formally: for a < b, [a→ b] = [a, b]

and if a > b, [a→ b] = [a, 1] ∪ [0, b]). For X a r.v. in HO, denote by

ηOX(t0, t; [a→ b]) := Card
{
f(t0 + t) | (f, s) ∈ X, f(t0) ∈ [a→ b]}

be the number of distinct points in R/Z×{t0 + t} that are touched by paths in X which also touch
some points in [a→ b]× {t0}. We also set

η̂OX(t0, t; [a→ b]) := Card
{
f(t0 + t) ∈ [a→ b] | (f, s) ∈ X, s ≤ t0

}
.

Here is the counterpart of Theorem 2.2 in the cylinder:

Theorem 2.5. Let (χn)n≥1 be a sequence of (HO,FHO )-valued r.v. which a.s. consist of non-
crossing paths. If (χn)n≥1 satisfies conditions (IO), and either (B2O) or (EO), then χn converges
in distribution to the CBW W↑.

(IO) For any dense countable subset D any deterministic y1, · · · , ym ∈ D, there exists for every
n ≥ 1, paths χny1 . . . χ

n
ym in χn such that χny1 . . . χ

n
ym converge in distribution as n→ +∞ to

coalescing Brownian motions modulo 1 started at y1, . . . , ym.

(B2O) For any t > 0, as ε→ 0+,

ε−1 lim sup
n→+∞

sup
(a,t0)∈Cyl

P
(
ηOχn(t0, t; [a→ a+ εmod 1]) ≥ 3

)
→ 0 .

(EO) For any limiting value χ of the sequence (χn)n≥1, and for any t > 0, t0 ∈ R and a, b ∈ R/Z,

E
(
η̂Oχ (t0, t; [a→ b])

)
≤ E

(
η̂OW↑(t0, t; [a→ b])

)
.

This section ends with a summary of the relationships between ηW , η̂W , ηOW↑ and η̂OW↑ where
W denotes the planar BW. First, in the plane, as noticed in [17] Section 2, ηW (t0, t; a, b) and
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η̂W (t0, t; a, b) + 1 are identically distributed. This can be shown using duality arguments. In the
cylinder the situation is a little bit different: it is not difficult to show that, for t, t0 > 0 and
a, b ∈ R/Z,

ηOW↑(t0, t; [a→ b])
(d)
= η̂OW↑(t0, t; [a→ b]) + 1NoBackCoal ,

where the event NoBackCoal means that the cylindric BMs starting from (a, t0) and (b, t0) are
allowed to coalesce before time t0 + t but not from the side [b→ a] (more precisely, |W↑

(a,t0)(s)→
W↑

(b,t0)(s)| stays in [0, 1) for s ∈ [t0, t0 + t]).
Moreover, for any t, t0 > 0 and a, b ∈ R/Z with |a → b| < 1, we will prove at the end of the

current section that
ηOW↑(t0, t; [a→ b]) ≤S ηW (t0, t; a, b) , (12)

where ≤S stands for the stochastic domination. Statement (12) traduces the following natural
principle: trajectories merge easier in the cylinder than in the plane. However there is no stochastic
comparison between η̂OW↑ and η̂W . Indeed, the expectation of η̂W (t0, t; a, b) tends to 0 as t → ∞
thanks to identity (9) whereas this does not hold in the cylinder. Theorem 3.1 (below) states the
a.s. existence in W↑ of a bi-infinite path. So, for any t, t0, η̂OW↑(t0, t; [0→ 1]) is larger than 1 and,
by rotational invariance,

E
(
η̂OW↑(t0, t; [a→ b])

)
= |a→ b| E

(
η̂OW↑(t0, t; [0→ 1])

)
≥ |a→ b| .

It then remains to prove (12). Let us focus on the planar BWW restricted to the strip R×[t0, t0+t].
First, by continuity of trajectories, with probability at least 1 − ε, there exists δ > 0 such that
sup0≤d≤δ |Wa,t0(t0 + d)−Wb,t0(t0 + d)| < 1 (since |a− b| < 1) where Wx,t denotes the BM starting
at (x, t). The coming-down from infinity property satisfied by the BW ensures that the number
of remaining BMs at level R× {t0 + δ} and starting from [a, b]× {t0} is a.s. finite. Let κ be this
(random) number. When defining a realization of the BW, we need to decide, in case of coalescence
of two trajectories, which one survives. In order to compute ηW (t0, t; a, b) we label these remaining
BMs by 1, . . . , κ from left to right and when two of them merge, the BM having the lower label
is conserved while the other one is stopped. This stopping rule allows us to determine the set of
labels of remaining BMs at level R× {t0 + t}, say L, whose cardinality is ηW (t0, t; a, b). Now, let
us complete the previous stopping rule as follows: if the BM with label 2 ≤ j ≤ κ meets the path
1 + Wa,t0 between times t0 + δ and t0 + t then it stops. Although 1 + Wa,t0 does not correspond
to any trajectory in the planar BW W– and then appears as artificial –, it coincides with Wa,t0

in the cylinder and then has label 1. According to this completed rule, we obtain a new set of
labels of remaining BMs at level R× {t0 + t}. It is included in L and its cardinality has the same
distribution than ηOW↑(t0, t; [a → b]). In conclusion the previous construction allows us to bound
from above ηOW↑(t0, t; [a → b]) by ηW (t0, t; a, b) on an event of probability at least 1 − ε, for any
ε > 0.

2.3 The Cylindric Lattice Web

As for the BW, the CBW can be constructed as the limit of a sequence of discrete directed forests
on the cylinder. For any integer n ≥ 1, define the “cylindric lattice” as :

Cyl↑2n = {(x, t), x ∈ Z/2nZ, t ∈ Z, x− tmod 2 = 0},
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and consider (ξ(w), w ∈ Cyl↑2n) a collection of i.i.d. Rademacher r.v. associated with the vertices
of Cyl↑2n. The cylindric lattice web (CLW) is the collection of random walks

W2n,↑ =
(
W2n,↑

w , w ∈ Cyl↑2n

)
indexed by the vertices of Cyl↑2n, where for w = (x, t),{

W2n,↑
(x,t)(t) = x

W2n,↑
(x,t)(s) = W2n,↑

(x,t)(s− 1) + ξ(W2n,↑
(x,t)(s− 1), s− 1)mod 2n, s > t.

(13)

The sequence of paths (W2n,↑
w , w ∈ Cyl↑2n) is equivalent to that introduced by Arratia [1] in the

planar case. The union of the random paths ((W2n,↑
(x,t)(s), s), s ≥ t) for (x, t) ∈ Cyl↑2n, coincides

with the set of edges {(w,w+ (ξ(w), 1)), w ∈ Cyl↑2n} (see Figure 1). The dual W2n,↓ of W2n,↑ is a

Figure 1: Standard and cylindric lattice webs: the primal and dual ones are respectively in blue and red.

reversed time CLW (and shifted by 1) defined on the “dual” Cyl↓2n of Cyl↑2n :

Cyl↓2n = {(x, t), x ∈ Z/2nZ, t ∈ Z, x− tmod 2 = 1}.

W2n,↓ is the collection of random walks W2n,↓ =
(
W2n,↓

w , w ∈ Cyl↓2n

)
indexed by the vertices of

Cyl↓2n such that for w = (x, t) ∈ Cyl↓2n, and using the same family (ξ(w), w ∈ Cyl↑2n) as before:{
W2n,↓

(x,t)(t) = x,

W2n,↓
(x,t)(s) = W2n,↓

(x,t)(s+ 1)− ξ
(
W2n,↓

(x,t)(s+ 1)− (0, 1)), s
)
, for s ≤ t. (14)

We define, for any h ∈ Z, for any direction D ∈ {↑, ↓}, the horizontal slice by

SliceD2n(h) = CylD2n ∩ (Z/2nZ× {h}) ,

so that the random walks (W2n,D
w , w ∈ SliceD2n(h)) start from the points of SliceD2n(h).

The normalized CLW and its dual are defined as follows. For D ∈ {↑, ↓} and for any (x, t) in
CylD2n, set

W
(2n),D

( x2n ,
t
n2 )

(s) :=
1

2n
W2n,D

(x,t)

(
4n2s

)
for s ≥ t

n2
if D =↑, and s ≤ t

n2
if D =↓ . (15)
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Since W
(2n),D
(x,t) (4n2s) takes its values in Z/2nZ, 2n is the right space normalization, which implies

the time normalization as usual.

Proposition 2.6. The pair of renormalized CLW (W(2n),↑,W(2n),↓) converges in distribution to
the pair of CBW (W↑,W↓).

Proof. Let us first prove the convergence of the marginals. Since W2n,↑ and W2n,↓ have the same
distribution (up to a reversal of time and a shift by 1).

To do it, we mainly refer to the proof of the convergence towards the (planar) BW of the
sequence of lattice webs (W (2n))n≥1, obtained from normalizing the random walks on the grid
Gr = {(x, t) ∈ Z2, x − t mod 2 = 0} similarly to (15): see [17, Section 6] for further details. As
for (I) the proof of (IO) is a basic consequence of the Donsker invariance principle and is omitted
here. The same coupling argument used to prove (12) leads to the following stochastic domination:
for n ≥ 1, t0 ∈ R, t > 0, a ∈ [0, 2π] and ε > 0,

ηOW(2n),↑(t0, t; [a→ a+ ε]) ≤S ηW (2n)(t0, t; a, a+ ε) . (16)

Hence condition (B2) satisfied by the rescaled (planar) lattice web W (2n) (see Section 6 in [17])
implies condition (B2O) for W(2n),↑. Then Theorem 2.5 applies and gives the convergence of
(W(2n),↑)n≥1 to W↑.

The convergence of the marginals implies that the distributions of {(W(2n),↑,W(2n),↓)}n≥1

form a tight sequence in the set of measures on HO × ĤO. It then suffices to prove that any
limiting value of this sequence, say (X ↑,X ↓), is distributed as the double CBW (W↑,W↓). To do
it, we check the criteria of Theorem 2.4. Item (a) has already been proved. To check (b), let us
assume by contradiction that with positive probability there exists a path πz ∈ X ↑ which crosses
a path π̂ẑ ∈ X ↓.

By definition of (X ↑,X ↓), this would lead to the existence, for n large enough and with positive
probability, of a path of W(2n),↑ crossing a path of W(2n),↓. This is forbidden since the lattice
webs have non crossing paths.

2.4 Radial Brownian Webs

2.4.1 The standard Radial Brownian Web and its dual

Our goal is now to define a family of coalescing paths, indexed by the distances of their starting
points to the origin in R2, that we will call radial Brownian web. Let us start with some topological
considerations. Our strategy consists in sending the semi-cylinder Cyl+ := (R/Z) × R+ onto the
plane equipped with the polar coordinate system (R/2πZ)× R+ by using the map

ϕ? : R/Z× R+ −→ (R/2πZ)× R+

(x, f?(t)) 7−→ (2πx, t)
, (17)

where f?(t) := t/(4π2). The presence of factor 1/(4π2) will be discussed below. Let

Slice(h) = {(x, h), x ∈ R/Z},

be the horizontal slice at height h of Cyl. For any t > 0, ϕ? projects Slice(f?(t)) on Circle(0, t) :=

R/2πZ× {t}. It also identifies Slice(0) with the origin.
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The map ϕ? induces the metric ρ• on the radial plane R/2πZ× R+ by

ρ•((x1, t1), (x2, t2)) := ρO(ϕ−1
? (x1, t1), ϕ−1

? (x2, t2)),

for any elements (x1, t1), (x2, t2) ∈ (R/2πZ)× R+. Following the beginning of Section 2.2, we can
construct a measurable space (H•,FH•) equipped with the distance ρ•. Of course, the map ϕ? is
continuous for the induced topology, so that the image of a (weak) converging sequence by ϕ? is
a (weak) converging sequence. We call standard in-radial Brownian web, and denote by RBW→•,
the image under ϕ? of the dual CBW W↓ restricted to Cyl+. In particular, ϕ? sends the trajectory
W↓

x,f?(t)(s) for s going from f?(t) to 0 on the path RBW→•2πx,t(s) for s going from t to 0 where

RBW→•2πx,t(s) := s exp
(

2iπW↓
x,f?(t)(f?(s))

)
. (18)

Notice that the natural time of the trajectory RBW→•2πx,t is given by the distance to the origin, since
the radius satisfies:

|RBW→•2πx,t(s)| = s .

The families of paths (W↓
x,f?(t), (x, f?(t)) ∈ Cyl+) that coalesce on the cylinder when t evolves

from +∞ to 0, are then sent on radial paths (RBW→•x,t , (t exp(ix) ∈ C)) that coalesce when they
are approaching the origin 0. This is the reason why RBW→• is said in-radial, and the notation
→ • evokes the direction of the paths, “coalescing towards the origin”.

Moreover, for any 1 < s ≤ t, ϕ? sends the part of cylinder delimited by times f?(s − 1) =

(s− 1)/(4π2) and f?(s) = s/(4π2) (i.e. with height 1/(4π2)) to the ring centered at the origin and
delimited by radii s − 1 and s (i.e. with width 1). Then, on the unit time interval [s − 1; s], the
increment of the argument of RBW→•2πx,t, i.e.

2πW↑
x,f?(t)(f?(s− 1))− 2πW↑

x,f?(t)(f?(s))mod 2π

is distributed according to the standard BM at time 1 taken modulo 2π. This is the reason why
RBW→• is said to be standard. As a consequence, the trajectory RBW→•x,t turns a.s. a finite number
of times around the origin.

As the standard BW, the CBW and the in-radial Brownian web admit special points from which
may start more than one trajectory and whose set a.s. has zero Lebesgue measure. See Section 2.5
in [29] for details. Except from these special points, the in-radial Brownian web RBW→• can be
seen as a tree made up of all the paths {RBW→•x,t (s), 0 ≤ s ≤ t}, (x, t) ∈ R/2πZ× R+, and rooted
at the origin. Its vertex set is the whole plane. Th. 3.1 in the sequel also ensures that this tree
contains only one semi-infinite branch with probability 1.

Let us denote by RBW•→ the image under ϕ? of the CBW W↑ restricted to Cyl+. We call it
the standard out-radial Brownian web. The map ϕ? sends the trajectory {W↑

x,f?(t)(s), s ≥ f?(t)}
of the cylindric BM W↑

x,f?(t) starting at (x, f?(t)) ∈ Cyl+ on the out-radial (continuous) path
{RBW•→2πx,t(s), t ≥ s} where

RBW•→2πx,t(s) := s exp
(

2iπW↑
x,f?(t)(f?(s))

)
.

Unlike the in-radial path RBW→•x,t , RBW
•→
x,t is a semi-infinite path which moves away from the ori-

gin. Finally, the out-radial Brownian web RBW•→ appears as the dual of the in-radial Brownian
web RBW→•. Indeed, the CBWs W↑ and W↓ are dual in the sense that no trajectory of W↑
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crosses a trajectory of W↓ with probability 1 (see the proof of Prop. 2.6). Clearly, the map ϕ?

preserves this non-crossing property which then holds for RBW→• and RBW•→.

Figure 2: Projections of the cylindric lattice webs W(2n),↑ (black) and W(2n),↓ (red) on the plan by ϕ?.

Let us recall that W(2n),↑ and W(2n),↓ denote the normalized cylindric lattice webs obtained
from W2n,↑ and W2n,↓: see (15). Let us respectively denote by RLW

(2n),→•
2πx,t and RLW

(2n),•→
2πx,t the

radial lattice webs obtained as images under ϕ? of W(2n),↑ and W(2n),↓ restricted to Cyl+. Using
the continuity of ϕ?, it is possible to transfer the convergence result of Prop. 2.6 from the cylinder
to the plane. Then, the convergence result below is a direct consequence of Prop. 2.6.

Theorem 2.7. The pair (RLW(2n),→•,RLW(2n),•→) converges in distribution to the pair of standard
radial Brownian webs (RBW→•,RBW•→).

2.4.2 Other Radial Brownian Webs

In this section we explore different radial projections of the cylindric Brownian web (W↑,W↓) into
the plane. Let us first describe the general setting. Let f be an increasing continuous function,
defining a one-to-one correspondence from an interval I ⊂ R+ onto an interval J ⊂ R. Define the
bijective map ϕf by:

ϕf : R/Z× J −→ R/2πZ× I
(θ, f(t)) 7−→ (2πθ, t)

. (19)

As previously, R/2πZ× I represents a subset of R2 (actually a ring) parametrized by polar coor-
dinates. The map ϕf sends the restriction of the CBW W↓ to the part of cylinder R/Z× J on a
radial object defined on the ring R/2πZ×I, denoted by f -RBW→• and also called radial Brownian
web. In this construction, the function f is a winding parameter. For instance, if 1, 2 ∈ I, the
argument variation (in R) around the origin of the f − RBW→•x,2 between radii 1 and 2 (where
x ∈ [0, 2π] is the initial argument) is a centered Gaussian r.v. with variance 4π2(f(2)− f(1)). The
standard radial Brownian web introduced in the previous section corresponds to the particular
case I = R+, J = R+ and f(t) = t/(4π2), for which the argument variation of a trajectory on a
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ring with width c is simply a Gaussian N (0, c).

Our second example of maps f allows to project the complete pair (W↑,W↓) parametrized by
Cyl to the plane. Let us consider the bijection from I = (0,+∞) onto J = R defined by f(t) := ln t

(or any other map f sending (0,+∞) onto R). Then, the radial Brownian web f -RBW→•– image
of W↓ by ϕf –presents an accumulation phenomenon in the neighborhood of the origin. Indeed,
the argument variation around the origin between radii ε and 1 has distribution N (0, 4π2| ln(ε)|),
and thus goes to +∞ in the neighborhood of 0 (ε → 0+) when it stays bounded in any other
bounded ring far away from 0.

Our third example of map f provides a tree – given by the trajectories of f -RBW→• – having
many semi-infinite branches with asymptotic directions. A semi-infinite branch ζ (if it exists) of
the tree f -RBW→• is said to admit an asymptotic direction θ ∈ R/2πZ whenever arg(zk)→ θ, for
any subsequence (zk) ⊂ ζ such that |zk| → ∞. To show that f -RBW→• admits many semi-infinite
branches, let us consider the bijection f from I = R+ onto J = [0; 1) defined by f(t) := 2

π arctan t.
For a small ε ∈ (0, 1), the map ϕf projects the thin cylinder R/Z × [1 − ε; 1) on the unbounded
set R/2πZ× [tan(π(1− ε)/2); +∞). On the (small) time interval [1− ε; 1), the CBMs have small
fluctuations, and then the tree f -RBW→• admits semi-infinite branches with asymptotic directions.
The next result proposes a complete description of the semi-infinite branches of f -RBW→•.

Remark 2.8. The standard radial Brownian web could appear a bit impetuous to the reader: the
fluctuation of the argument along a trajectory parametrized by the modulus, being a BM mod 2π,
the trajectories may have important fluctuations far from the origin. The choice f(t) = ln t of
Example 2 provides a radial forest where the paths look like coalescing BMs locally and far from
O: between radii r and r + 1, the fluctuations are of variance 1/r. This model is invariant by
inversion.

Proposition 2.9. Consider the f -RBW for a bijection f from I = R+ into an interval J with
compact closure such that f can be extended continuously to adh(J). With the above notations, the
following statements hold.

1. A.s. any semi-infinite branch of f -RBW→• admits an asymptotic direction.

2. A.s. for any θ ∈ R/2πZ, the tree f -RBW→• contains (at least) one semi-infinite branch with
asymptotic direction θ.

3. For any (deterministic) θ ∈ R/2πZ, a.s. the tree f -RBW→• contains only one semi-infinite
branch with asymptotic direction θ.

4. A.s. there exists a countable dense set D ⊂ R/2πZ such that, for any θ ∈ D, the tree
f -RBW→• contains two semi-infinite branches with asymptotic direction θ.

5. A.s. the tree f -RBW→• does not contain three semi-infinite branches with the same asymp-
totic direction.

Proof. The first two items generally derive from the straight property of the considered tree: see
Howard & Newman [22]. However, in the present context, it is not necessary to use such heavy
method and we will prove them directly. For the sake of simplicity, we can assume that J = [0, 1).
Let us first consider a semi-infinite branch ζ of f -RBW→•.
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By construction of the f -RBW, there exists a path γ of the CBW on R/Z × J such that
ζ = ϕf (γ). The path γ of the CBW on R/Z × J is a Brownian motion that can be extended
by continuity to R/Z × [0, 1] by (θ̄, 1), say, implying that the first coordinate of ζ converges to
θ̄/(2π) when the radius tends to infinity. This means that the semi-infinite branch ζ admits θ̄ as
asymptotic direction. The proof of the second item is in the same spirit.

The key argument for the three last statements of Th. 2.9 is the following. With probability
1, for any θ ∈ R/2πZ and x := θ/2π, the number of CBMs of W↓ starting at (x, 1) is equal to the
number of semi-infinite branches of f -RBW→• having 2πx as asymptotic direction. With Th. 2.3
(o), it then follows that the number of semi-infinite branches of f -RBW→• having the deterministic
asymptotic direction θ ∈ R/2πZ is a.s. equal to 1. This key argument also makes a bridge between
the (random) directions in which f -RBW→• admits several semi-infinite branches and the special
points of W↓. Given t ∈ R, Th. 3.14 of [18] describes the sets of points on the real line R×{t} from
which start respectively 2 and 3 BMs. The first one is dense and countable whereas the second
one is empty, with probability 1. These local results also hold for the CBW W↓ (but we do not
provide proofs).

Remark 2.10. Cylinders may also be sent easily on spheres, by sending the horizontal slices h ∈
(a, b) of the cylinder to the horizontal slice g(h) of the sphere {(x, y, h) ∈ R3 : x2 +y2 +g(h)2 = 1},
where −∞ ≤ a < b ≤ +∞, and g is an increasing and bijective function from (a, b) to (−1, 1).
Somehow, sending cylinders onto the plane allows to contract one slice (or one end) of the cylinder,
and sending it on the sphere amounts to contracting two slices (or the two ends) of the cylinder.
Again, this point of view will provide a suitable definition for the spherical Brownian web and its
dual.

3 Elements on cylindric lattice and Brownian webs

In this section, two differences between the CBW and its plane analogous are put forward. Firstly,
each of CBW W↑ and W↓ contains a.s. exactly one bi-infinite branch; this is Th. 3.1, the main
result of this section. This property is an important difference with the planar BW which admits
a.s. no bi-infinite path (see e.g. [13] in the discrete case). The distributions of these bi-infinite
paths are identified by taking the limit of their discrete counterparts on the cylindric lattice web.

Secondly, the coalescence time of all the Brownian motions starting at a given slice admits
exponential moments (Prop. 3.10). This is also an important difference with the planar case,
where the expectation of the coalescence time of two independent Brownian motions is infinite,
which comes from the fact that the hitting time τ1 of 0 by a Brownian motion starting at 1 is
known to have distribution P(τ1 ∈ dt) = e−1/(2t)/

√
2πt3.

3.1 The bi-infinite branch of the CBW

For any x, x′ ∈ CylD, t ∈ R, denote by

T ↑(x, x′, t) = inf
{
s > t : W↑

(x,t)(s) = W↑
(x′,t)(s)

}
(20)

T ↓(x, x′, t) = sup
{
s < t : W↓

(x,t)(s) = W↓
(x′,t)(s)

}
(21)
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the coalescence times of the cylindric Brownian motions W↑
(x,t) and W↑

(x′,t) one the one hand, and

of W↓
(x,t) and W↓

(x′,t) on the other hand. Set for D ∈ {↑, ↓},

TD(t) = max
{
TD(x, x′, t), (x, t), (x′, t) ∈ Slice(t)

}
,

the coalescence time of all the Brownian motions (going upward if D =↑ and downward if D =↓)
starting at Slice(t).

Consider a continuous function γ : R 7→ R/Z. We say that γ, or rather, its graph {(γt, t), t ∈ R}
is a bi-infinite path of the CBW W↑, if there exists an increasing sequence (tk, k ∈ Z) such
that limk→−∞ tk = −∞, limk→+∞ tk = +∞, and a sequence (xk, k ∈ Z) such that for any
k ∈ Z, W↑

(xk,tk)(tk+1) = xk+1, and W↑
(xk,tk)(s) = γs for s ∈ [tk, tk+1]. Similarly, we say that

{(γt, t), t ∈ R} is a bi-infinite path of the CBWW↓, if there exists an decreasing sequence (tk, k ∈ Z)

such that limk→−∞ tk = +∞, limk→+∞ tk = −∞ and a sequence (xk, k ∈ Z) such that for any
k ∈ Z, W↓

(xk,tk)(tk+1) = xk+1, and W↓
(xk,tk)(s) = γs for s ∈ [tk+1, tk].

Theorem 3.1. With probability 1, any two branches of the CBW W↑ eventually coalesce. Fur-
thermore, with probability 1, the CBW W↑ contains exactly one bi-infinite branch (denoted C↑).

A notion of semi-infinite branch is inherited from the cylinder via the map ϕ?:

Corollary 3.2. The standard out-radial Brownian web RBW•→ possesses a unique semi-infinite
branch.

Proof of Theorem 3.1. The first statement is a consequence of the recurrence of the linear BM.
Let us introduce some stopping times for the filtration F↓. First let τ↓,1 = T ↓(0) (the coalescing

time of the CBW W↓ coming from Slice(0) in the dual), and successively, going back in the past,
τ↓,k = T ↓(τ↓,k−1). Since the primal and dual paths do not cross a.s., it may be checked that all
primal Brownian motion W↑

(x,τ↓,k)
for x ∈ Slice(τ↓,k) have a common abscissa, say x′k−1 at time

τ↓,k−1, that is in Slice(τ↓,k−1). In other words, they merge before time τ↓,k−1. A simple picture
shows that at x′k−1, the dual W↓ has two outgoing paths, and thus the primal W↑

(x′k−1,τ
↓,k−1)

is
a.s. a single path (see e.g. [29, Theorem 2.11], and use the fact that the special points of the CBW
are clearly the same as those of the BW).

We have treated the negative part of the bi-infinite path. The positive path is easier, since a
bi-infinite path must coincide with the trajectory W↑

(x′0,0) for its part indexed by positive numbers.
As a consequence, the sequence defined by :
– for k ≥ 0 by t−k = τ↓,k, x−k = x′k,
– for k ≥ 1 by tk = k, xk = W ↑(xk−1,tk−1)(tk)

does the job if we prove that τ↓,ks are finite times that go to −∞ a.s. But this is a consequence of
the strong law of large numbers, since τ↓,k is a sum of i.i.d. r.v. distributed as τ↓,1 a.s. finite and
positive (by continuity of the BM and comparison with the planar BW).

Similarly, it can be proved that any two branches of W↓ eventually coalesce and that W↓

contains a.s. a unique bi-infinite path that we denote C↓.

3.2 The bi-infinite branch of the CLW

As we saw in Prop. 2.6, the CBW can be obtained as a limit of a CLW when the renormalization
parameter n in the CLW tends to +∞. We first show that the CLW also has a bi-infinite path and
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use the explicit transition kernels for the trajectories of the CLW to obtain, by a limit theorem,
the distribution of (C↑,C↓). The latter are two reflected Brownian motions, as described by [30].

The coalescence times of the random walks starting at height h ∈ Z are respectively : T ↑n(h) = inf
{
t ≥ h : W2n,↑

w (t) = W2n,↑
w′ (t),∀w,w′ ∈ Slice↑2n(h)

}
,

T ↓n(h) = sup
{
t ≤ h : W2n,↓

w (t) = W2n,↓
w′ (t),∀w,w′ ∈ Slice↑2n(h)

}
.

Since for any two points w,w′ ∈ Cyl↑, W2n,↑
w and W2n,↑

w′ eventually coalesce a.s., we have a.s., for
any h,

T ↑n(h) < +∞, T ↓n(h) > −∞. (22)

For D ∈ {↑, ↓}, a bi-infinite path of CylD2n is a sequence (xi, i)i∈Z, such that for all i ∈ Z,
xi − xi−1 mod 2n ∈ {1, 2n− 1}. We say that W2n,D contains a bi-infinite path C2n,D if there is a
bi-infinite path C2n,D of CylD2n whose edges are included in the set of edges of W2n,D.

Proposition 3.3. A.s., W2n,↑ and W2n,↓ each contains a unique bi-infinite path.

Proof. Take the slice h and consider T ↑n(h). Since the paths from W2n,↑ do not cross those of
W2n,↓, the paths in W2n,↓ started from h + T ↑n(h) all meet before slice h. Let C2n,↓(h) be their
common position at height h. Let us consider the sequence (τ↑,kn , k ∈ N) defined similarly to the
one introduced in the proof of Th. 3.1: τ↑,0n = 0 and for k ≥ 1, τ↑,kn = T ↑n(τ↑,k−1

n ). This sequence
converges to +∞ a.s. since τ↑,kn is the sum of k independent r.v. distributed as τ↑,1n = T ↑n(0). The
sequence of paths γk = W2n,↓

(C2n,↓(τ↑,kn ),τ↑,kn )
is increasing for inclusion and defines a bi-infinite path

C↓ = limk→+∞ ↑ γk that is unique by the property (22). The construction of the bi-infinite path
for W2n,↑ follow the same lines.

Let us describe more precisely the distribution of (C2n,↑,C2n,↓). Let h1 ≤ h2 be two heights.
We show that (C2n,↑,C2n,↓) is distributed on a time interval [h1, h2], as a Markov chain with
explicit transitions.

For any process X = (Xi, i ∈ Z) indexed by Z, and h1 ≤ h2, let us denote

X[h1, h2] := (Xh1 , Xh1+1, · · · , Xh2), and X[h2, h1] := (Xh2 , Xh2−1, · · · , Xh1).

Lemma 3.4. For h1 ≤ h2, we have
(i) C2n,↑(h1) and C2n,↓(h2) are independent r.v. respectively uniformly distributed in Slice↑2n(h1)

and Slice↓2n(h2),
(ii) For any (x1, x2) ∈ Slice↑2n(h1)×Slice↓2n(h2), conditionally on (C2n,↑(h1),C2n,↓(h2)) = (x1, x2),(

C2n,↑[h1, h2],C2n,↓[h2, h1]
) (d)

=
(
W2n,↑

(x1,h1)[h1, h2],W2n,↓
(x2,h2)[h2, h1]

)
(23)

If Pair↑,↓(x1, x2, h1, h2) denotes the support of (W2n,↑
(x1,h1)[h1, h2],W2n,↓

(x2,h2)[h1, h2]), then for any
(C1, C2) ∈ Pair↑,↓n (x1, x2, h1, h2)

P
(

(W2n,↑
(x1,h1)[h1, h2],W2n,↓

(x2,h2)[h1, h2]) = (C1, C2)
)

= 2−2(h2−h1)+Nb(C1,C2) (24)

where Nb(C1, C2) is the “number of contacts" between C1 and C2 :

Nb(C1, C2) = #{i ∈ [h1, h2 − 1] : C1(i) = C2(i+ 1)}. (25)
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Proof. The family (C2n,↑(h), h < h1) (resp. (C2n,↓(h), h ≥ h2)) is a function of the Rademacher
r.v. placed on ∪h<h1

Slice↑2n(h) (resp. on ∪h≥h2
Slice↑2n(h)). Hence, (C2n,↑(h), h < h1) and

(C2n,↓(h), h ≥ h2) are independent, and independent of C2n,↑[h1, h2 − 1]. Clearly, C2n,↑(h1)

and C2n,↓(h2) have invariant distributions by rotation, so they are uniform, and (23) holds.
Using the Rademacher r.v. ξ’s defined at the beginning of Section 2.3, we have

{(W2n,↑
(x1,h1)[h1, h2],W2n,↓

(x2,h2)[h1, h2]) = (C1, C2)} =

{∀h1 ≤ i < h2, ξ(C1(i), i) = C1(i+ 1)− C1(i)mod 2n

and ξ(C2(i+ 1), i) = C2(i+ 1)− C2(i)mod 2n}, (26)

since the edges of the dual are determined by the edges of the primal. The number of Rademacher
(ξ(w), w ∈ Cyl↑2n) contributing to the above event is 2(h2 − h1) − Nb(C1, C2), hence the result.
Nb(C1, C2) = #{i : (C1(i), i) = (C2(i+1), i)} is the number of edges (ξ(u), u ∈ Cyl↑2n) contributing
to the definition of both (C1, C2). Apart these edges, each increment ofC↓ and of C↑ are determined
by some different Rademacher r.v. Hence 2(h2 − h1) − Nb(C1, C2) edges determine the event
{(W↑

(x1,h1)[h1, h2],W↓
(x2,h2)[h1, h2]) = (C1, C2)}.

From the above Lemma, it is possible to give a representation of the vectors C2n,↑[h1, h2] and
C2n,↓[h2, h1] with a Markov chain whose components both go in the same direction ↑.
Lemma 3.5. We have(

C2n,↑[h1, h2],C2n,↓[h1, h2]
) (d)

= (M1[h1, h2],M2[h1, h2])

where M = (M1,M2) is a Markov chain whose initial distribution is uniform on Slice↑2n(h1) ×
Slice↓2n(h1), and whose transition kernel K is defined as follows:
if dZ/2nZ(a, a′) > 1,

K((a, a′), (a+ εmod 2n, a′ + ε′mod 2n) = 1/4, for any (ε, ε′) ∈ {−1, 1}2 (27)

if dZ/2nZ(a, a′) = 1, 

K((a, a+ 1), (a+ 1, a+ 2)) = 1/2,

K((a, a+ 1), (a− 1, a+ 2)) = 1/4,

K((a, a+ 1), (a− 1, a)) = 1/4,

K((a+ 1, a), (a, a− 1)) = 1/2,

K((a+ 1, a), (a+ 2, a− 1)) = 1/4,

K((a+ 1, a), (a+ 2, a+ 1)) = 1/4,

(28)

where a, a− 1, a+ 1, a+ 2 are considered modulo 2n.

Notice that the starting points ofM is a pair of uniform points at time h1, while forC2n,↑[h1, h2]

and C2n,↓[h1, h2] the starting points were on two different slices (see Lemma 3.4).

Proof. First, both distributions have same support, which is⋃
(x1,x2)∈Slice↑2n(h1)×Slice↓2n(h2)

Pair↑,↓(x1, x2, h1, h2),

the set of pairs of non-crossing paths living on Cyl↑2n × Cyl↓2n. By Lemma 3.4, we see that
for any pair (C1, C2) in this support we have P((C2n,↑

h1
[h1, h2],C2n,↓

h2
([h1, h2]) = (C1, C2)) =

2−2(h2−h1)+Nb(C1,C2). The Markov kernel has been designed to satisfy the same formula.
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3.3 Distribution of (C↑,C↓)

In the sequel, we consider the sequence (C2n,↑,C2n,↓)n∈N correctly renormalized and interpolated
as a sequence of continuous functions. We will prove its convergence in distribution on every
compact set [h1, h2] (with h1 < h2) to (C↑,C↓), a pair of reflected Brownian motions modulo
1 (see Figure 3). This result is similar to that of Soucaliuc et al. [30] introduced in the next
paragraph.

Let F : R→ [0, 1] be the even, 2-periodic function defined over [0, 1] by F (x) = x.
Let us consider U1 and U2 two i.i.d uniform r.v. on [0, 1], and B and B′ two i.i.d. BM starting

at 0 at time h1 and independent of U1 and U2. Let (Y ↑, Y ↓) be the following continuous process
defined for t ∈ [h1, h2] and taking its values in Cyl2

(Y ↑, Y ↓)(t) =

(
U1 +

B′t√
2
−H(t) mod 1, U1 +

B′t√
2

+H(t) mod 1

)
, (29)

where H(t) represents half the “distance” |Y ↑(t)→ Y ↓(t)| :

H(t) =
F
(
U2 +

√
2Bt

)
2

. (30)

Since F is bounded by 1, Y ↑ and Y ↓ never cross.

Figure 3: The infinite paths of the CBW (in red) and of its dual (in blue) are distributed as reflected

Brownian motions modulo 1.

Theorem 3.6. We have the following convergences in distribution:
(i) Let h1 < h2. Let U↑n and U↓n be two independent uniform r.v. on Slice2n(h1) and Slice2n(h2)

respectively. Then in C([h1, h2], (R/Z)2):W2n,↑
U↑n

(4n2 .)

2n
,
W2n,↓

U↓n
(4n2 .)

2n

 (d)−−→
n

(Y ↑, Y ↓). (31)

(ii) In C(R, (R/Z)2): (
C2n,↑(4n2 .)

2n
,
C2n,↓(4n2 .)

2n

)
(d)−−→
n

(C↑,C↓)

and (C↑,C↓)
(d)
= (Y ↑, Y ↓).
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Notice that for t = h1,

(Y ↑(h1), Y ↓(h1)) = (U1 − F (U2)/2 mod 1, U1 + F (U2)/2 mod 1)

which is indeed a pair of i.i.d. uniform r.v. on [0, 1] as expected in view of Lemma 3.4 (i).

The remaining of this section is devoted to the proof of Theorem 3.6, which is separated into
several steps. Let us start with point (i).

Step 1: Tightness of
(
W2n,↑

U↑n
(4n2 .)/(2n),W2n,↓

U↓n
(4n2 .)/(2n)

)
By translation invariance, we may suppose that h1 = 0 and set h2 = T . The tightness of the

family of distributions of
(
W2n,↑

U↑n
(4n2 .)/(2n),W2n,↓

U↓n
(4n2 .)/(2n)

)
in C([0, T ], (R/Z)2) follows from

the tightness of its marginals that are simple well rescaled random walks on the circle. Now, our
aim is to identify the limiting distribution. For that purpose, and in view of Lemmas 3.4 (ii) and
3.5, we study more carefully the Markov chain (M1,M2).

Step 2: Angle process between M1 and M2

Let us extend the notation [a→ b] and |a→ b| for a and b in R/2nZ. For the Markov chain M
defined in Lemma 3.5, the angle process between the two components is

A(i) = |M1(i)→M2(i)|, i ≥ 0.

Of course, for any i, (M1(i),M2(i)) = (M1(i),M1(i) + A(i)mod 2n). We will focus on the asymp-
totics of ((M1(i), A(i)), i ≥ 0).

Recall thatM1 andM2 are simple non-independent random walks with Rademacher increments.
Let us write: 

M1(i) = M1(0) +

i∑
j=1

R2j−1,

M2(i) = M2(0) +

i∑
j=1

R2j

where (R2i, i ≥ 1) and (R2i−1, i ≥ 1) are two families of i.i.d. Rademacher r.v., the two families
being possibly dependent from each other. The process A takes its values in the set of odd integers
in [0, 2n], and its are sums of 2 Rademacher r.v.

Now, let us consider the simple random walk

Z(i) = A(0) +

i∑
j=1

(−1)jRj = M2(i)−M1(i)

starting from A(0). If M1 and M2 were allowed to cross, then A(i) would be equal to Z(2i). We
have to account for the non-crossing property of the paths of W2n,↑.
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A random walk (Zi, i ≥ 0) is said to be the simple random walk reflected at 0 and 2n, and
starting at some b ∈ J0, 2nK if (Zi, i ≥ 0) is a Markov chain such that{

P(Zi+1 = 1 |Zi = 0) = P(Zi+1 = 2n− 1 |Zi = 2n) = 1

P(Zi+1 = a± 1 |Zi = a) = 1/2, for any a ∈ J1, 2n− 1K.

For any discrete time process X, denote by

∆Xi := Xi −Xi−1,

the ith increment of X. We have

Lemma 3.7. The distribution of the process ((A(i),M1(i)), i ≥ 0) starting at (A(0),M1(0)) where
A(0) ∈ J1, 2n− 1K is odd, and M1(0) ∈ J0, 2n− 1K is even is characterized as follows:

For (Zi, i ≥ 0) a simple random walk reflected at 0 and 2n, and starting from A(0), we have:

(A(i), i ≥ 0)
(d)
= (Z2i, i ≥ 0)

(d)
= F2n(Z2i, i ≥ 0), (32)

where F2n : Z→ J0, 2nK, the even 4n-periodic function, defined on [0, 2n] by F2n(x) := x.

The random walk M1 starting at M1(0) admits as increments the sequence

(∆M1(i), i ≥ 1) = (−∆Z2i−1, i ≥ 0) , (33)

that is the opposite of the increments with odd indices of Z.

Notice that the second identity in (32) holds in distribution only: as defined, the reflection
only modifies the increments that follow the hitting times of 0 and 2n, whereas the map F2n turns
over large part of the trajectory (Zi, i ≥ 0). Denoting by w2n(`) = b`/(2n)c the discrete “winding
number” of `, according to Lemma 3.7, the increments of the processM1 under this representations
are

∆M1(`) = (−1)w(Z2`−1)∆Z2`−1.

Proof of Lemma 3.7. The distance |M1(i)→M2(i)| decreases when ∆M1(i) = R2i−1 = 1 increases
and increases when ∆M2(i) = R2i = 1, so that Z(2i) would be equal to A(i) if the two walks were
not constrained to not cross. We would also have

∆M1(i) = −(Z2i−1 − Z2i−2) = −∆Z2i−1. (34)

Since 0 and 2n are even, and since Z(0) = A(0) is odd, the random walk can hit 0 and 2n only
after an odd number of steps. In other words, the reflection will concern only the steps with even
indices. Therefore, let (Zi, i ≥ 0) be the random walk Z reflected at 0 and 2n: the odd increments
of Z and of Z are the same, and the even increments correspond except when Z2i−1 ∈ {0, 2n}, in
which case the reflection implies that Z2i = 1Z2i−1=0 + (2n− 1)1Z2i−1=2n. It is easy to check from
(27)-(28) that (Z2i, i ≥ 0) has the same distribution as the angle process (A(i), i ≥ 0) started from
A(0) one the one hand, and as (F2n(Z2i), i ≥ 0) on the other hand.
Finally, notice that because the odd increments are the same, (34) also holds for Z.
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Step 3: Identification of the limit

Lemma 3.8. Let U1, U2 are two uniform r.v. on [0, 1], let B and B′ be two BMs, all being
independent. We have in C(R+,R/Z) that(

M1(4n2.)

2n
,
A(4n2.)

2n

)
(d)−−→
n

(U1 +B′. −H(.) mod 1, 2H(.)) (35)

where H(t) := F (U2 +
√

2Bt)/2, has been defined in (30).

Proof. Let us first consider the angle component. Since the discrete process A(4n2t)/(2n) is the
difference between two (dependent) suitably rescaled random walks which are both tight under
this rescaling, the process A(4n2t)/2n is tight in C(R+,R/Z). To characterize the limiting process,
write

A(4n2t)

2n
=
F2n(Z8n2t)

2n
= F

(
Z8n2t

2n

)
since for every x and every n, F2n(2nx) = 2nF (x). The central limit theorem implies the con-

vergence Z8n2t

2n

(d)−−→
n

U2 + N (0, 2t) for a fixed t ≥ 0. Since, the mapping g 7→ (t 7→ F (g(t)) is
continuous on C(R+,R/Z)s, the independence and stationarity of the increments of Z provide the
finite dimensional convergence of the angle process in (35).

For the first component, we know that M1(4n2.)
2n converges in distribution to a BM modulo 1, but

that is not independent from the limit H of A(4n2.)
2n . The result is a consequence of the following

lemma, proved in the sequel.

Lemma 3.9. Let B and B′ be two independent BM, and let X = B +B′ be the sum process. For
any (b0, x0) ∈ R2, conditionally on {(Xt = xt, t ∈ [0, T ]), B0 = b0, B

′
0 = x0 − b0}, we have

(B.,B′.)[0,T ]
(d)
=

(
b0 −

x0

2
+
x.
2

+
B′′.√

2
,−b0 +

x.
2
− B′′.√

2

)
[0,T ]

(36)

for an independent BM B′′.

Step 4: Proof of Theorem 3.6 (ii).

Consider two levels h1 ≤ h2. First, remark that the restriction of (C↑,C↓) to the compact
interval [h1, h2] has same distribution as (W↑

U↑
,W↓

U↓
) on [h1, h2], where U↑ and U↓ are indepen-

dent and uniformly distributed on Slice(h1) and Slice(h2) (indeed, W↑(h1) depends only on what
happens below the level h1 and W↓(h2) depends only on what happens above the level h2.
From (31), it remains to prove that (W↑

U↑
,W↓

U↓
) on [h1, h2] is distributed as (Y ↑, Y ↓).

For any (x, h) ∈ Cyl, the map Π(x,h) : F ∈ (HO, dHO ) 7→ W(x,h) ∈ C([h,+∞),R \ Z) that asso-
ciates to a forest the path started at (x, h) is continuous. From Prop. 2.6, we thus deduce that the
Markov chain M of Lemma 3.5 correctly renormalized converges on [h1, h2], when n → +∞, to
(W↑

u1−F (u2)/2(t),W↓
u1+F (u2)/2(t))t∈[h1,h2] the paths of CBW and its dual. We deduce that (Y ↑, Y ↓)

has the same distribution. This concludes the proof of Theorem 3.6.
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Proof of Lemma 3.9. Since we are dealing with Markov processes with stationary increments and
simple scaling properties, it suffices to show that for X1, X2, N 3 i.d.d. N (0, 1) r.v. , we have that
conditionally on S = X1 +X2,

(X1, X2)
(d)
=
(S

2
+

N√
2
,
S

2
− N√

2

)
.

This is a consequence of Cochran theorem, which gives that (X1 − S/2, X2 − S/2) is a Gaussian
vector independent from S. Since X1 − S/2 = (X1 −X2)/2 = −(X2 − S/2), introducing N/

√
2 =

X1 − S/2 finishes the proof.

3.4 The coalescence times have exponential moments

Th. 3.1 states that the coalescence times T ↑(x, x′, t) and T ↑(t) are finite a.s. Due to the compact-
ness of the space R/Z, we can prove in fact that they admit exponential moments.

Proposition 3.10. (i) There exist b > 0, M < +∞ such that for any x, x′ ∈ R/Z and any t ∈ R,

E
[
eb(T

↑(x,x′,t)−t)
]
< M.

(ii) For any t ∈ R, the coalescence time T ↑(t) admits exponential moments :

∃a > 0, E
[
ea(T↑(t)−t)

]
<∞ .

Proof. For both assertions, by the time translation invariance of the CBW, it suffices to consider
only the case t = 0 .
(i) We can assume that 0 ≤ x ≤ x′ < 1. We have before crossing time

(W↑
(x′,0)(t)−W↑

(x,0)(t), 0 ≤ t ≤ T (x, x′, 0))
(d)
= (x′ − x+

√
2B(t)mod 1, 0 ≤ t ≤ T (x, x′, 0)),

where B is a standard usual Brownian motion. Hence T (x, x′, 0) has same distribution as the exit
time of a linear BM B from the segment [−(x′−x), 1− (x′−x)]. This exit time is known to admit
exponential moments (see e.g. Revuz & Yor [27, Exo. (3.10) Chap. 3]).
(ii) We will use a very rough estimate to prove this fact.

Let for k ≥ 0, Ak be the following independent events :

Ak = {T ↑(2k) ≤ 2k + 2}

meaning that all trajectories born at height 2k have coalesce before time 2k + 2. If we show that
p := P (Ak) > 0, then T (0) ≤ min{k,Ak holds} is bounded by twice a geometric r.v. p, and then
has some exponential moments. So let us establish this fact.

For this, we use a single argument twice. Consider Z the hitting time of two BM starting at
distance 1/2 on R/Z. Clearly q := P(Z ≤ 1) > 0. Let us now bound P (A0). For this consider “half
of the dual CBW” (W↓

(x,1), 0 ≤ x ≤ 1/2) starting at Slice(1). With probability q these trajectories

merge before Slice(0). Conditionally to this event, all primal trajectories (W↑
(x,0), x ∈ Slice(0))

starting at time 0 a.s. avoid the dual trajectories, and satisfy W↑
(x,0)(1) ∈ (1/2, 1), meaning that,

with probability q at least, they will be in the half interval (1/2, 1). But now, the two trajectories
W↑

(1/2,1) and W↑
(1,1), will merge before time 2 with probability q. Conditionally to this second
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event, with probability ≥ 1/2, the merging time of (W↑
(x,1), x ∈ (1/2, 1)) is smaller than 1. Indeed

on Cyl, by symmetry, when W↑
(1/2,1) and W↑

(1,1) merge, they “capture” all the trajectories starting
in [1/2, 1] (which will merge with them) or they capture all the trajectories starting in [0, 1/2].
Since both may happen, the probability of each of this event are larger than 1/2. Hence p ≥ q2/2

and the proof is complete.

3.5 Toward explicit computations for the coalescence time distribution

Notice that an approach with Karlin-McGregor type formulas can lead to explicit (but not very
tractable) formulas for the distribution of the coalescing time of several Brownian motions. Let us
consider 0 < x1 < x2 < · · · < xk < 1, and denote by Tk the time of global coalescence of the k
Brownian motions W ↑(x1,0), . . .W

↑
(xk,0).

Taking to the limit formulas obtained by Fulmek [20], we can describe the distribution of the
first coalescence time T k→k−1 between two of these paths :

T k→k−1(xi, 1 ≤ i ≤ j) = min{T ↑(xi, xi+1, 0), 1 ≤ i ≤ k} (37)

with the convention that xk+1 = x1, and where T ↑(xi, xi+1, 0) is the time of coalescence of W↑
(xi,0)

and W↑
(xi+1,0) as defined in (20). We will omit the arguments (xi, 1 ≤ i ≤ j) in the notation

T k→k−1
(xi,1≤i≤j) unless necessary. For t > 0,

P(T j→j−1 > t) =

∫
dy1 . . .

∫
dyj10<y1<y2<···<yj<1

[ j−1∑
i=0

sgn(σi)

j∏
`=1

Φt
(
y` − xσi(`)

)]
(38)

where σi denotes the rotation σi(`) = `+ i mod j and where

Φt(x) =
1√
2πt

∑
m∈Z

exp
(
− (x−m)2

2t

)
.

Explicit formulas for the Laplace transform of T j→j−1 are not established in general cases to our
knowledge, except for the following special case when k = 2 and θ < 0 (see e.g. Revuz & Yor [27,
Exo. (3.10) Chap 3]):

E
(
eθT

2→1
)

=
cosh

(√
|θ| 1+2x1−2x2

2

)
cosh

(√|θ|
2

) . (39)

Using that E(eθT
j+1→j

) = 1 +
∫ +∞

0
θeθtP(T j+1→j > t)dt and the Markov property, we can

finally link (37) and Tk:

E
(
eθTk

)
=

k−1∏
j=1

E
(
E
(
eθT

j+1→j(W1(Tj),...Wk(Tj)) |W1(Tj), . . .Wk(Tj)
))

, (40)

where Tj is the time of the k − jth coalescence (at which there are j Brownian motions left) and
(W1(Tj), . . .Wk(Tj)) are the values of the k coalescing Brownian motions at that time (and hence
only j of these values are different).

It is however difficult to work out explicit expressions from these formula.
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4 Directed and Cylindric Poisson trees

Apart from the (planar) lattice web W 2n, defined as the collection of random walks on the grid
Gr = {(x, t) ∈ Z2, x − t mod 2 = 0} (see [17, Section 6] or Figure 1), several discrete forests are
known to converge to the planar BW; in particular the two-dimensional Poisson Tree studied by
Ferrari & al. in [15, 14]. In Section 4.1, a cylindric version of this forest is introduced and we
state the convergence of this (continuous space) discrete forest to the CBW. See Th. 4.1 below.
Our proof consists in taking advantage of the local character of the assumptions (B2O) and (B2).
Indeed, the cylinder locally looks like the plane and we can couple (on a small window) the directed
and cylindrical Poisson trees in order to deduce (B2O) from (B2).

Finally, in Section 4.2, we discuss under which assumptions, conditions (B2) and (B2O) can
be deduced from each other.

4.1 Convergence to the CBW

Let n ≥ 1 be an integer, and r > 0 be a real-valued parameter. Consider a homogeneous Poisson
point process (PPP in the sequel) Nλ with intensity λ > 0 on the cylinder Cyl defined in (2).

Let us define a directed graph with out-degree 1 having Nλ as vertex set as follows: from each
vertex X = (x, t) ∈ Nλ add an edge towards the vertex Y = (x′, t′) ∈ Nλ which has the smallest
time coordinate t′ > t among the points of Nλ in the strip {(x′′, t′′) ∈ Cyl | dR/Z(t, t′′) ≤ r} where
dR/Z(x, x′′) := min{|x−x′′|, |1+x−x′′|}. Let us set α(X) := Y the out-neighbor of X. Notice that
even if X does not belong to N the ancestor α(X) ∈ N of this point can be defined in the same
way. For any element X ∈ Cyl, define α0(X) := X and, by induction, αm+1(X) := α(αm(X)), for
any m ≥ 0. Hence, (αm(X))m≥0 represents the semi-infinite path starting at X. We define by
Wλ,r,↑

X the continuous function from [t; +∞) to R/Z which linearly interpolates the semi-infinite
path (αm(X))m≥0.

The collection Wλ,r,↑ := {Wλ,r,↑
X , X ∈ Nλ} is called the Cylindric Poisson Tree (CPT). This is

the analogue on Cyl of the two-dimensional Poisson Tree introduced by Ferrari et al. in [15]. Also,
Wλ,r,↑ can be understood as a directed graph with edge set {(X,α(X)) : X ∈ Nλ}. Its topological
structure is the same as the CBW (see Th. 3.1) or as the CLW (see Prop. 3.3). The CPT a.s.
contains only one connected component, which justifies its name: it is a tree and admits only one
bi-infinite path (with probability 1).

Let us choose λ = n and rescale Wλ,r,↑ into W(n),r,↑ defined as

W(n),r,↑ :=

{
W

n, rn ,↑
(x,t) (n2s); (x, t) ∈ Nn, s ≥

t

n2

}
.

Theorem 4.1. For r = 1/2, the normalized CPT W(n),r,↑ converges in distribution to the CBW
as n→ +∞.

Proof. As noticed in Section 2.2, only criteria (IO) and (B2O) of Th. 2.5 have to be checked. The
proof of (IO) is very similar to the one of (I) for the two-dimensional Poisson Tree (see Section
2.1 of [14]) and is omitted. The suitable value r = 1/2 ensures that the limiting trajectories are
coalescing standard Brownian motions.

Let us now prove (B2O). By stationarity of the CPT, it suffices to prove that for all t > 0,

lim
ε→0+

1

ε
lim sup
n→+∞

P
(
ηO
W(n), 1

2
,↑(0, t; [0→ ε]) ≥ 3

)
= 0. (41)
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Recall that among all the trajectories in W(n), 12 ,↑ that intersect the arc [0 → ε] at time 0,
ηO
W(n), 1

2
,↑(0, t; [0→ ε]) counts the number of distinct positions these paths occupy at time t.

A first way to obtain (41) consists in comparing ηO
W(n), 1

2
,↑(0, t; [0 → ε]) and ηW (n)(0, t; 0, ε),

where W (n) denotes the normalized two-dimensional Poisson tree– whose distribution converges
to the usual BW, see [14] –by using stochastic dominations similar to (12) traducing that it is
easier to coalesce on the cylinder than in the plane. Since W (n) satisfies (B2) (see Section 2.2 of
[14]), ηO

W(n),↑(0, t; [0 → ε]) ≤S ηW (n)(0, t; 0, ε) implies that W(n), 12 ,↑ satisfies (41) which achieves
the proof of Th. 4.1.

A second strategy is to investigate the local character of the assumptions (B2) and (B2O).
Indeed, the map t 7→ ηO

W(n), 1
2
,↑(0, t; [0→ ε]) is a.s. non-increasing. It is then enough to prove (41)

for (small) 0 < t � 1 in order to get it for any t > 0. The same holds when replacing W(n), 12 ,↑

with W (n). Now, when t and ε are both small, the (normalized) CPT W(n), 12 ,↑ restricted to a
small window containing [0 → ε] × [0; t] behaves like the (normalized) two-dimensional Poisson
tree W (n) restricted to a window containing [0; ε]× [0; t] with high probability. As a consequence,
W(n), 12 ,↑ and W (n) should simultaneously satisfy (B2O) and (B2).

Let us write this in details. We use a coupling of the environment (the PPP) on some larger
window since the trajectories of the discrete trees on a window are also determined by the envi-
ronment around. Using some control of the deviations of the paths issued respectively from the
intervals ICylε = [0→ ε]×{0} and Iε = [0; ε]×{0}, we determine larger windows WinCylε and Winε
which will determine the trajectories started from this sets to a certain time tε up to a negligible
probability pε. Using the constants that emerge from this study, we thereafter design a coupling
between the PPP on the cylinder and on the plane that coincides on WinCylε and Winε (up to a
canonical identification). This will allow us to deduce (B2) or (B2O) from the other.

To design the windows that contains all paths crossing ICylε (or Iε) up to time t, it suffices to
follow the trajectories starting at (0, 0) and (ε, 0). Consider the path (Xk = (xk, yk), k ≥ 0) started
from (0, 0) and consider the successive i.i.d. increments of this path denoted by (ξxk , ξ

y
k) = ∆Xk.

Before normalisation, (ξx1 , ξ
y
1 ) consists of two independent r.v., where ξx1 is uniform on [−r,+r]

with r = 1/2, and ξy1 has exponential distribution with parameter λ = 1, since

P (ξy1 ≥ y) = P
(
N ∩

([
− 1

2
,

1

2

]
× [0, y]

)
= ∅
)

= e−y .

Now, starting at 0, the renormalized trajectory on W(n), 12 ,↑ is a random walk whose increments
(ξ

(n),x
k , ξ

(n),y
k , k ≥ 0) are i.i.d. such that nξ(n),x

k

(d)
= ξx1 , and n2ξ

(n),y
k

(d)
= ξy1 . Let us define the number

of steps for the rescaled path to hit ordinate t by

τnt := inf

{
j ≥ 1 |

j∑
k=1

ξ
(n),y
k ≥ t

}
(d)
= inf

{
j ≥ 1 |

j∑
k=1

ξyk ≥ n2t

}
.

The points {∑j
k=1 ξ

y
k , j ≥ 1} form a PPP Θ on the line with intensity 1, so that τnt = 1 + #(Θ ∩

[0, n2t]) a.s. Therefore

pc,t,n := P(τnt ≥ cn2) = P(1 + P (n2t) ≥ n2c)

where P (x) is a Poisson r.v. with parameter x. For c = 2t this probability p2t,t,n is exponentially
small in n and the event At,n := {τ tn ≤ 2n2t} has probability exponentially close to 1. Now, on

25



the event At,n, we can control the angular fluctuations of W(n), 12 ,↑:

qt,n := P

(
sup
j≤τnt

∣∣∣∣∣
j∑

k=1

ξ
(n),x
k

∣∣∣∣∣ ≥ c√t
)

(42)

≤ P(Ac2t,n) + P

(
sup

j≤2n2t

∣∣∣∣∣
j∑

k=1

ξ
(n),x
k

∣∣∣∣∣ ≥ c√t
)
. (43)

Thus, consider the process defined by

sn(j/n2) :=

j∑
k=1

ξ
(n),x
k

(d)
=

1

n

j∑
k=1

ξxk , for j ≥ 0,

and interpolated in between. A simple use of Donsker theorem shows that

(sn(a))a≥0
(d)−−→
n

(
1√
12
B(a)

)
a≥0

in C(R+,R) where B is a Brownian motion. Since for every t, on C([0, 2t],R), the functional
g 7→ max |g| is continuous, one sees that

qt,n = P(Ac2t,t,n) + P
(

sup
a≤2t
|sn(a)| ≥ c

√
t

)
(44)

−−−−−→
n→+∞

P
(

sup
a≤2t
|B(a)| ≥ c

√
12t

)
= P

(
sup
a≤1
|B(a)| ≥ c

√
6

)
. (45)

Take ε > 0. Choose c large enough such that P
(
supa≤1 |B(a)| ≥ c

√
6
)
≤ ε2/2, and n large enough

so that qt,n ≤ ε2, and t small enough so that c
√
t < 1/4. We have proved that with probability

larger than 1 − O(ε2), the walk hits ordinate t before its abscissa exits the window [−c
√
t, c
√
t].

Since the decision sector for each step of the walker has width 2r/n, with probability more than
1−O(ε2), the union of the decision sectors of the walk before time t are included in

[−c
√
t− 2r/n, c

√
t+ 2r/n] ⊂ [−1/3, 1/3] (46)

for n large enough. It is now possible to produce a coupling between the PPP on the cylinder and
the plane that coincides on a strip with width 2/3 : take the same PPP on the two strips (up to a
canonical identification of these domains), and take an independent PPP with intensity 1 on the
remaining of the cylinder or of the plane. Henceforth, any computation that depends only of such
a strip in the cylinder and in the plane will give the same result. Here, we then have here, for any
event Ev that depends on the trajectories passing through ICylε or Iε up to time t (for the constant
satisfying what is said just above)

PCyl
n (Ev) = Pn(Ev) +O(ε2), (47)

so that the inheritance of (B2) from the plane to the cylinder is guaranteed, as well as the converse.

4.2 From the plane to the cylinder, and vice-versa: principles

When a convergence result of some sequence of coalescing processes defined on the plane to the
BW has been shown, it is quite natural to think that the similar convergence holds on the cylinder
too, and that the limit should be the CBW. The converse, also, should hold intuitively.
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The main problem one encounters when one wants to turn this intuition into a theorem, is
that, in most cases the constructions we are thinking of are trees that are defined on random
environments (RE) as a PPP or as lattices equipped with Rademacher r.v.. Both these models
exist on the cylinder and on the plane, leading to clear local couplings of these models. But, more
general RE and more general random processes exist, and it is not possible to define a “natural”
model on the cylinder inherited from that of the plane. We need to concentrate on the cases where
such a natural correspondence exists.

A similar restriction should be done for the algorithms that build the trajectories using the
RE. In the cases studied in the paper, the trajectories are made by edges, constructed by using a
navigation algorithm, which decides which points to go to depending on a “decision domain” which
may depend on the RE. For example, in the cylindric lattice web, the walker at position (x, t) just
needs to know the Rademacher variable attached to this point, so that its decision domain is the
point (x, t) itself. In the generalization of Ferrari & al. [15, 14] treated at the beginning of Section
4, the decision domain is a rectangle [x−r, x+r]×(t, t+h] where h is smallest positive real number
for which this rectangle contains a point of the point process (many examples of such navigation
processes have been defined in the literature, see [2, 3, 7, 8, 9, 10, 17, 16]). We may call such model
of coalescing trajectories as coming from “navigation algorithms, with local decision domains”.

There exist models of coalescing random processes of different forms, or that are not local (such
as minimal spanning trees). Again, it is not likely that one may design a general theorem aiming
at comparing the convergence on the cylinder with that on the plane.

“For a model defined on the cylinder and on the plane on a RE” as explained in the proof of
Theorem 4.1, when a local coupling between windows (or strip) of the cylinders and of the plane
exists, (B2) and (B2O) “are morally equivalent”. Informally, the 4 conditions are:
1) the models are invariant by translations on respectively, the cylinder and the plane;
2) there exists a coupling between both probabilistic models which allows to compare W(n),↑ and
W (n) at the macroscopic level: on a window Win := [0, A]× [0, B] for some (small) A,B > 0, the
environments on which are defined W(n),↑ and W (n) can be coupled, and, under these coupling,
these RE coincide a.s.;
3) the restriction of the trajectories from W(n),↑ and W (n) on [0, ε] × [0, tε] are measurable with
respect to the environment in Win with probability 1−O(ε1+a) for some a > 0;
4) the largest decision domain before hitting ordinate n2t is included in a rectangle [an, bn] with
probability 1−O(ε1+a) where an = o(1) and bn = o(1) (for the rescaled version).

5 Discrete Cylindric and Radial Poisson Tree

Coletti and Valencia introduce in [9] a family of coalescing random paths with radial behavior
called the Discrete Radial Poisson Web. Precisely, a Poisson point process Θ with rate 1 on the
union of circles of radius k ∈ N \ {0}, centered at the origin, is considered. Each point of Θ in the
circle of radius k is linked to the closest point in Θ in the circle of radius k − 1, if any (if not, to
the closest point of Θ in the first circle of radius smaller than k − 1 which contains a point of Θ).
They show in [9, Th.2.5] that under a diffusive scaling and restricting to a very thin cone (so that
the radial nature of paths disappears), this web converges to some mapping of the (standard) BW.
A similar result is established in Fontes et al. [16] for another radial web.
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Our goal in this section is to establish a convergence result for an analogous of the Discrete
Radial Poisson Web of Coletti and Valencia [9] but which holds in the whole plane. Our strategy
consists in considering a cylindrical counterpart to the Discrete Radial Poisson Web and to prove
its convergence to the CBW (Theorem 5.1). Thenceforth, it suffices to map the cylinder on the
(radial) plane with ϕ? defined in (17) to obtain a global convergence result for the corresponding
planar radial forest.

We modify a bit the model of [9] to make the involved normalizations more transparent and to
reduce as much as possible the technical issues, while keeping at the same time the main complexity
features. Consider an increasing sequence of non-negative numbers (hk, k ∈ N), with h0 = 0, and
the associated slices of the cylinder:

Cyl′ = R/Z× {hk, k ∈ N} =
⋃
k∈N

Slice(hk) . (48)

Consider the following Poisson point process on Cyl′,

Ξ =
⋃
k≥0

Ξk , (49)

where Ξk is a PPP on Slice(hk) with intensity nk > 0. The sequences (hk)k≥1 and (nk)k≥1 are the
parameters of the model. Remark that the choice of nk = n (a constant) is treated in previous
sections. Here we are interested in the case where nk, hk → +∞.

Given Ξ, let us define the ancestor α(Z) of a point Z = (x, hk) ∈ Slice(hk) as the closest point
of Ξk+1 if the latter is not empty and the point (x, hk+1) otherwise. This second alternative means
that instead of moving to the closest point of the first non-empty slice with rank k′ > k (as in [9]),
one just moves vertically to the next slice.

The ancestor line ALZ of Z = (x, hk) is the sequence (Zj = (xj , hj), j ≥ k) such that Zk = Z

and for j > k, Zj+1 = α(Zj). Upon Ξ we define the Discrete Cylindric Poisson Tree T as the
union of the ancestor lines of the elements of Ξ:

T :=
⋃

(x,h)∈Ξ

AL(x,h) .

Notice that when (x, h) ∈ Ξ, AL(x,h) = T(x,h) is the path of T started at (x, h). The notation
AL(x,h) allows to consider ancestor lines started from any points Z ∈ Cyl′.

Contrary to Section 4, we do not consider a sequence of point processes parametrized by n

which goes to infinity, but rather we shift the cylinder which also implies that we see more and
more points. Precisely, for any k ≥ j ≥ 1 and any (x, hk) ∈ Ξ, let AL

(j)
(x,hk) be the ancestor line

AL(x,hk) translated by the vector −(0, hj). We can then associate to T , the sequence of shifted
forests (T (j))j≥1 by

T (j) :=
⋃

(x,h)∈ ∪k≥j Ξk

AL
(j)
(x,h) .

Our purpose is to prove that:
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Figure 4: First line: Cylindrical forests T represented for (hk)k∈{1...K} with (a) K = 20, (b) K = 100,

(c) K = 1000. The red path is obtained by picking a vertex at height hK at random and by finding its

ancestors in the upper slices. Second line: Projected radial forests obtained by ϕ? defined in (17) and with

the same values of K are represented.

Theorem 5.1. Let us consider two sequences (nk)k≥1 and (fk)k≥1 of positive real numbers such
that

lim
k→∞

fk = 0 ,
∑
k

e−nkfk < +∞ and
∑
k

1

n2
k

= +∞ . (50)

Then there exists a sequence (hk)k≥1 tending to infinity such that the sequence of shifted forests
(T (j))j≥1 converges in distribution to the CBW restricted to the half cylinder Cyl+ = R/Z× R+.

The map ϕ?, as defined in (17), sends the half cylinder Cyl+ := (R/Z) × R+ onto the radial
plane (R/2πZ)×R+. The image of the PPP Ξ is a PPP Ξ′ on the plane, which is the superposition
of the Poisson point processes Ξ′k of intensities nk/(8π3hk) on the circles with radii 4π2hk. The
image of the tree we built on the cylinder is a tree on “the radial plane”, which can in fact be
directly built by adapting the navigation used in the cylinder in the plane (go to the closest point
in the next circle if any, and otherwise to the point with same argument). See Figure 4. To get
a convergence result on the radial plane, with the same flavour as that obtained in the plane, we
need to discard the neighborhood of zero by a shift. The most economic way to state our results
is as an immediate corollary of the previous result:
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Corollary 5.2. Under the hypotheses of Theorem 5.1, when j → +∞, the sequence (ϕ?(T (j)))j≥1

converges in distribution to the RBW•→.

Let us comment on the hypothesis (50). First, it implies that nk → ∞. A consequence of
Borel-Cantelli’s lemma is that whenever

∑
k≥0 e

−nk is finite, there exists a.s. a random rank from
which the Ξk’s are non-empty. Hypothesis (50) is actually slightly more demanding: the condition∑
k 1/n2

k = +∞ and the link between sequences (nk)k≥1 and (fk)k≥1 will appear in Sections 5.1
and 5.3.

To prove Theorem 5.1, we check the criteria of Theorem 2.5, namely (IO) and (EO). The
convergence of an ancestor line of T (j) to a BM modulo 1, when j → +∞, is first stated in Section
5.1. In the proof, we see that the condition

∑
k 1/n2

k = +∞ of (50) is necessary. We then deduce
(IO) in Section 5.3, and use at some point the second item of (50). The proof of (EO) is devoted
in Section 5.4 and is based on a coalescence time estimate (Proposition 5.5 in Section 5.2) whose
proof uses the links between the cylindric and planar forests highlighted in Section 4.2.

5.1 Convergence of a path to a Brownian motion

Let us consider the ancestor line T(Xj ,hj) = ((Xk, hk), k ≥ j) started at a point (Xj , hj) ∈ Ξj for
j ≥ 1. For k > j, this path goes to infinity by jumping from Slice(hk−1) to Slice(hk). The random
increments (∆Xk := Xk−Xk−1, k > j) are independent. The distribution of ∆Xk is characterized
for any measurable bounded map f : [−1/2, 1/2]→ R by,

E(f(∆Xk)) = e−nkf(0) +

∫ 1/2

−1/2

f(x)nke
−2nk|x| dx. (51)

In other words, conditionally on the Slice(hk) being not empty, ∆Xk is a Laplace r.v. conditioned
on having absolute value smaller than 1/2. Hence,

E(∆Xk) = 0

Var(∆Xk) = 1
2n2
k
− e−nk (n2

k+2nk+2)

4n2
k

=: σ2
k

E((∆Xk)4) = 3
2n4
k
− e−nk (n4

k+4n3
k+12n2

k+24nk+24)

16n4
k

.

(52)

As nk →∞, the variance σ2
k is equivalent to 1/(2n2

k). For the sequel, let us denote the variance of
Xk −X0 by:

Vk := Var(Xk −X0) = σ2
1 + · · ·+ σ2

k. (53)

The variance Vk is hence related to nk by (52).

Let us now consider the time continuous interpolation of the shifted sequence (Xk, hk−hj)k≥j .
For ` ∈ N, we set, if hj + t ∈ [hj+`, hj+`+1),

X̄
(j)
t = Xj +

∑̀
k=1

∆Xj+k +
(hj + t)− hj+`
hj+`+1 − hj+`

∆Xj+`+1 . (54)

In order to prove the convergence of (X̄(j))j≥0 to a Brownian motion, it is natural to set

hk = Vk, for any k ≥ 0 . (55)
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Then, combining (52), (53), (55) with (50), it follows that hk → ∞ and hk+1 − hk = σ2
k+1 → 0,

i.e. slices are getting closer and closer.

Example 5.3. The hypothesis (50) is satisfied for example for nk = kα with 0 < α < 1/2 and
fk = kα

′
with 0 < α′ < α. This entails that hk = c1 + c2k

1−2α where c1, c2 are positive constants.

Let us introduce, for the sequel,

R(t) := inf{k ∈ N, Vk ≥ t} (56)

the integer index such that hR(t)−1 < t ≤ hR(t). Note that R(hk) = k.

Lemma 5.4. Under the previous notations and (50), the following convergence holds in distribution
in C(R+,R)

(X
(j)

t , t ≥ 0)
(d)−−−−→

j→+∞
(Bt, t ≥ 0) , (57)

where (Bt, t ≥ 0) is a standard Brownian motion taken modulo 1.

Proof of Lemma 5.4. We are not under the classical assumptions of Donsker theorem, since the
∆Xk’s are not identically distributed and since the convergence involves a triangular array because
of the shift. Because the ∆Xk’s are independent, centered, with a variance in 1/n2

k that tends to
0, we have for all t ≥ 0,

lim
j→+∞

Var
(
X̄

(j)
t − X̄(j)

0

)
= lim
j→+∞

R(hj+t)∑
`=j+1

Var(∆X`) = lim
j→+∞

(
VR(hj+t) − Vj

)
= t,

implying that X̄(j)
t − X̄

(j)
0 converges in distribution to N (0, t) by Lindeberg theorem (e.g. [5,

Th. 7.2]). The convergence of the finite dimensional distributions is easily seen by using the
independence of the ∆Xk’s.

The tightness is proved if (see e.g. [5, Th. 8.3]) for every positive ε > 0 and η > 0, there exists
δ ∈ (0, 1) and j0 ∈ N such that for every j ≥ j0 and every t ∈ R+,

1

δ
P
(

sup
t≤s≤t+δ

∣∣X̄(j)
s − X̄(j)

t

∣∣ ≥ ε) ≤ η. (58)

For t ∈ R+ and j ∈ N,

P
(

sup
t≤s≤t+δ

∣∣X̄(j)
s − X̄(j)

t

∣∣ ≥ ε) =P
(

sup
t≤s≤t+δ

∣∣X̄(j)
s − X̄(j)

t

∣∣4 ≥ ε4
)

≤P
(

max
R(hj+t)≤`≤R(hj+t+δ)

S4
` ≥ ε4

)
,

where

S` =
hR(hj+t) − (hj + t)

hR(hj+t) − hR(hj+t)−1
∆XR(hj+t) +

∑̀
k=R(hj+t)+1

∆Xk.

Since the ∆Xk are centered, S` defines a martingale (in ` ≥ R(hj + t)), and S4
` is a submartingale.

Using Doob’s lemma for submartingales:

ε4P
(

max
R(hj+t)≤`≤R(hj+t+δ)

S4
` ≥ ε4

)
≤ E

(
S4
R(hj+t+δ)

)
≤ E

( R(hj+t+δ)∑
k=R(hj+t)

(∆Xk)4
)

+
∑
k 6=`

R(hj+t)≤k,`≤R(hj+t+δ)

E((∆Xk)2)E((∆X`)
2), (59)
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using that the ∆Xk’s are independent and centered. The last sum in the r.h.s. of (59) is upper
bounded by R(hj+t+δ)∑

k=R(hj+t)

E
(
(∆Xk)2

)2

that converges to δ2 when j → +∞. For the first term, there exists from (52) a constant C such
that for k large enough, E((∆Xk)4) ≤ CVar(∆Xk)2 = Cσ4

k. Thus:

E

R(hj+t+δ)∑
k=R(hj+t)

(∆Xk)4

 ≤CMj,t,δ

R(hj+t+δ)∑
k=R(hj+t)

σ2
k ∼j→+∞ CMj,t,δδ

withMj,t,δ = sup{σ2
k, R(hj + t) ≤ k ≤ R(hj + t+δ)} → 0 when j → +∞. Gathering these results,

we see that up to a certain constant C,

1

δ
P
(

sup
t≤s≤t+δ

∣∣X̄(j)
s − X̄(j)

t

∣∣ ≥ ε) ≤ C

ε4δ

(
δ2 + CMt1,t,δδ

)
,

which converges to zero when δ → 0 and j → +∞.

5.2 Coalescence time estimate

In this section, we establish a coalescence time estimate that will be useful for proving (IO) and
(EO). Following the lines of Section 4.2, we can introduce a planar model corresponding to our
cylindrical tree and ensuring the possibility of couplings between the cylinder and the plane. In the
plane, the use of the Skorokhod embedding theorem and the results known for planar Brownian
motions make it easier to obtain such estimates. We thus first introduce in Section 5.2.1 a planar
model corresponding to the forest T . We establish estimates for the coalescence time of two paths
in this planar model. For this, we start with studying how the distance between the two paths
evolves. The core of the proof relies on the Skorokhod embedding theorem (as in [8]), but with a
clever preliminary stochastic domination of the distance variations. In Section 5.2.2, we return to
the original model and deduce from the previous result estimates for the coalescence time of two
paths of T (j).

5.2.1 Planar analogous

We first define the planar model corresponding to our cylindrical problem. We consider the hori-
zontal lines with ordinate (hk)k∈N in the upper half plane. For each k ∈∈ N, we consider on the
line Lk := R × {hk} (or level hk), an independent PPP Υk with intensity nk. The Poisson point
process on the union of the lines is denoted by Υ, similarly to (49). Each point of the level hk is
linked with the closest point of the next level, namely level hk+1. This generates a forest that we
denote W, and which can be seen as the analogous of T in the plane.

For a given point Z ∈ ∪k∈NLk, denote by αP (Z) the ancestor of Z for this navigation. This
allows us to define, as for the cylinder, the ancestor line ALPZ of any element Z ∈ R× R+.

The aim of this section is to provide an estimate on the tail distribution of the hitting time
between the ancestor lines started from two points at a distance d > 0 on the line L0. Without
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restriction, we consider Z = (0, 0) and Z ′ = (d, 0), and denote their ancestor lines by (Zk, k ≥ 0)

and (Z ′k, k ≥ 0). Let us denote by
Dk = Z ′k − Zk,

the distance between the two paths at level hk. The result proved in this section is the following:

Proposition 5.5. Let us define by τ = inf{k ∈ N, Dk = 0}. There exists C > 0 such that for
K ∈ N \ {0},

P(τ > K) ≤ Cd√
hK

. (60)

The remaining of the section is devoted to the proof of Prop. 5.5. In the proof, we will also
need the following quantity for k ≥ 1:

∆k = Dk −Dk−1.

The proof is divided into several steps. For the first step, we consider a PPP with an intensity
constant and equal 1. In doing so, we introduce a sort of companion model that will help finding
estimates for the planar model considered above. We will then proceed to the control of the hitting
time of two ancestors lines, by using some rescaling properties.

Step 1: Evolution of the distance in one step, when the intensity is 1

Take two points Z = (0, 0) and Z ′ = Z(d, 0) at distance d in L0. Assume that the PPP Υ1 on L1

has intensity 1: let (X1, h1) = αP (Z) be the closest point to Z in Υ1 and by (X2, h1) = αP (Z ′)

the closest point to Z ′ in Υ1. Let

D(d) = X2 −X1 = |αP (Z ′)− αP (Z)|

be the “new distance”, and denote by

∆(d) = D(d)− d

the variation of the distance between the levels L0 and L1.

Proposition 5.6. The distribution µd of ∆(d) is the following probability measure on R

µd(du) = (d+ 1)e−2dδ−d(du) + fd(u)1[−d,d](u) du+ de−u−d1[d,+∞)(u) du, (61)

where

fd(u) = −e
−2d

2
+ e−2|u|(|u|+ 1

2

)
. (62)

The atom md = (d + 1)e−2d of µd at −d corresponds to case where coalescence occurs, that is
αP (Z) = αP (Z ′). Apart from this atom, µd is absolutely continuous with respect to the Lebesgue
measure, and

E(∆(d)) = 0 and E(D(d)) = d (63)

Var(∆(d)) = V (d) = 1− e−2 d +
2

3
e−2 dd3 + e−2 dd2. (64)

The proof is postponed to the end of the section.
Notice that the distribution of ∆(d) does not depend on the height h1 of the level L1, and that

fd is a symmetric function.
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Step 2: The sequence (Dk, k ≥ 0) is a martingale

Denote by Dλ(d) = X2 − X1 = αP (Z ′) − αP (Z) the new distance if the PPP Υ1 has intensity
λ > 0, and by ∆λ(d) = Dλ(d)− d. A simple scaling argument allows one to relate the distribution

of ∆λ(d) to that of ∆1(d)
(d)
= ∆(d) :

∆λ(d)
(d)
=

1

λ
∆1(λ d), for d ≥ 0, (65)

Now, since the intensity on Lk is nk, conditional on Dk−1, Dk
(d)
= Dnk(Dk−1)

∆k
(d)
= ∆nk(Dk−1)

(d)
=

1

nk
∆1(Dk−1 nk).

(66)

Because of (63), (Dk, k ≥ 0) defines a martingale. The particular form of µd makes it difficult
to control the time at which it hits 0. We will dominate Dk by another martingale that is easier
to handle.

Step 3: Introduction of an auxiliary distribution µd

We introduce the following family of distributions indexed by d > 0:

µd(du) := αdδ−(cd+d)(du) + fd(u)1[−d,d](u) du

+ de−u−d1[d,+∞)(u) du+ βde
−u−d1[d+νd,+∞)(u) du. (67)

Let ∆(d) be a r.v. with distribution µd, and set D(d) to be the r.v. defined by

∆(d) = D(d)− d.

Our strategy is as follows: we will choose carefully the functions αd, cd, rd, βd satisfying for any
d > 0,

αd ≤ (d+ 1)e−2d, cd ≥ 0, νd ≥ 0, βd ≥ 0. (68)

in such a way that for any d > 0, µd is a probability distribution with mean 0, and which will
dominate µd in the sense of the forthcoming Lemma 5.8. The difference between µd and µd is
that the atom at −d in µd is replaced by an atom at −cd − d < −d with, as a counterpart, a
modification of the distribution at the right of d which is replaced by a distribution larger for the
stochastic order.

Proceeding like this, our idea is to bound stochastically the hitting of 0 by (Dk, k ≥ 0) (the
coalescing time τ) by the hitting time of (−∞, 0) by an auxiliary Markov chain (Dk, k ≥ 0).

Proposition 5.7. The measure µd is a density probability with mean E(∆(d)) = 0 iff

αd = e−2d (1 + d)(1 + 2d+ νd)

1 + 2d+ cd + νd
and βd = eνd

(1 + d)cd
1 + 2d+ cd + νd

. (69)

Proof. Compute the total mass of µd:

〈µd, 1〉 = βde
−2d−νd + αd + 1− e−2dd− e−2d
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and if the total mass is 1, the expectation of ∆(d) is :

E
(
∆(d)

)
=− αd (cd + d) + d(d+ 1)e−2d + βd(d+ νd + 1)e−2d−νd .

Solving these equations in αd and βd provides the announced result.

We hence see that we have two degrees of freedom. In the sequel, we will choose:

cd = 1, νd = 2, (70)

independent of d. This implies that:

αd = e−2d 2d2 + 5d+ 3

2(d+ 2)
, βd = e2 d+ 1

2(d+ 2)
. (71)

From this, we can compute Var(∆(d)):

Var(∆(d)) = 1 +

(
4 d4 + 26 d3 + 66 d2 + 75 d+ 27

)
e−2 d

6 d+ 12
.

For the measure µd which we have now completely constructed, we have:

Lemma 5.8. Under (68) and (69), we have for d < d′,

D(d)1D(d)>0 ≤S D(d′)1D(d′)>0, (72)

in the sense that for all t > 0, P(D(d) > t) ≤ P(D(d′) > t).

Proof. First, for any d′, by construction of the measure µd′ ,

D(d′)1D(d′)>0 ≤S D(d′)1D(d′)>0.

Now, recall that D(d) provides the new distance in the model of Step 1 when the intensity of
the PPP on L1 is 1 and when the starting points Z = (0, 0) and Z ′(d, 0) are at distance d.

One can follow a third point Z ′′(d′, 0). Since these paths do not cross, the distance D1
(d)
= D(d)

between Z1 and Z ′1 remains smaller than the distance D′1 = Z ′′1 − Z1
(d)
= D(d′). This implies that

D(d)1D(d)>0 ≤S D(d′)1D(d′)>0 holds. This concludes the proof.

Step 4: Introduction of an auxiliary Markov chain

To dominate (Dk, k ≥ 0) we introduce the Markov chain (Dk, k ≥ 0) whose distribution respects
the same scaling (65) as (Dk, k ≥ 0): conditionally on Dk−1, we let ∆k = Dk − Dk−1 have
distribution

∆k
(d)
=

1

nk
∆(Dk−1 nk).

Proposition 5.9. Let us define

τR− = inf{k ≥ 0 : Dk ≤ 0}, and τR− = inf{k ≥ 0 : Dk ≤ 0} . (73)

For any d > 0, if D0 = D0 = d, we have

τR− ≤S τR− .

Proof. Just observe that in (72), the r.v. in both sides have atoms at 0 that correspond to the
entrance of Dk and Dk in (−∞, 0] (in fact the hitting time of {0} for Dk and of (−∞, 0) for Dk).
The Markov property and (72) allow to conclude.
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Step 5: Skorokhod embedding

By the Skorokhod embedding theorem (see [6, Th. 37.6, page 519]), there exists a BM B started

at 0 and a stopping time T1(d) such that ∆(d)
(d)
= BT1(d). Moreover, it is possible to construct

two r.v. U(d) ≤ 0 and V (d) ≥ 0 such that T1(d) = inf{t ≥ 0, Bt /∈ [U(d), V (d)]}. U(d) and
V (d) are independent from the BM B, but not independent (in general) one from the other. Since
BT1(d) = U(d) ≤ 0 or BT1(d) = V (d) ≥ 0, U(d) and V (d) can be constructed from the distribution

of BT1(d)
(d)
= ∆(d), i.e. µd, as follows (recall (70)):

• With probability 2pd, U(d) = −V (d) and V (d) is a r.v. with density 1[0,d](v)(e−2v(v+1/2)−
e−2d/2)/pd. We denote by Ad this event.

• With probability 1 − 2pd = (1 + 2d)e−2d, on Acd, we set U(d) = −d − 1. For V (d), we have
two cases since the right tail of µd is the sum of two exponential tails, de−d−u1[d,+∞)(u) and
βde
−d−u1[d+νd,+∞)(u). Conditionally on Acd:

• With probability qd = 2d/(1 + 2d), V (d) is a r.v. with density v+d+1
2(1+d)e

d−v1[d,+∞)(v)

with respect to the Lebesgue measure. We call this event Ed.

• With probability 1−qd = 1/(1+2d), V (d) is a r.v. with density v+d+1
3+2d e

d+2−v1[d+2,+∞)(v).
This event is Ecd ∩Acd.

Justification of the construction of U(d) and V (d). Recall from (61) that µd admits a symmetric
density fd on [−d, d]. Thus, on the event Ad = {|∆d| < d}, which has probability

2pd =

∫ d

−d
fd(u)du = 1− e−2d − 2de−2d, (74)

it is sufficient to define U(d) = −V (d) with V (d) a r.v. of density fd(v)
pd

1[0,d](v). Since the Brownian
motion B started at 0 exits the symmetric interval [−V (d), V (d)] through the upper or lower bound
with equal probabilities 1/2, the likelihood of BT1(d) for this part is as expected:

2pd

(1

2

fd(v)

pd
1[0,d](v) +

1

2

fd(−v)

pd
1[−d,0](v)

)
= fd(v)1[−d,d](v).

Let us now consider Acd ∩ Ed. The lower bound is necessarily U(d) = −d − 1, since it is the only
possible value for ∆d below −d. As for the density of V (d) conditionally to Acd ∩ Ed, say g(v), it
has to be chosen such that we recover de−d−u1[d,+∞)(u) once multiplied by (1 − 2pd), qd and by
the probability that B exits through the upper bound V (d) rather than through the lower bound
U(d) = −d− 1:

(1− 2pd)qd
d+ 1

v + d+ 1
g(v) = de−d−v1[d,+∞)(v) ⇒ qdg(v) =

e2d

1 + 2d

v + d+ 1

d+ 1
de−d−v1[d,+∞)(v).

Since g is a probability density, integrating over v gives qd: qd = 2d/(1 + 2d). We then deduce the
density of V (d) conditionally to Acd ∩ Ed. We proceed similarly for Acd ∩ Ecd.

By recursion, we can define for k ≥ 1 the time Tk by

Tk = inf{t ≥ Tk−1, Bt −BTk−1
/∈ [Uk(Dk−1), Vk(Dk−1)]}
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where Uk(Dk−1) and Vk(Dk−1) are independent r.v. conditionally on Dk−1, such that for any
D > 0,

Uk(D)
(d)
=

1

nk
U(nkD), Vk(D)

(d)
=

1

nk
V (nkD), (75)

where U(d) and V (d) have the law described above in the representation of T1(d) for d > 0. With

this construction, we have that for k ≥ 1, BTk
(d)
= Dk − d.

Step 6: Laplace transforms of T1(d) and Tk(d):

Lemma 5.10. For λ > 0, there exists c0(λ) ∈ (0, 1) independent of d such that

0 ≤ ϕd(λ) = E
(
e−λT1(d)

)
≤ c0(λ) < 1. (76)

Moreover, for λ small, there exists a constant C > 0 such that c0(λ) ≤ e−Cλ.

Proof. Using the Skorokhod embedding described above,

ϕd(λ) =E
(
e−λT1(d) | Ad

)
2pd + E

(
e−λT1(d) | Acd, Ed

)
(1− 2pd)qd

+ E
(
e−λT1(d) | Acd, Ecd

)
(1− 2pd)(1− qd). (77)

Our purpose is to bound ϕd(λ) uniformly in d by a constant strictly smaller than 1. On the events,
Ad and Acd ∩Ed, the interval [U(d), V (d)] which defines T1(d) has at least one extremity that gets
closer and closer to zero when d tends to zero. So upperbounding the expectations in the first and
second terms of the r.h.s. of (77) by a constant strictly less than 1 uniformly in d is difficult. For
the third term of (77) however, because U(d) < −cd = −1 and V (d) > νd = 2, we have that

E
(
e−λT1(d) | Acd, Ecd

)
≤ E(e−λT

′
) < 1

where T ′ = inf{t ≥ 0, Bt /∈ [−1, 2]}. Additionally, since (1 − 2pd)(1 − qd) = e−2d →d→0 1, this
shows (76) with

c0(λ) =E0

(
e−λT

′)
=

cosh
(√

λ
2

)
cosh

(
3
√

λ
2

) < 1.

When λ→ 0, c0(λ) = 1− 2λ+ o(λ) ≤ e−2λ which shows the second assertion with C = 2.

From this by using (75) and the self-similarity of the standard BM started at 0,

Tk − Tk−1
(d)
= inf

{
t ≥ 0, Bt /∈

[ 1

nk
U(nkDk−1),

1

nk
V (nkDk−1)

]}
(d)
= inf

{
t ≥ 0,

1

nk
Bn2

kt
/∈
[ 1

nk
U(nkDk−1),

1

nk
V (nkDk−1)

]}
(d)
=

1

n2
k

T1(nkDk−1). (78)

Hence it follows that
E
(
e−λ(Tk−Tk−1) | FTk−1

)
= ϕnkDk−1

( λ
n2
k

)
. (79)
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Step 7: Estimate for the tail distribution of the coalescing time

With the ingredients developed above, we can now follow ideas developed in [11] for instance.
Recall that τR− = inf{k ∈ N, Dk ≤ 0} and define θ = inf{t ≥ 0, Bt = −d}. Let us consider ζ > 0.
Then for K ∈ N \ {0}:

P
(
τR− > K

)
=P
(
θ > TK

)
≤P
(
θ > ζhK

)
+ P

(
θ > TK , TK < ζhK

)
≤ Cd√

ζhK
+ eλζhKE

(
e−λ

∑K
k=1(Tk−Tk−1)

)
. (80)

For the Laplace transform in the last term, using (79):

E
(
e−λ

∑K
k=1(Tk−Tk−1)

)
=E
(
Ed
(
e−λ

∑K
k=1(Tk−Tk−1) | FTK−1

))
=E
(
e−λ

∑K−1
k=1 (Tk−Tk−1)E

(
e−λ(TK−TK−1) | FTK−1

))
=Ed

(
e−λ

∑K−1
k=1 (Tk−Tk−1)ϕnKDK−1

( λ
n2
K

))
≤c0

( λ

n2
K

)
Ed
(
e−λ

∑K−1
k=1 (Tk−Tk−1)

)
≤
K−1∏
k=0

c0

( λ

n2
k+1

)
≤ exp

(
− 2λ

K∑
k=1

1

n2
k

)
. (81)

Recall from (53) that hK = VK ∼
∑K
k=1

1
2n2
k
. Thus, from (80) and (81):

P
(
τR− > K

)
≤ Cd√

ζhK
+ C ′ exp

(
λhK(ζ − 4)

)
. (82)

Because hK → +∞, and because the term in the exponential is negative for ζ sufficiently small,
there exists λ0 > 0 and ζ0 > 0 such that the r.h.s. of (82) is smaller than C′′d√

ζ0hK
for K large

enough.
This together with Proposition 5.9 allow to conclude the proof of Proposition 5.5. Starting

from two points Z and Z ′ of L0 at distance d and denoting by τ the index of the level at which
they coalesce, we have for any K ∈ N \ {0},

P
(
τ > K

)
≤ P

(
τR− > K

)
≤ Cd√

hK
.

�

Let us finish this subsection with the proof of Proposition 5.6 that had been postponed.

Proof of Proposition 5.6. First, notice that X1 has density e−2|x|1x∈R. Then, we can compute
the distribution of X2 conditionally on X1. In what follows, all r.v. are independent, R is a
Rademacher r.v., Exp(k) denotes an exponential r.v. with expectation 1/k.

– Conditional on X1 = x1 > 0, with x1 < d:
• X2 = −(d− x1) (merge) with probability e−2(d−x1),
• with probability1− e−2(d−x1), X2 ∼ L(RExp(2)|Exp(2) < d− x1).
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– Conditional on X1 = −x1 < 0, with x1 < d

• X2 = −(d+ x1) (merge) with probability e−2(d−x1)−2x1

• X2 ∼ L(RExp(2)|Exp(2) < d− x1) with probability 1− e−2(d−x1)

• X2 ∼ L(Exp(1) + d− x1|Exp(1) < 2x1) with probability e−2(d−x1)(1− e−2x1)

– Conditional on X1 = x1 > 0, with x1 > d:
• merge with probability1

– Conditional on X1 = −x1 < 0, with x1 > d

• X2 = −(d+ x1) (merge) with probability e−2d

• X2 ∼ L(x1 − d+ Exp(1)|Exp(1) < 2d) with probability 1− e−2d

This yields the announced result. In particular, the two trajectories started at (0, 0) and (d, 0)

merge at ordinate 1 with probability:

P(D(d) = 0) =

∫ d

x=0

e−2x(e−2(d−x) + e−2(d−x)−2x)dx+

∫ +∞

x=d

e−2x(1 + e−2d)dx,

which is (d+ 1)e−2d, as announced.

5.2.2 Extension to the shifted cylinder

We now conclude the section with a corollary establishing an estimate for the coalescence time in
W(j), which is the forest W shifted by (0,−hj) similarly to T (j). Then, we enounce an estimate
for the shifted cylindrical forest T (j).

Corollary 5.11. Let d > 0 and j ∈ N.
(i) Let us consider the paths in W(j) started at (0, 0) and (d, 0) (if (0, hj) and (d, hj), these points
are connected at the level j + 1 to the closest point of W). Define their coalescing time as τ =

inf{k ≥ j, Dk = 0}. There exists a constant C > 0 such that for any K > j,

P
(
τ > K

)
≤ Cd√

hK − hj
.

This can be translated, for any t0 > 0 as:

P
(
W(j)

(0,0)(t0) 6=W(j)
(d,0)(t0)

)
≤ C d√

hR(hj+t0)−1 − hj
→j→+∞

C d√
t0
. (83)

(ii) Let us consider the paths of T (j) started at (0, 0) and (d, 0) for d ∈ (0, 1/2] (d = 1/2 is the
maximal distance in the cylinder). Then, there exists C > 0 such that for any t0 > 0:

P
(
T (j)

(0,0)(t0) 6= T (j)
(d,0)(t0)

)
≤ C d√

hR(hj+t0)−1 − hj
→j→+∞

C d√
t0
. (84)

Proof. The proof of (i) is an adaptation of the proof Step 7 of Prop. 5.5 by summing between
levels Lj and LK .

Let us now consider (ii). Intuitively, the coalescence time in the cylinder is stochastically
dominated by the coalescence time in the plane. But since some slices in the cylinder may contain
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no points of the PPP (when no line Lk in the plane is empty), and since the increments of the
distance between the two paths are non standard when this distance is close to 0 and 1 (when only
the case 0 matters in the plane), an additional argument is needed in the discrete case to establish
the domination rigorously.

Recall the model introduced in Section 5.2.1. We consider the Markov chain (Dk, k ≥ 0) and
denote by τd be stopping time at which the Markov chain started from d hits 0. We also introduce
similarly the distance process (D̄k, k ≥ 0) in the cylinder.
Now, let us define another Markov chain (D′k, k ≥ 0) with the following transitions:

L(D′k+1 | D′k = d) = L
(

min(Dk+1, |1−Dk+1|) | Dk = d
)
. (85)

The distanceD′k somehow mimics the distance on the cylinder by considering the minimum distance
between two points of the same level in the clockwise and counter clockwise senses. Let us define
by τ ′d the stopping time at which (D′k, k ≥ 0) started from d hits 0. Since min(Dk+1, |1−Dk+1|) ≤
Dk+1, and since

τd ≤S τd′ when d < d′, (86)

by using the same argument as in the proof of Lemma 5.8, we obtain by using iteratively (86) that

τ ′d ≤S τd.

To conclude, it remains to show that (D′k, k ≥ 0) coincides with (D̄k, k ≥ 0), up to a probability
going to 0 in j. Since we may produce a local coupling between D′k and D̄k as long as Dk

possesses small fluctuations, it suffices to prove that all the increments of the paths (Z̄k, k ≥ 0)

and (Z̄ ′k, k ≥ 0) that define (D′k, k ≥ 0) in the cylinder are not 0 and smaller than 1/6 after
the slice j with probability going to 1 when j → +∞. This indeed guarantees that the cylinder
effects do not prevent the coupling: no jumps “0” occur and “decision domains” do not see that the
environment is a cylinder. The probability that there is no point within distance ±1/6 for a walk
is e−nk/3, and by Borel-Cantelli’s lemma, with probabilty 1 the two walks (Z̄k) and (Z̄ ′k) will do a
finite number of jumps larger than 1/6. Hence, for any ε > 0, for j large enough, the distribution
of (D′k, k ≥ 0) and (D̄k, k ≥ 0) coincides with probability at least 1− ε. Thus the coupling works,
which allows to conclude.

We have now the tools to prove the criteria of the convergence Theorem 2.5, (IO) and (EO).
Both of these criteria make use of the estimates on coalescing time that we hve just established.

5.3 Proof of (IO)

The purpose of this section is to prove the next Proposition which implies (IO).

Proposition 5.12. Assume (50). Let m ∈ N \ {0} and y1 = (x1, t1), . . . , ym = (xm, tm) ∈ Cyl+.
For j ≥ 0 and 1 ≤ ` ≤ m, let us denote by γ(j)

y` the path interpolating linearly the shifted ancestor
line AL

(j)
y`+(0,hj)

. Then, the sequence (γ
(j)
y1 , . . . γ

(j)
ym) converges in distribution, when j → +∞, to

coalescing Brownian motions modulo 1 started at y1, . . . ym.

Notice that the path γ(j)
y` starts at y`. We also recall that the ancestral line ALy`+(0,hj) does

not necessarily starts from a point of Ξ, but links the starting point y`+(0, hj) to the closest point
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of Ξ in the first non-empty slice of height greater or equal to R(t` + hj). For the sequel, let us
denote by yj,` this point.

Proof of Prop. 5.12. The result for m = 1 is due to Lemma 5.4 and the fact that yj,1 − (0, hj)

converges a.s. to y1. The proof can be done by recursion, and we focus here on the case m = 2

which can be generalized directly by following Arratia [1] and Ferrari, Fontes and Wu [14, Lemmas
2.6 and 2.7].

Let us first recall a simple fact. Let t ≤ t′ and a, b ∈ R/Z. Two BM (W↑
(a,t)(s), s ≥ t) and

(W↑
(b,t′)(s), s ≥ t′) on the cylinder are said to be coalescing BM if W↑

(a,t)(s) for t ≤ s ≤ t′ is a

standard BM taken modulo 1, and if the two trajectories (W↑
(a,t)(s), s ≥ t′) and (W↑

(b,t′)(s), s ≥ t′)
are BM till their hitting time τ . After this time, they coincide with (W↑

(b,t′)(s), s ≥ τ).

To prove that (γ
(j)
y1 , γ

(j)
y2 ) converges to two coalescing BM, a strategy consists in decomposing

the trajectories as follows, where we can assume to simplify that y1 and y2 are such that t1 = t2:
(a) as long as the two paths are far apart, say if

dR/Z

(
γ(j)
y1 (s), γ(j)

y2 (s)
)
> aj(s) (87)

for a good sequence aj(s)→ 0, then the next steps of these trajectories are likely to be character-
ized by Ξ∩ I and Ξ∩ I ′ for two random influence intervals I and I ′ that will not intersect. By the
spatial properties of the PPP, it means that as long as I ∩ I ′ = ∅, the two trajectories behave as if
they were constructed on different spaces, and then eventually behave as independent BM before
their coalescing time (here, since the intensity is not constant, a dependence in s is needed).
(b) when (87) fails (the two paths are close) then another argument is developed to prove that
the two paths will merge with a probability going to 1, within a o(1) delay. This is given by the
Corollary 5.11.

It remains to see in details how (a) can be handled. Let us denote by (X̄
(j)
s )s≥t (as in (54)) the

path γ(j)
(x,t). The distribution of the increment ∆Xj+k (with the notation of section 5.1) satisfies

P(|∆Xj+k| ≥ r) = e−2nk+jr (88)

so that for r = fj+k/2, with the fj+k’s appearing in Assumption (50), the event {∀k ≥ 0, |∆Xj+k| ≤
fj+k/2} will occur a.s. for j large enough thanks to Borel-Cantelli’s lemma. We then decree that
two walks are close if when they get in the slice with intensity nk+j , their distance is smaller than
fj+k, i.e. we choose aj(s) = fR(hj+s)−1. This suffices to complete the proof.

5.4 Proof of (EO)

We follow the strategy developed in [29]: we first show that the sequence (T (j))j≥1 satisfies (89),
stated below, from which (EO) follows.

Proposition 5.13. The sequence (T (j))j≥1 satisfies for all t0, t > 0, a > 0,

lim sup
j→+∞

E
(
η̂OT (j)(t0, t; [0→ a])

)
< +∞ . (89)

This implies that (T (j))j≥1 satisfies (EO).
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The rest of this section is devoted to the proof of Proposition 5.13.

Proof. Let us remark that, by translation invariance and linearity of the expectation, it is enough
to prove (89) for small values of a.

Let us start with proving that (89) implies (EO). We follow the corresponding proof in the
planar context which is recalled at the end of Section 2.1 (see also the end of Section 6.1 in [29]
or Section 6 of [23]). Except that contrary to the planar context where explicit computation is
possible, namely E(η̂W (t0, t; a, b)) = (b− a)/

√
πt where W is the standard BW, another argument

is needed to get the limit (9) in the cylinder context. We then have to show:

lim
ε→0

E
(
η̂OW↑(t0 + ε, t− ε; [a→ b])

)
= E

(
η̂OW↑(t0, t; [a→ b])

)
. (90)

Let us consider t, t0 > 0 and a, b ∈ R/Z. Let us first prove that there exists ε0 ∈ (0, t) such
that

E
(
η̂OW↑(t0 + ε0, t− ε0; [a→ b])

)
<∞ . (91)

Without loss of generality, we still write t0 and t instead of t0 + ε0 and t− ε0. The inequality (be
careful to the presence or not of the hat ̂ on η ),

η̂OW↑(t0, t; [0→ 1]) ≤ ηOW↑(t0, t; [0→ 1/2]) + ηOW↑(t0, t; [1/2→ 1]) a.s.

implies by rotational invariance

E
(
η̂OW↑(t0, t; [a→ b])

)
≤ 2|a→ b|E

(
ηOW↑(t0, t; [0→ 1/2])

)
.

We finally get (91) in combining the fact that ηOW↑(t0, t; [0→ 1/2]) is stochastically dominated by
ηW (t0, t; 0, 1/2)) (already stated in (12)) and

E(ηW (t0, t; 0, 1/2)) = 1 + E(η̂W (t0, t; 0, 1/2)) = 1 +
1

2
√
πt

.

With η̂OW↑(t0 + ε, t− ε; [a→ b])
(d)
= η̂OW↑(t0, t− ε; [a→ b]), (91) and

a.s. lim
ε→0

η̂OW↑(t0, t− ε; [a→ b]) = η̂OW↑(t0, t; [a→ b]) , (92)

the Lebesgue’s dominated convergence theorem applies and leads to the searched limit (90). Mainly
because there is no coalescence on the arc {t0 + t} × [a→ b] for the trajectories starting before t0
with probability 1, there exists a random ε > 0 such that for any 0 ≤ ε′ ≤ ε, η̂OW↑(t0, t−ε′; [a→ b])

is equal to the limit η̂OW↑(t0, t; [a→ b]). This proves (92).

Now, let us show that (T (j))j≥1 satisfies (89). The strategy to get (89) can be divided into
two steps. First, we bound from above the expectation in (89) by twice the expected number of
remaining paths γ at time t0 + t which are born before t0 and such that γ(t0) ∈ [0 → a], i.e.
2E(ηOT (j)(t0, t; [0 → a])). See Lemma 5.14. Thus, using the coalescence time estimate (Corollary
5.11), we obtain an upper bound for this latter expectation when j → +∞. This is Lemma 5.16.
The various lemma on which the proof of (89) is based are proved at the end of the present section.
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Lemma 5.14. For all times t0, t > 0, for all a > 0 and any j ≥ 1, the following inequality holds:

E
(
η̂OT (j)(t0, t; [0→ a])

)
≤ 2E

(
ηOT (j)(t0, t; [0→ a])

)
, (93)

from which we deduce that:

lim sup
j→+∞

E
(
η̂OT (j)(t0, t; [0→ a])

)
≤ 2 lim sup

j→+∞
E (ηW(j)(t0, t; 0, a)) , (94)

where W(j) is the shifted forest introduced in Section 5.2.2.

In view of (94) of Lemma 5.14, we now focus on showing that

lim sup
j→+∞

E (ηW(j)(t0, t; 0, a)) < +∞ . (95)

Let us choose r ∈ N\{0} (intended to be large) and m(a, r) := min{m : m ≥ ar}. We consider
the grid

Gr(t0, a, r) :=

{
k

r
, k ∈ {0, . . . ra}

}
× {hR(hj+t0)−1 − hj} .

The height hR(hj+t0)−1 − hj corresponds to the (shifted) largest slice just before height hj + t0

(possibly hj + t0 itself): see Figure 5. Since the sequence hk − hk−1 = σ2
k tends to zero by (52),

there exists j0 such that, for any j ≥ j0, there is a slice carrying points between t0 and t0 + t in
W(j), i.e. t0 < hR(hj+t0) − hj < t0 + t.

Let us focus on the paths starting from the points of Gr(t0, a, r). For 0 ≤ k ≤ m(a, r), denote
by γk(.) the ancestor line starting at (k/r, hR(hj+t0)−1 − hj). Even if the points (k/r, hR(hj+t0)−1)

do not belong to the point process Υ defined in Section 5.2.1, they connect to the nearest point of
Υ ∩ LR(hj+t0). So each path γk(.) a.s. coincides with a path of W(j) after one step. Let us define
the event

Aa,j,r :=

{
the ancestors of the points of W(j) ∩

(
[0, a]× {hR(hj+t0)−1 − hj}

)
are also ancestors of some points of the grid Gr(t0, a, r)

}
. (96)

The event Aa,j,r is described in Figure 5. We claim that when the mesh 1/r of the grid Gr(t0, a, r)
tends to 0, the probability of Aa,j,r tends to 1:

Lemma 5.15. For all times t0, t > 0, for all a > 0 and any j ≥ j0,

lim
r→+∞

P
(
Aca,j,r

)
= 0 . (97)

The event Aa,j,r has been introduced in order to compare ηW(j)(t0, t; 0, a) to the number of
remaining paths at height t0 + t, starting from the deterministic points of Gr(t0, a, r). Then, the
coalescence time estimate (Corollary 5.11) leads to the following bound:

Lemma 5.16. For all times t0, t > 0, for all a > 0, there exists a constant C > 0 and an integer
j1 = j1(t0, t) (which does not depend on r) such that for any j ≥ j1 and any r ∈ N \ {0},

E
(
ηW(j)(t0, t; 0, a)1Aa,j,r

)
≤ 1 +

2m(a, r)C

r
√
t

,

where C is the universal constant given by Corollary 5.11.
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t0

t0 + t

hR(hj+t0)−1−hj

hR(hj+t0)−hj

0 a

Figure 5: Edges and paths of the shifted forest W(j) are in black whereas edges starting from points of the

grid Gr(t0, a, r) are in red. On this picture, the event Aa,j,r holds: the vertices at the height hR(hj+t0)−hj

which are ancestors of points of W(j) ∩
(
[0, a]×{hR(hj+t0)−1−hj})– i.e. the first and third ones, from left

to right –are also ancestors of some points of the grid Gr(t0, a, r).

We can now conclude. Let t0, t > 0 and a > 0. First, we bound E(ηW(j)(t0, t; 0, a)) from above
by

E
(
ηW(j)(t0, t; 0, a)1Aa,j,r

)
+MP

(
Aca,j,r

)
+ E

(
|ΥR(hj+t0)−1([0, a])|1{|ΥR(hj+t0)−1([0,a])|>M}

)
, (98)

for any j,M, r. Let j ≥ j0 ∨ j1. Then Lemma 5.16 applies and provides a bound for the first term
of (98). Then, take M = Mj := 2nR(hj+t0)−1 (twice the intensity of the PPP). For j large enough
and with this choice of M , the third term of (98) is smaller than 1. It then follows:

E (ηW(j)(t0, t; 0, a)) ≤ 2 +
2m(a, r)C

r
√
t

+MjP
(
Aca,j,r

)
.

Let us point out that till now, the parameter r is totally free. So we can choose it large enough
so that m(a, r)/r ≤ a + 1/r ≤ 2a and MjP(Aca,j,r) ≤ 1 (by Lemma 5.15). In conclusion, for any
j large enough, E(ηW(j)(t0, t; 0, a)) is bounded by 3 + 4aC√

t
. This gives (95), ending the proof of

Proposition 5.13.

This section ends with the proofs of Lemmas 5.14, 5.15 and 5.16.

Proof of Lemma 5.14. Let us first prove (93). We denote, for an interval I of R/Z, by η̂OT (j)(t0, t; I; [0→
a]) the number of paths γ ∈ T (j) born before t0 and such that γ(t0) ∈ I and γ(t0 + t) ∈ [0→ a]:

η̂OT (j)(t0, t; I; [0→ a]) := Card
{
γ(t0 + t) ∈ [0→ a], γ ∈ T (j), γ born before t0, γ(t0) ∈ I

}
.

Then, the following inequality holds almost surely:

η̂OT (j)(t0, t; [0→ a]) ≤
[1/a]∑
k=0

η̂OT (j)(t0, t; [ka→ (k + 1)a]; [0→ a]), (99)

where [1/a] is the integer part of 1/a. The inequality (99) is due to the fact that two paths starting
from different intervals [ka → (k + 1)a] and [`a → (` + 1)a] can coalesce and give a single point
in the l.h.s. while they are counted twice in the r.h.s. Notice that when a is not the inverse of an
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integer, the right hand side is a bit larger than what is needed, because the first and last intervals
intersect. We conclude using the rotational invariance:

E
(
η̂OT (j)(t0, t; [0→ a])

)
≤

[1/a]∑
k=0

E
(
η̂OT (j)(t0, t; [ka→ (k + 1)a]; [0→ a])

)
=

[1/a]∑
k=0

E
(
η̂OT (j)(t0, t; [0→ a]; [−ka→ −(k − 1)a])

)
=E
(
ηOT (j)(t0, t; [0→ a])

)
+ E

(
η̂OT (j)(t0, t; [0→ a]; [1− a[1/a]→ a])

)
≤2E

(
ηOT (j)(t0, t; [0→ a])

)
.

since the arc [1− a[1/a]→ a] is included in [0→ a]. This proves (93).

We now turn to the proof of (94). Having proved (93), it is sufficient to show that

lim sup
j→+∞

E
(
ηOT (j)(t0, t; [0→ a])

)
≤ lim sup

j→+∞
E (ηW(j)(t0, t; 0, a)) .

For this, we construct a coupling between W(j) and T (j). Let us introduce the following event:

Ej :=
{

for k ≥ j, none of the Slice(hk) are empty
}
.

Notice that P(Ecj ) ≤
∑
k≥j e

−nk which converges to zero when j → +∞, and by Borel Cantelli’s
lemma and (50), there exists a random level J , finite a.s., such that EJ holds. Following the idea
in (98), we have:

E
(
ηOT (j)(t0, t; [0→ a])

)
≤ E

(
ηOT (j)(t0, t; [0→ a])1ER(hj+t0)−1

)
+MP

(
EcR(hj+t0)−1

)
+ E

(
|ΞR(hj+t0)−1([0, 1])|1{|ΞR(hj+t0)−1([0,1])|>M}

)
. (100)

Choosing M = Mj = 2nR(hj+t0)−1, we can control the third term as in (98). For this choice of
M = Mj , the second term is upper bounded by 2nR(hj+t0)−1

∑
k≥R(hj+t0)−1 e

−nk which converges
to zero when j → +∞ by (50). Now for the first term in the r.h.s. of (100), let us prove that

E
(
ηOT (j)(t0, t; [0→ a])1ER(hj+t0)−1

)
≤ E

(
ηW(j)(t0, t; 0, a)

)
, (101)

in which case, taking the lim sup in (100) when j → +∞ gives (94).

To show (101), we produce a coupling between W(j) and T (j) ensuring that on ER(hj+t0)−1,

ηOT (j)(t0, t; [0→ a]) ≤ ηW(j)(t0, t; 0, a)
)
. (102)

Consider the paths of W(j) touching [0, a] × {t0} and that survive until level t0 + t. Let us
denote by K the random number of points in [0, a] × {t0} corresponding to these paths (K ≥
ηW(j)(t0, t; [0 → a])) and let us call 0 ≤ a1 < · · · < aK ≤ a the abscissa of these points. Recall
that if Z ′ = α(Z) ∈ Lk+1 is the ancestor of Z ∈ Lk, then base the isosceles triangle with apex Z
and admitting Z ′ as other vertex contains only one atom of Ξk+1: Z ′. This triangle is called the
influence triangle of Z. Let us denote by θL the left border of the influence region of W(j)

(a1,t0) (i.e.
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the union of the influence triangles of the vertices constituting W(j)
(a1,t0)). We consider the point

process on the cylinder consisting of the atoms of Ξ in the region

Rj = {(x, t) ∈ R× [hj + t0,+∞), θL(t) ≤ x < θL(t) + 1} ,

which is a PPP conditioned on ER(hj+t0)−1. On this PPP, let us construct the corresponding forest
T (j) and compute the r.v. ηOT (j)(t0, t; [0→ a]).

Let κ ∈ {1, . . .K} be the (random) index k of the rightmost pathW(j)
(ak,t0) that does not intersect

the border θL(.)+1. By construction, all the pathsW(j)
(ak,t0) for k ∈ {1, . . . κ} are unchanged on the

cylinder (meaning that the successive ancestors of (ak, t0) remain the same as in the plane). Hence,
among the paths started at (a1, t0), . . . , (aκ, t0), the remaining ones at level t0 + t are the same in
the plane and in the cylinder: ηOT (j)(t0, t; [0→ aκ]) and ηW(j)(t0, t; 0, aκ) are equal. If κ = K then
(102) is proved. Else, let us consider W(j)

(aκ+1,t0) and denote by Z the first vertex of this path (in

the plane) such that Z ∈ Rj and Z ′ = α(Z) /∈ Rj . In other words, W(j)
(aκ+1,t0) intersects θL + 1 for

the first time when going from Z to Z ′. In the cylinder, the paths T (j)
(aκ+2,t0), . . . , T

(j)
(aK ,t0) (if they

exist) are all trapped between T (j)
(aκ+1,t0) and T (j)

(a1,t0). Two cases may be distinguished:

• If T (j)
(aκ+1,t0) coalesces with T

(j)
(a1,t0) before time t0+t then the same holds for T (j)

(aκ+2,t0), . . . , T
(j)

(aK ,t0).

In this case, the contribution of T (j)
(aκ+1,t0), . . . , T

(j)
(aK ,t0) to ηOT (j)(t0, t; [0→ a]) is null. So,

ηOT (j)(t0, t; [0→ a]) = ηOT (j)(t0, t; [0→ aκ]) = ηW(j)(t0, t; 0, aκ)

≤ ηW(j)(t0, t; 0, a) .

• Since the influence triangle of the vertex Z overlaps the influence region of T (j)
(a1,t0) then all

the paths T (j)
(aκ+2,t0), . . . , T

(j)
(aK ,t0) have to coalesce with T (j)

(aκ+1,t0) or T
(j)

(a1,t0) before time t0 + t.

Either T (j)
(aκ+1,t0) coalesces with T (j)

(aκ,t0) before time t0 + t and then ηOT (j)(t0, t; [0 → a]) is

still smaller than ηW(j)(t0, t; 0, a) (as in the first case). Or, T (j)
(aκ+1,t0) does not coalesce with

T (j)
(aκ,t0) before time t0+t and ηOT (j)(t0, t; [0→ a]) = ηOT (j)(t0, t; [0→ aκ])+1. This also prevents

the planar paths W(j)
(aκ+2,t0), . . . ,W

(j)
(aK ,t0) to coalesce with W(j)

(aκ+1,t0). Their contribution to
ηW(j)(t0, t; 0, a) is at least 1:

ηOT (j)(t0, t; [0→ a]) = ηOT (j)(t0, t; [0→ aκ]) + 1 ≤ ηW(j)(t0, t; 0, a) .

This shows (102) and concludes the proof of the Lemma.

Proof of Lemma 5.15. Let j ≥ j0. On the event Aca,j,r, there exists a point of W(j) at height
hR(hj+t0) − hj , say Z, which is the ancestor of an element of W(j) ∩

(
[0, a]× {hR(hj+t0)−1 − hj}

)
but of none of the points of the grid Gr(t0, a, r). This occurs only if Z belongs to the segment
[0, a]×{hR(hj+t0)−hj} and is surrounded by two other points ofW(j) on the same level which are
very close to it. Precisely, Aca,j,r implies the existence of a segment in [−1/r, a+1/r]×{hR(hj+t0)−
hj} with length 2/r and containing at least 3 points of the Poisson point process ΥR(hj+t0) of
intensity nR(hj+t0). The number of points of ΥR(hj+t0) in [−1/r, a+ 1/r]×{hR(hj+t0)− hj} being
a Poisson r.v. with parameter (a + 2/r)nR(hj+t0)−1, we can deduce that the minimum distance
between two consecutive points of this PPP possesses a density. Thus, the probability of Aca,j,r
tends to 0 as r → +∞.
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Proof of Lemma 5.16. This last proof is based on the proof of Lemma 2.7 in [23]. Let us denote
by ηr,j(t0, t; 0, a) the number of remaining paths γk(.), k = 0, . . . ,m(a, r), in W(j) at time t0 + t,
that started from the grid Gr(t0, a, r). The event Aa,j,r has been introduced in order to write:

ηW(j)(t0, t; 0, a)1Aa,j,r ≤ ηr,j(t0, t; 0, a) . (103)

Besides, the number of paths counted by ηr,j(t0, t; 0, a) is upper bounded by the number m(a, r)+1

of paths γk(.)’s starting from the grid Gr(t0, a, r) minus the number of pairs (k, k + 1) that have
coalesced before height t0 + t, i.e.

ηr,j(t0, t; 0, a) ≤ (m(a, r) + 1)−
m(a,r)−1∑
k=0

1γk(t0+t)=γk+1(t0+t) . (104)

Using (83), we have for sufficiently large j:

E
(m(a,r)−1∑

k=0

1γk(t)=γk+1(t)

)
= m(a, r)

(
1− P(γ0(t0 + t) 6= γ1(t0 + t))

)
≥ m(a, r)− m(a, r)C

r
√
hR(hj+t0+t) − hR(hj+t0)−1

≥ m(a, r)− 2m(a, r)C

r
√
t

, (105)

since hR(hj+t0+t) − hR(hj+t0)−1 tends to t as j → ∞. Finally, (103), (104) and (105) lead to the
expected result.

Remark 5.17 (Comparison between navigation in different spaces). Just above Corollary 5.2, we
observed that certain navigations on the cylinder can be sent onto navigations in the radial plane,
and that both navigations are very similar in nature. In the whole paper, we often used that some
structures can be transported from the plane onto the cylinder, and to the radial plane, provided
the transport keeps the crucial features of the models considered.
With the example adapted from the work of Coletti and Valencia [9], in this Section 5, we illustrate
how working on the cylinder allows us to state global convergence results for the radial tree correctly
renormalized. However, in some cases such as the radial spanning tree (RST) of Baccelli and
Bordenave [2], the cylindrical forest can appear very complicated so that is can be easier to stick
to the original radial problem, showing the limitations of this method.
In the RST, a homogeneous PPP is given in the plane. A radial tree with vertex set the points of
the PPP and rooted at the origin O is constructed. In this tree, the ancestor of a vertex x is the
closest point of the PPP with smaller radius. When we send this tree and PPP in the cylinder, the
circle of radius ρ is sent on the slice of height h(ρ). The resulting vertex set on the cylinder is not
a homogeneous PPP. Additionally, the neighborhood of a given point becomes complicated in the
cylinder, as shown in Fig. 6.
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