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 9 

Abstract: In this paper, a stochastic model is used to simulate daily minimum temperature time series 10 
coming from observations and two CMIP5 climate models (IPSL-CM5A-MR and CNRM-CM5) in 11 
order to analyze the changes in cold wave number and proportions under future climate conditions. 12 
The stochastic model allows computing 100 temperature time series for each different source 13 
(observation or climate model), and for 22 locations in France, which enables inferring the statistical 14 
significance of the changes. Two future time periods, near (around 2010 to 2060) and far future 15 
(around 2050 to 2100), and two RCPs (RCP4.5 and RCP8.5) are considered, while 3 different 16 
thresholds are used to identify cold waves: 0°C and the 10th and 5th percentiles of observed wintertime 17 
(December-January-February) daily minimum temperature distribution. The results show that both 18 
models project a significantly lower number of cold waves in the future, all durations considered, but 19 
the changes mainly concern the proportion of the longest cold waves (10 days and more). The 20 
decreases are higher with IPSL-CM5A-MR than with CNRM-CM5. The main driver of this change is 21 
the decreasing frequency of the observation based thresholds in the future, which is higher for IPSL-22 
CM5-MR model because the impact of a higher mean is enhanced by a decrease in the variance. 23 

Keywords: Climate change; cold waves; stochastic modelling 24 

 25 

1. Introduction 26 

In the climate change context, more and more studies are devoted to the evolution of extreme 27 

events, since those have a major impact on people, society and organizations. Among these 28 

events, temperature related ones, heat and cold waves, are of special concern for electricity 29 

companies, because they impact both electricity production and demand. Agriculture, road or 30 

rail management or health are other examples of impacted sectors. In 2012, IPCC devoted a 31 

special report to the assessment of this issue of climate change and extreme events: the 32 

Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate 33 

Change Adaptation (SREX). Its main conclusions about temperature related extremes were 34 

that “it is very likely that there has been an overall decrease in the number of cold days and 35 

nights, and an overall increase in the number of warm days and nights, on the global scale” 36 

and “it is virtually certain that hot extremes will increase and cold extremes will decrease over 37 
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the 21st century with respect to the 1960-1990 climate”. However, the same report also noted 38 

that fewer studies had been devoted to the analysis of cold or warm spells compared to those 39 

devoted to changes in the frequency and intensity of cold or warm days and nights. As a 40 

consequence, less robust conclusions could have been given for those events, and essentially 41 

concern warm events: “There is medium confidence that the length or number of warm spells, 42 

including heat waves, has increased since the middle of the 20th century”. Nevertheless, the 43 

report stated that “it is very likely that the length, frequency and/or intensity of warm spells, 44 

including heat waves (defined with respect to present day climate) will increase over most 45 

land areas.” Then, IPCC AR5 working group I report further supported those conclusions, in 46 

more strongly assessing the anthropogenic contribution to the observed changes. Furrer et al. 47 

(2010) and Wang et al. (2014) also have investigated the hot spell behavior by using extreme 48 

value theory. Cold waves are however an important issue for electricity management, 49 

especially in France where electrical heating is important.  50 

In a recent set of papers, Sillmann et al. (2013) applied the climate extreme indices defined by 51 

the Expert Team on Climate Change Detection and Indices (ETCCDI) to a large number of 52 

CMIP5 and CMIP3 simulations (Coupled Model Intercomparison Projects phases 5 and 3). 53 

Among these indices, CSDI represents cold spell duration, and their results show that CMIP5 54 

models agree with ERA-40 and ERA-Interim re-analyses in representing a decreasing trend in 55 

the cold spell duration over the period 1948-2005. Part 1 is dedicated to model evaluation, 56 

then, in part 2, they found significant changes in CSDI over land in the end of the 21st century, 57 

with around 3.4 days less according to a RCP2.6 scenario, 3.9 days less for RCP4.5 and 4.2 58 

days less for RCP8.5, the changes being coherent but weaker for CMIP3 models. At the 59 

European scale, De Vries et al. (2012) studied western European cold spells (where 60 

temperature falls below the 10th percentile of the winter daily mean temperature distribution) 61 

in current and future climate. They showed that most of the changes in cold spell statistics can 62 

be explained by changes in mean (increase) and variance (decrease) of the winter temperature 63 

distribution. This dominating role of the evolutions of mean and especially variance in the 64 

evolutions of temperature extremes had also been found by Parey et al (2010). Concerning 65 

France, Cattiaux et al. (2013a) first studied the link between hot and cold spells and the 66 

dynamic circulation and its reproduction by different versions and resolutions of the IPSL 67 

climate model. They found that the model version used for CMIP5 tends to improve the 68 

wintertime dynamics and the statistics of cold spells. In another paper, Cattiaux et al. (2013b) 69 

focused on changes in cold extremes over Europe in a pilot study using both French climate 70 

models (IPSL and CNRM) AMIP (Atmospheric Model Intercomparison Project) experiments. 71 



Large decreases in the number of extremely cold days at the end in the 21st century are 72 

reported, mainly driven by non dynamical mechanisms. Peings et al. (2012) analyzed the 73 

representation of observed cold waves and their change at the end of the 21st century 74 

according to a RCP8.5 scenario with 13 CMIP5 models. They found that model biases mostly 75 

concern intensity rather than geographical extent and duration, and that these events will be 76 

less frequent at the end of the century, except for one model. 77 

The present study aims at complementing these results by adopting a different point of view. 78 

We focus here on the local distributions of cold spells of different durations, from one single 79 

day to more than 15 consecutive days below a defined threshold. It is based on a set of high 80 

quality temperature time series provided by Météo-France and on the results of the French 81 

IPSL-CM5A-MR and CNRM-CM5 climate models run in the framework of CMIP5. Note 82 

that the version of IPSL model is different from that used in Peings et al (2012), who used the 83 

results of IPSL-CM5A-LR. Three different thresholds (one fixed, 0°C, and two percentile 84 

based, the 10th and 5th percentiles of the observed wintertime –December-January-February- 85 

temperature distribution), two future periods (around 2010 to 2060 and the end of the 21st 86 

century) and two climate change scenarios (RCP4.5 and RCP8.5) will be considered. The 87 

originality lies in the use of a stochastic model of temperature to bias correct and downscale 88 

the climate change simulations. Climate models are namely designed to faithfully simulate 89 

large scale features of the climate system and its circulations, as well as the main 90 

characteristics of the physical interactions, cycles and their possible evolutions under external 91 

forcing. However, they cannot precisely represent local weather and different downscaling 92 

techniques have been proposed in the literature to overcome this issue for impact studies (see 93 

Maraun et al. 2010 for a review). These techniques can be divided into statistical and 94 

dynamical approaches. Statistical methods are based on some identification of statistical 95 

relationships between large scale and local scale variables used to derive local information 96 

from the larger scale patterns given by the climate model. Dynamical methods consist in 97 

running a limited area climate model forced by the larger scale model at its boundaries in 98 

order to refine the simulation over a chosen small region. The approach used here is a 99 

statistical downscaling technique based on the use of a quite sophisticated stochastic model. 100 

This stochastic model allows moreover the simulation of a large number of equivalent 101 

temperature time series then used to evaluate the statistical significance of the obtained 102 

changes in proportions of cold spells of different duration. Furrer et al. (2010) also proposed a 103 

stochastic model, used by Wang et al. (2015) to study hot spell changes in China from CMIP5 104 



simulations, but only hot spells are modelled, not the whole temperature time series as is the 105 

case here. 106 

The considered time series, model simulations and the methodology will be described in 107 

section 2, and then section 3 will present the validation of the approach over the current 108 

climate period. Section 4 will be devoted to the analysis of the changes in the cold wave 109 

distribution in the near and far future according to RCP4.5 and RCP8.5 scenarios, before 110 

coming to the conclusion and discussion in section 5. 111 

 112 

2. Data, models and methodology 113 

2.1 Observation time series 114 

In the framework of the French IMFREX project devoted to the impact of climate change on 115 

extreme events, Météo France developed a database of daily time series selected for their 116 

homogeneity over the longest possible period after a procedure of trend and metadata analysis 117 

dedicated to the detection of possible changes in the measurement conditions (Gibelin et al. 118 

2014). These so-called SQRs (Série Quotidiennes de Référence, reference daily time series in 119 

French) constitute a robust database of observations over France to study climate change. A 120 

set of 39 of such temperature time series have been provided by Météo-France for this study, 121 

conducted in the framework of the French national research agency supported SECIF project 122 

(dedicated to the development of climate services for the French industries). Among this set 123 

of time series, 22 daily minimum temperature time series have been selected as the longest 124 

and most representative of different locations in France, as shown in Figure 1, and they cover 125 

periods between 1953 and 2011. However, since the historical simulations of the climate 126 

models end in 2005, the observation time series are considered over periods between their 127 

beginning year and 2005. Table 1 summarizes the observed time series periods considered. 128 

The selection aimed at attributing a single station to a climate model grid cell, and thus when 129 

stations are too close, only the longest one is selected.  130 

2.2 Climate models 131 

The CNRM-CM5 and IPSL-CM5A-MR coupled ocean atmosphere GCMs are described 132 

respectively in Voldoire et al. (2013) and Dufresne et al. (2012) and will just be briefly 133 

presented here. The atmospheric component of CNRM-CM5 is the spectral ARPEGE-Climat 134 

GCM with a T127 linear grid (256 x 128 grid points) with 31 vertical levels. The ISBA land 135 

surface model, the NEMO ocean model and the GELATO sea ice model are coupled to the 136 

atmospheric model through the AOSIS coupler. The atmospheric component of IPSL-CM5A-137 



MR is the LMDZ model which has a 144x143 regular grid and 39 vertical levels, and is 138 

coupled to the ORCHIDEE land surface scheme. The ocean model is the NEMO-OPA suites, 139 

which models interactions of ocean, sea ice and marine ecosystem. Ocean atmosphere 140 

coupling is done through the OASIS coupler. CNRM-CM5 and IPSL-CM5A-MR models 141 

have different physical parameterizations and only share a closely resembling radiative 142 

scheme. 143 

For each model, the historical simulation, covering period 1950-2005, and two scenario runs, 144 

RCP4.5 and RCP8.5, covering period 2006-2100 are considered. For current climate, model 145 

simulations are considered over the exact same period as that of the corresponding 146 

observation time series. For example, for an observation time series spanning the period 1954-147 

2005, the model historical simulation is considered for years 1954 to 2005. Two future 148 

periods are then considered, one ending in 2060 and the other ending in 2100, the length 149 

being chosen identical to the observation time series length for convenience. Thus, again, for 150 

an observation time series covering 1954-2005, the first future period is 2009-2060 and the 151 

second one 2049-2100.  152 

2.3 Stochastic temperature model 153 

As stated before, a stochastic temperature model is used to bias correct and downscale the 154 

temperature time series provided by the climate models. This temperature generator is 155 

designed to realistically reproduce temperature extremes, and potentially simulate larger 156 

extremes than observed. It is a stochastic Functional Seasonal Heteroscedastic Auto 157 

Regressive model used to simulate the stochastic part of the process after the deterministic 158 

parts, trends and seasonalities in the mean and the variance, have been removed. It has namely 159 

been found from analyses of a large number of different temperature time series that once 160 

trends and seasonalities in the mean and the variance have been removed, no trends can be 161 

identified in the other moments (up to moment 4), the auto-correlations and in the extremes of 162 

the residuals (Hoang 2010). However, some seasonality remains in the other moments and in 163 

the auto-correlations, but not really in the extremes. Thus the stochastic model simulates Z(t), 164 

where            (1) 165 

with X(t) the observed temperature time series, Sm(t) the seasonality of the mean, m(t) the 166 

trend in mean, Sv(t) the seasonality of the standard deviation, and s(t) the trend in standard 167 

deviation. This corresponds to a standardization based on two deterministic parts of mean and 168 

standard deviation (seasonality and trend) rather than on their constant value estimated over 169 



the whole time period. The seasonalities are identified as trigonometric polynomials of the 170 

form 171 
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where the order p is chosen according to an Akaike criterion. The non parametric trends are 173 

estimated by LOESS with an optimal smoothing parameter obtained through a modified 174 

partitioned cross-validation technique (Hoang 2010; Dacunha-Castelle et al. 2015; Parey et al. 175 

2014). Then, Z(t) is modeled as: 176 
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p1 being again chosen according to an Akaike criterion, and a is the conditional standard 180 

deviation, obtained from the conditional variance a2 estimated as: 181 
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under constraints for its first derivatives at the boundaries: 183 
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and p2 chosen by Akaike criterion. Extreme value distributions for temperature are known as 186 

bounded, thus the simulation of the residuals Z(t) has to support this behavior and Z(t) is 187 

defined over an interval [r1,r2]. r1 and r2 correspond to the estimated bounds of the extreme 188 

value distributions for the left and right tails of Z(t). The constraints for the derivatives of the 189 

conditional variance are meant to force it to reach zero at the boundaries. The details and 190 

mathematical justifications for these choices can be found in Dacunha-Castelle et al. (2015). 191 

The bounds r1 and r2 are estimated by application of the extreme value theory to the Z(t) time-192 

series obtained from the observations, and  and 2 are the shape parameters estimated for the 193 

lower and upper tail by fitting a Generalized Extreme Value distribution to the block maxima 194 

(as the extremes of Z(t) are stationary, a block length of 73 days is used in order to select a 195 

sufficient number of maxima to more reliably fit the distribution). t is the random part and is 196 

defined as a truncated normal distribution whose truncation depends on the value of Z(t-1). 197 



Then a simulation of the initial temperature time series is obtained by re-introducing the 198 

estimated deterministic parts. 199 

The stochastic model is fitted to the residuals obtained from the observed time series, and 200 

then, seasonalities and trends coming either from the observations or from the climate model 201 

time series are used to reconstruct temperature time-series from the simulated residual time 202 

series. In this study, 100 simulations of the residuals for each of the 22 observed temperature 203 

time series have been considered. 204 

2.4 Simulated temperature time series 205 

As stated before, for each location 100 time series of the residuals Z(t), after removing trends 206 

and seasonalities, are computed. The ability of the model to reproduce the observed behavior 207 

of Z(t) has been checked in Hoang (2010), Dacunha-Castelle et al. (2015) and Parey et al. 208 

(2014), thus, from these, 100 temperature time series coherent with the observed one are 209 

obtained by reintroducing trends and seasonalities. For climate model temperature time series, 210 

potential biases have first to be investigated. Seasonality is the first estimated deterministic 211 

part, and trend is identified from the time series of anomalies from the seasonality. The same 212 

procedure is applied to observed and model temperature time series, and when comparing the 213 

obtained seasonalities and trends, it appears that most of the model bias is embedded in the 214 

seasonality identification, while trends are then more coherent with the observed ones. Figure 215 

2 illustrates this point for the station of Cannes, in the south of France. Thus, the reconstructed 216 

temperature time series for present climate are built by adding (multiplying by for standard 217 

deviation) observed seasonalities and climate model trends to the simulated residuals Z(t). 218 

Then, for future time periods, seasonalities are obtained by adding the modeled difference in 219 

seasonality of the mean between future and present period for the seasonality in the mean, and 220 

multiplying by the ratio of future period standard deviation seasonality to present period one 221 

for the seasonality of the standard deviation: 222 

 Smf = Smo + (Smm2 – Smm1); Svf = Svo * Svm2/Svm1 with Sm denoting seasonality of the 223 

mean, Sv seasonality of the standard deviation, and subscripts f, o, m1 and m2 denoting 224 

respectively future period, observation, model present period and model future period. Figure 225 

3 illustrates such a reconstruction for the same station of Cannes. 226 

2.5 Cold waves 227 

Cold waves are defined here as cold spells with one or more consecutive days with daily 228 

minimum temperature below a chosen low threshold. In this study, three thresholds are 229 

considered: a fix threshold, 0°C, and two low percentiles: the 10th and 5th percentiles of the 230 



observed wintertime daily minimum temperature distribution over the observation period. 231 

Winter is the climatological winter covering the months of December, January and February 232 

(DJF). 233 

 234 

3. Validation for present  period 235 

3.1 Climate and stochastic models performances 236 

In a first step, the repartitions of all identified cold spells for each station between different 237 

durations are compared for observation and climate model present period simulations. As 238 

climate models have biases, the thresholds used to define cold waves are chosen as the 239 

corresponding percentiles of the climate model time series. Thus, the fixed 0°C threshold is 240 

not 0°C for the models, but the value corresponding in the model time series to the percentile 241 

of 0°C in the observations. The 5th and 10th percentile of wintertime temperature correspond 242 

similarly to different temperature values in the model runs and in the observations. The 243 

comparisons show that generally, both climate models tend to produce fewer 1-day events and 244 

more 2 days and more ones than observed, and may have difficulties to reproduce very long 245 

cold spells. The stochastic model generally leads to a better reproduction of the proportion of 246 

long events, but tends to overestimate that of 1-day ones. Figure 4 illustrates this behavior for 247 

the station of Tomblaine and the 10th percentile threshold. It can be noticed that the stochastic 248 

model is able to produce long cold waves in some simulations, even though none has been 249 

observed (14 days or >15 days in Figure 4 right panel). With a more extreme threshold like 250 

the 5th percentile of wintertime temperature, the climate and stochastic models both have 251 

difficulties to produce a similar proportion of very long events as observed, although the 252 

stochastic model again sometimes succeeds in producing some among the 100 simulations, 253 

even though none have been observed. 254 

Besides, using the stochastic model allows inferring significance for the observed changes 255 

with the computation of the 95% confidence interval for the distributions obtained from the 256 

100 simulations of each proportion of cold spell duration. Figure 5 illustrates the mean 257 

number of cold waves per year for the 0°C threshold, all durations gathered, for the different 258 

considered locations in France. Black circles indicate the stations for which the simulated 259 

mean number is significantly different from the observed one (the observed number does not 260 

fall inside the 95% confidence interval of simulated numbers). These discrepancies are mainly 261 

due to the previously mentioned tendency to produce much more 1-day events than observed, 262 

whereas the proportions of longer cold spells are more faithfully represented. Then, the 263 



repartitions of cold spells computed from the stochastic simulations for the current period 264 

reconstructed with observed seasonalities and trends or observed seasonalities and climate 265 

model trends are very similar, as can be seen in Figure 6 for Tomblaine and the longest cold 266 

spells. 267 

3.2 Use in the climate change context 268 

In order to check the ability of the suggested methodology to be used in the climate change 269 

context, a cross-validation has been conducted for one location. The temperature time series 270 

of Champhol, observed over period 1954 and 2005, has been split into two periods of equal 271 

length: 1954-1979 and 1980-2005 (26 years each). The stochastic model has been calibrated 272 

over the first period, and 100 simulations have been made. Then, the minimum temperature 273 

time series for the second period has been reconstructed using first period seasonalities 274 

corrected using climate model seasonality differences between both periods and climate 275 

model trends for the second period, following the suggested methodology for future climate. 276 

Figure 7 shows that the obtained proportions of cold spells are similar to that which would 277 

have been obtained by using observed period 2 seasonalities and trends. Figure 7 is for the 278 

10th percentile threshold but this holds true for all used thresholds. This result gives 279 

confidence in the use of this methodology to derive bias corrected future temperature time 280 

series. 281 

 282 

4. Future changes in cold waves number and repartitions 283 

 284 

4.1 Cold waves number 285 

Then, the changes projected for the future are analyzed, considering the same observation 286 

based thresholds for the present and future periods. In line with all previous studies on the 287 

subject, the mean number of cold spells per year, all durations considered, decreases 288 

whichever the future time period, RCP scenario or threshold chosen for the identification. For 289 

the nearest future period until 2060, both scenarios not surprisingly give relatively similar 290 

results for both models, but IPSL-CM5A-MR model generally projects larger decreases than 291 

CNRM-CM5: around 1 to 5 less episodes per year for 0°C, up to 2 less for the 5th percentile 292 

and around 2 to 3 less for the 10th percentile with IPSL-CM5A-MR and around 1 to 4 less 293 

episodes per year for 0°C, 1 (more rarely 2) less for the 5th percentile and 1 to 2 less for the 294 

10th percentile with CNRM-CM5. The decreases are larger for the far future period with 295 

generally one to 2 events less than for the nearest period. Figure 8 illustrates these results for 296 



the 10th percentile threshold and each model and both near and far future periods for RCP4.5. 297 

The black circles denote significant changes and show that all changes are significant. 298 

 299 

4.2 Cold waves repartitions 300 

We just saw that the mean number of excursions under the different thresholds, whatever their 301 

lengths, is projected to decrease in the future. Now, let’s go further and see how the 302 

repartition among the different event durations is changed. Among this lower total number of 303 

cold spells, in the nearest future period, only the proportion of the longest events (15 days and 304 

more for 0°C, 10 days and more for the 5th percentile and 11 to 12 days or more for the 10th 305 

percentile) significantly decreases, and once again, more according to IPSL-CM5A-MR 306 

model than according to CNRM-CM5 model. The results are again similar for both RCPs 307 

until 2060, although a little bit higher for RCP8.5. For the end of the century, the picture looks 308 

similar but the significant decreases concern all stations and begin for shorter events. Here, 309 

the impact is larger with RCP8.5 than with RCP4.5, IPSL-CM5A-MR giving again a stronger 310 

response than CNRM-CM5. Significant decreases in proportions concern events during 5 311 

days and more for 0°C, 8 days or more (4 days at some locations) for the 5th percentile and 10 312 

days or more (again, less for less cold places) for the 10th percentile. Figure 9 illustrates these 313 

results for the period until 2100, both models and scenarios and for the 5th percentile 314 

threshold. 315 

 316 

4.3 Role of observation based threshold in the changes 317 

Previous results are obtained with the same threshold for the identification of cold waves for 318 

present and future periods. However, due to climate change, these thresholds become rarer in 319 

both future periods than nowadays. In order to identify the impact of this change on previous 320 

results, the cold spell repartitions have been estimated again from the stochastic simulations 321 

of the observations, but using as thresholds the values corresponding to the previously defined 322 

threshold location in future wintertime temperature distributions. Thus, the observation based 323 

5th and 10th threshold for example correspond to 2nd to 4th and 5th to 8th percentile for the 324 

nearest period, around 1st and 2nd to 4th percentile for the late period, depending on the model 325 

scenario and location. They thus lie in the farthest tail of the distribution, which could largely 326 

explain the observed changes in number and repartitions of cold waves. When using such 327 

threshold for the observations and comparing to the previously obtained results for the future 328 

periods, we can observe that they generally look very similar, confirming the upmost role 329 

played by this threshold change in the obtained results. Figure 10 illustrates this comparison 330 



for the late period (late 2040s to 2100), RCP4.5 and the current period 5th percentile of 331 

wintertime temperature distribution as threshold. Significant changes appear for similar cold 332 

spell lengths, the differences rarely exceeding one or 2 days. For one station and IPSL-CM5-333 

MR, a difference of 4 days can be noticed (circled in red in Figure 9): the significant decrease 334 

is found from 13 days with the observation based threshold and 9 days with the future one. 335 

After checking, it appears that the simulations do not produce 9-day cold spells with the 336 

future threshold, but produce a similar (even slightly higher) proportion of 10-day ones, and 337 

then, for the longest spells, the results are coherent. As the 10-day spells do not change, the 338 

coherent decrease is rather for 11 days and more and then, the results can be considered as 339 

similar. The reason for this absence of 9-day spells will have to be further investigated, but 340 

the proportion become very small for such lengths and a small change, induced by different 341 

trends, can induce such a result. It seems then that the dynamic of cold spells does not change 342 

much in the future, and the frequency of current cold waves decreases because current cold 343 

temperatures become less frequent. Now let us compare the threshold shifts given by each 344 

climate model. As an example, Figure 11 illustrates them for the station of Boulogne sur mer, 345 

in the north of France: for IPSL-CM5-MR, due to both mean increase and variance decrease 346 

(or location and scale of the distribution), the observation based 5th percentile of wintertime 347 

temperature distribution (around -5°C for this station), becomes a 0.5th percentile in the future. 348 

Such a decrease in the variance is not projected by CNRM-CM5, and the 5th percentile of 349 

observation distribution becomes a 1.5th percentile of the future wintertime distribution. Both 350 

mean and variance change impact the percentile change, and the difference in variance change 351 

explains why the impact is found higher with IPSL-CM5-MR than with CNRM-CM5. Cold 352 

spell length decreases in the future mainly because the frequency of current thresholds 353 

decreases, and this decrease is linked to both mean and variance changes. It must be recalled 354 

here that when the threshold becomes rarer, the climate and the stochastic models both have 355 

difficulties to produce long cold waves, which could artificially intensify the identified 356 

impact. 357 

 358 

5 Conclusion and discussion 359 

In this study, a stochastic temperature generator has been used to bias correct and downscale 360 

climate simulation results and analyze the future changes in cold waves number and 361 

repartition. Cold waves are defined as consecutive days (from 1 single day to more than 15 362 

days) with daily minimum temperature below different thresholds: 0°C or the 10th and 5th 363 



percentiles of observed wintertime daily minimum temperature distribution. For future period, 364 

two climate model simulations have been considered, one according to RCP8.5 scenario and 365 

the other according to RCP4.5, with only two climate models used in the framework of the 366 

CMIP5 exercise: CNRM-CM5 and IPSL-CM5A-MR. The main outcomes are the following: 367 

- Using the stochastic model allows both simulating some very long events, even 368 

though none have been observed, and inferring the significance of changes by use 369 

of the confidence intervals derived from 100 simulations for each period 370 

- In agreement with all previous studies, a significant decrease in the number of cold 371 

spells is found in the future, whichever the future period, model or scenario 372 

- Among these fewer cold waves, the decreasing essentially concerns the longest 373 

ones, with smaller differences for the nearest future period, whichever the 374 

scenario, and with CNRM-CM5 model 375 

- The main driver of the changes is the threshold shift: observation based thresholds 376 

are rarer in the future due to climate warming 377 

- For IPSL-CM5-MR, the variance decrease add to the mean increase to make 378 

current thresholds even rarer in the future, which explains the highest impact found 379 

with this model 380 

The fact that in winter, variance decreases when mean increases, has already been evidenced 381 

in Parey et al. 2010. However, the present study shows that two different models may have a 382 

different behavior in this respect, the decrease in temperature variance being much lower for 383 

CNRM-CM5 than for IPSL-CM5A-MR. This study should thus be extended to the 384 

consideration of more climate models. It could be interesting to apply the same methodology 385 

to heat waves too, in order to compare the impacts. Schoetter et al. 2015 also found that for 386 

heat waves, the main driver is the threshold shift, and considering the respective roles of shift 387 

and broadening of the distributions, found no significant change in variance, and thus, a 388 

dominating role for the mean change, whereas here the variance change seems to play a more 389 

important role for cold spells. One advantage of the methodology used here is the 390 

decomposition of the signal between 2 deterministic parts, seasonality and trend, both for 391 

mean and variance, and a stochastic signal. Academic tests will be done with prescribed 392 

changes in the different deterministic components in order to quantify their respective roles in 393 

the change of extreme temperature events. In parallel, suggestions and tests are under way to 394 

improve the stochastic model in order to fix its tendency to produce too much single day 395 

events and too few very long ones, especially when the threshold is extreme (typically lower 396 

than the 5th percentile). 397 
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Tables 500 

Number Location Period 

1 Château Gaillard 1953-2005 

2 Cannes 1959-2005 

3 Chateaubernard 1953-2005 

4 Farges en Septaine 1953-2005 

5 Saint Cast le Guildo 1955-2005 

6 Besançon 1959-2005 

7 Montélimar 1959-2005 

8 Champol 1954-2005 

9 Guipavas 1958-2005 

10 Beaucouze 1955-2005 

11 Auderville 1955-2005 

12 Courcy 1959-2005 

13 Saint Dizier 1959-2005 

14 Tomblaine 1959-2005 

15 Augny 1959-2005 

16 Boulogne sur mer 1955-2005 

17 Epinoy 1955-2005 

18 Strasbourg 1959-2005 

19 Mont Saint Vincent 1953-2005 

20 Sainte Adresse 1955-2005 

21 Vélizy Villacoublais 1954-2005 

22 Saint Georges la Baulche 1954-2005 

Table 1: list of the observed time series locations with their observation period considered for 501 

present climate 502 

503 



Figures 504 

 505 

Figure 1: location of the 22 selected daily minimum temperature time series; the numbers 506 

refer to table 1 for the location identification 507 

508 



 509 

Seasonality 

 

Trend 

 

Figure 2: seasonality (top panel: mean top and variance bottom) and trend (bottom panel: 510 

mean top and variance bottom) of the observed (black curves), IPSL-CM5A-MR (cyan) and 511 

CNRM-CM5 (green) daily minimum temperature time series for Cannes, in the south of 512 

France 513 

514 



 515 

Simulated residuals Z(t) 

 

Present (black) and future (red) seasonality 

and future trend of the mean 

Present (black) and future (red) seasonality 

and future trend of the variance 

  

Reconstructed future time series  

 

Figure 3: reconstruction of a future daily minimum temperature time series (bottom panel) 516 

from the simulated residuals (top panel), the future seasonalities and trends (middle panel, for 517 

seasonality: black = present, red = future) for the mean (left panel) and the variance (right 518 

panel) 519 



  

Figure 4: cold spells repartition with a 10th percentile threshold from the climate models (left 520 

panel: observation in black, IPSL-CM5A-MR in cyan and CNRM-CM5 in green) and with 521 

the stochastic model (right panel: observation in black, distribution for the 100 simulations in 522 

blue: x mean and + 2.5 and 97.5 percentiles) for the station of Tomblaine. Top plots represent 523 

all cold wave lengths while bottom plots zoom on the longest ones (6 days and more) 524 

525 



 526 

 

 

Figure 5: mean number of observed cold spells per year with 0°C threshold. Black circling 527 

denotes the locations where the observed number does not fall inside the 95% confidence 528 

interval of the stochastic simulations 529 

530 



 531 

Figure 6: distributions of proportions of the longest cold waves (6 days and more) obtained 532 

with the stochastic model for the station of Tomblaine from the observations (simulated 533 

residuals + observed seasonalities and trends, black), and from IPSL-CM5A-MR (blue) and 534 

CNRM-CM5 (green) (simulated residuals + observed seasonalities and model trends). Cross 535 

is for the mean value, and start and end of the segments are the 2.5 and 97.5 percentiles of the 536 

distribution obtained from the 100 simulations 537 

 538 
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 543 

 544 

 545 

 546 

 547 

 548 

 549 



 550 

  

Figure 7: cold waves repartition with a 10th percentile threshold for the station of Champhol 551 

over period 1980-2005 as given by direct fitting of the stochastic model on the observations 552 

(left panel) or by reconstruction using climate model trends and seasonality increments (right 553 

panel, IPSL-CM5A-MR in cyan and CNRM-CM5 in green) and stochastic model fitted over 554 

period 1954-1979. Black points are for observed proportions while each bar represents the 555 

distribution of the 100 simulations (x for mean and + for 2.5 and 97.5 percentiles). Top plots 556 

represent all cold wave lengths while bottom plots zoom on the longest ones (6 days and 557 

more) 558 

 559 

560 



 561 

IPSL-CM5A-MR 2008-2060 IPSL-CM5A-MR 2048-2100 

  

CNRM-CM5 2008-2060 CNRM-CM5 2048-2100 

  

 

Figure 8: change in the mean annual number of cold waves of all duration for the near (ending 562 

in 2060, left panel) and far (ending in 2100, right panel) future periods with IPSL-CM5A-MR 563 

(top plots) and CNRM-CM5 (bottom plots) models with RCP4.5 with the 10th percentile 564 

threshold 565 

566 



 567 

 

 

Figure 9: length from which the proportion significantly changes from the observed 568 

proportion for future period ending in 2100 according to IPSL-CM5A-MR (top) and CNRM-569 

CM5 (bottom) models with RCP4.5 (left panels) and RCP8.5 (right panels) with the 5th 570 

percentile threshold 571 

572 
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Observation based 5th percentile threshold Future climate equivalent threshold 

  

 

Figure 10: length from which changes in proportions of cold waves are significant from the 574 

observation based stochastic simulations with the observation based 5th percentile threshold 575 

(left panel) and a threshold corresponding to the rank of this observation based 5th percentile 576 

threshold in the far future (ending in 2100) wintertime temperature distribution (right panel). 577 

Red circling isolates the station of Tomblaine which is further discussed 578 

 579 

580 



 581 

IPSL-CM5A-MR CNRM-CM5 

  

Figure 11: probability density function of the wintertime daily minimum temperature 582 

according to the observations (blue curve) and climate model far future period with RCP4.5 583 

(orange curve) with IPSL-CM5A-MR (left panel) and CNRM-CM5 (right panel). The blue 584 

line is for the observation based 5th percentile threshold and the orange one for its equivalent 585 

percentile in the future distribution 586 


