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Abstract: The existence of an increasing trend in average temperatures during the last 50 years is 

widely acknowledged. Furthermore, there is compelling evidence of the variability of extremes, and 

rapid strides are made in studies of these events. Indeed, by extending the results of the “extreme 

value theory” (EVT) to the non-stationary case, analyses can examine the presence of trends in 

extreme values of stochastic processes. Definition of extreme events, their statistical significance as 

well as their interpretations have to be handled with great care when used for environmental concerns 

and public safety. Thus, we will discuss the validity of the hypothesis allowing the use of mathematical 

theories for these problems. To answer safety requirements, respect installation norms and reduce 

public risk, return levels are a major operational goal, obtained with the EVT. In this paper, we give 

quantitative results for observations of high temperatures over the 1950-2003 period in 47 stations in 

France. We examined the validity of the non-stationary EVT and introduced the notion of return levels 

(RL) in a time-varying context. Our analysis puts particular accent on the difference between methods 

used to describe extremes, to perform advanced fits and tests (climatic science), and those estimating 

the probability of rare future events (security problems in an evolving climate).  

After enouncing the method used for trend identification of extremes in term of easily interpretable 

parameters of distribution laws, we apply the procedure to long series of temperature measurements 
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and check the influence of data length on trend estimation. We also address the problem of choosing 

the part of observations allowing appropriate extrapolation. In our analysis, we determined the 

influence of the 2003 heat wave on trend and return-level estimation comparing it to the RL in a 

stationary context. The application of the procedure to 47 stations spread over France is a first step for 

a refined spatial analysis. Working on the behavior of distribution parameters while assessing trend 

identification, is a primary tool in order to classify climatic change with respect to the location of the 

station and open a systematic work using the same methodology for other variables and multivariate 

studies. 

 

 

1. Introduction 

Dimensioning of civil  engineering works is based on the statistical evaluation of return levels 

for some defined return periods (20, 50 or 100 years depending on the required reliability). 

For example, air conditioning for some sensitive industrial sites is based on 100-year return 

levels of high local temperature. These methods, known as extreme evaluation methods, 

exist since mid 20th-century, and were primarily introduced by Gumbel (1958). Since then, 

much advancement has been made in numerous fields such as hydrology and 

oceanography. The greenhouse effect and its possible consequences drive increasing 

interest of the public and of scientists for these methods. Estimation of extreme temperature 

in a non-stationary context becomes crucial. We shall see that the best statistical fit to 

observed data in order to get a good description and understanding of a more or less recent 

behavior leads to different mathematical choices than the ones induced by extrapolation 

objective. An important part of this paper deals with descriptive statistics. Still, we approach 

and dispute pertinent conflicts in climate statistics between mathematical distribution fitting or 

description and prediction problems. Concerns on extreme events grow in strength because 

of their socio-economical impacts. Thus, their prediction becomes critical. A clear and unified 

definition of return levels in a non-stationary context is a fundamental basis for proper 
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prediction. In addition, physical considerations are necessary for appropriate extrapolation. 

The foundation of the EVT relies on two general definitions of extreme events. Those can be 

considered as maxima of given blocks of time (e.g. a year or a month), described by the 

Generalized Extreme Value (GEV) distribution. Another specification consists of Peaks Over 

Threshold (POT), where extremes are retained values over a properly chosen high threshold. 

These exceedances, when independent and in sufficient quantity follow a Generalized 

Pareto Distribution (GPD). The series of occurrences of these events is the trajectory of a 

Poisson process. 

The EVT has been primarily developed for the fields of oceanography and hydrology (Coles 

2001 and Katz et al 2002). In comparison with this last paper, we detail here the problematic 

of non stationarity in introducing new models and considering in more details the role of the 

observation length, the sensitivity to a large observation and the link between the general 

and extreme modeling. 

 Leadbetter et al. (1983) give the detailed probabilistic foundations of the theory. The paper 

of Smith (1989) is basic for environment examples and gives examples of non-stationary 

models. 

An increased number of studies were since then applied to climate or environmental issues, 

but only a few investigate the potential non stationarity of extreme events. The validity of 

statistical methods depends on asymptotic properties, whereas the definition itself of 

extremes make them rare, thus implying the necessity to work with long data series. These 

are hard to obtain, which hinders considerably their statistical estimation. Some hypotheses 

can be generalized to data dependent in time, but there is no serious mathematical evidence 

of correctness of these extensions. Another difficulty when attempting to extrapolate rare 

events is related to the fractious inference of mathematical laws to a class of events never 

observed in the past. These objections can be resolved by statistical verifications of the 

quality of model choices. Furthermore, the non stationary context requires additional 

mathematical hypotheses in order to carry out extrapolation.  
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Although the methods are based on simple ideas, the theoretical foundation of the probability 

theory is not completely done until now. The underlying hypotheses one has to ascertain to 

justify the statistical model are formulated in the EVT for the stationary case. Still, when 

dealing with non stationary spatially distributed time series, these processes are fastidious 

and often left behind in analyses. They often involve graphical tools which can only be 

applied for exploratory studies. Thus, the classical statistical tools need to be significantly 

improved. 

Stationary series contain no cycle and no monotonous trend. Seasonal means of 

temperature present an increasing trend since the mid 20th century. This change justifies the 

question we will answer in this paper, that is: is there a similar change in behavior of extreme 

temperatures? For physical interpretation, it would be useful to get a better understanding of 

the link between trends for all observation and trends for extremes. We detail in appendix 4 

why this is a very awkward problem without giving any clear solution.  

 Impact of climate change on extreme events remains a prevalent enquiry, which resolution 

is hindered by the lack of very long series and difficulties of climate models to efficiently 

represent rare events (see IPCC report 2001 or Moberg et al. 2004). Nevertheless, much 

work has been done or is in progress on this subject, especially within the framework of the 

European projects STARDEX (Statistical and Regional Dynamical downscaling of Extremes 

for European regions) and MICE (Modeling the Impacts of Climate Extremes). Work on 

extremes for simulated climate are also conducted in Semenov et al. (2002) and Huntingford 

et al. (2003). After comparing present simulated climate to observation regarding extreme 

events, evaluations are made with EVT in a stationary context for fixed periods in the future 

according to available simulations. 

Some evidence on the evolution of the distribution of extreme and very high values can be 

found in papers of “Understanding changes in weather and climate extremes” (2000 in 

Bulletin of the American Society : Easterling et al., Meehl et al.). These papers also include a 
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large bibliography on physical aspects of the problem and on data and studies for various 

areas in the world. 

Many recent works focus on regions of different size, from parts of Europe to the entire 

world. They are concerned with the evolution of universally accepted indices proposed in 

order to represent high values of climate variables, such as temperature or precipitation.. 

Based on particular standards (see standards of ECA for instance), these indices do not 

examine very high, rare events, but enable fair evaluations for very large scales (see Yan et 

al. (2002) see alsoYan et al. (2002)). 

The definition of an extreme event, especially in a varying climate context, is not the only 

difficulty encountered when studying non stationary extremes. The choice of the model for 

trend, its statistical estimation, as well as confidence interval computation are core concerns 

which have to be treated by the theory. Only a few studies in probability theory are 

addressing the basic following problem: what level of non-stationarity keeps the results on 

climatological extremes valid? Thus, the EVT and the underlying hypotheses needs to be 

adapted.  

The main specificity of this paper is to give a methodology that allows formulating empirical 

laws on distributions and on the evolution of temperature extremes with time. Trend is 

usually defined as a function or set of functions of time, modeling the variations of some 

parameters to roughly describe the evolution of data. In this paper, the notion of trend is split 

into two complementary concepts to explain distributions of extreme temperatures and their 

occurrences in time. For extrapolation purposes, trend has to be a clearly monotonous or a 

periodic, well-identified function, which in our analysis is not always the case. When best 

fitting models having the largest likelihood are not monotonous, we need to modify our 

choice, to obtain simple return level evolutions. However, this approach can lead to 

inadmissible physical or climatic considerations we will try to explain. A better approach is to 

consider time as an ordinary explicative (clearly deterministic) variable (in statistical language 

a covariate). Mathematical theory does not mind a specific covariable, we can replace it by 
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any other one as for instance an index of greenhouse gas emission. Both variables can also 

be taken into account. We do not detail this approach here for the following reasons: for a 

recent past, it can be shown that in order to built a non stationary model, the choice of either 

of these covariates is almost equivalent. But from a statistical point of view it is not correct to 

keep both variables in the model, they are redundant. For the long period we want to study, 

time seems clearly more adequate. For prediction we then choose to extrapolate recent 

temporal trends, which is equivalent to extrapolate past greenhouse gas evolution.  

In this paper, we propose a detailed methodology to identify and estimate trends in series of 

very high temperatures and to perform the required tests on the statistical model validity. 

Two kinds of statistical problems are considered: the specific effect of the chosen period and 

the sensitivity to one particular observation. We make also some remarks on the effect of 

clustering. These results are used to do extrapolations for the evaluation of return levels.  

We have done computation for the two approaches, GEV and POT, only the POT method 

(and results) will be described here, as outcomes are similar in both cases. 

Identifying and evaluating the trend will be presented in part 2, with details and results in part 

3. Then, part 4 is dedicated to the effect of the very high-observed temperature in 2003, and 

part 5 will give some results on the use of these statistical models for return level 

evaluations, before concluding in Part 6. Part 7 is an introduction to spatial variation. Part 8 

and following are mathematical appendices. 

 

2. Data description and methods  

Provided by Météo-France, series of temperature are 3-hourly daily measurements at fixed 

intervals (0h, 3h, 6h, 12h, 15h, 18h, 21h) with an instrumental precision of 1/10 degree. Data 

is spread over 47 stations in France, which locations are shown in figure 1. For each station, 

we retain the daily maximum during the A years of observations as the maximum of the 8 3-

hourly measurements. In our examples A varies from 19 to 55 (except for  Paris-Montsouris, 
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where A=130), in the period 1949-2003 (1873-2002 for Paris-Montsouris, the series being 

considered as relatively homogeneous by Météo-France only from 1915). 

  

 

Figure 1. Geographical location of the 47 Météo-France stations used in the study, with series 

length in brackets. 

2.1. Seasonal Effects 

Temperature data contains 1-year seasonality, even if this period effect is less apparent for 

high values. Suppressing this yearly effect would leave us with irrelevant seasons, as winter, 

where high temperatures are not inclined to appear. Thus, we will only keep observations for 

hot seasons. This period is determined empirically from daily and weekly histograms for each 

station constrained by the homogeneousness rule. A hot season of 100 days from the 14th of 

June to the 21st of September is finally retained as a compromise between the need of 

informative data and the required homogeneity. 
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2.2.  POT model 

In this paper, we chose to discuss the Peaks Over Threshold (POT) model, as opposed to 

the Generalized Extreme Value (GEV) model, easier to handle, but less informative. In a first 

step, we define the statistical model used, we recall the hypotheses and main principles of 

the method. 

From each season (every year) of length L=100 days, we extract extreme values. Let Y(t) be 

the maximal temperature observed at date t. Let u be a high level threshold defined as the 

number of days t  such that ( )Y t u  is equal to N  with 
N

AL
 ,  fixed, A being the 

number of observed years. Then { / }tU t Y u  is the set of dates corresponding to events 

exceeding the threshold. The declustering procedure we preferred consists in extracting the 

highest value of an aggregation of several consecutive peaks, considered as a “cluster”. 

Then ( 1,..., NX X ) and 1,... Nt t  are the data after declusterization, Xi being the magnitude of 

the exceedance at date ti. 

The data ( 1,..., NX X ) and 1,... Nt t  can be considered as the sample of a POT model if the 

following hypotheses are verified: 

1K ) ( 1,... Nt t ) is a sample from a non-homogeneous Poisson process of intensity I(t) 

(see Leadbetter et al 1983). 

2K ) 1,... NX X and 1,... Nt t are independent sequences of random variables 

3K ) 1 ,... NX u X u  are independent variables with a Pareto distribution depending 

on time with the scale parameter and  the shape parameter.  

This means that there exist functions t)and tsuch that for every 1,... Nt t   

),,()( xHuXxXP jj   with =(tj) and =(tj) 
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To apply the POT theory, a few pre-processing steps need to be applied (details are 

presented in appendix 1). 

 A proper threshold choice is the first concern, followed by the declustering procedure. In this 

way, we can obtain the clusterization coefficient defined as the inverse value of the 

(random) length of clusters. It is estimated by the ratio of the number of clusters divided by 

the number of points over the threshold.  

A first non-parametric analysis with splines or wavelets (Green et al.1994) indicates the class 

of models we should consider in an effort to estimate the temporal evolution of the t) 

tand I(t)

general variation of extreme events. Indeed, the I(t) function will describe the change in 

frequencies of extremes, whereas t) will depict the evolution of their strength. This 

descriptive method suggested the choice of polynomials and the class of continuous 

piecewise linear (CPL) functions. To choose the optimal model among one class we opted 

for the objective likelihood test. Finally, goodness of fit tests allow us to check the fit of the 

obtained distribution of exceedances to the Generalized Pareto Distribution (GPD), the 

belonging of the set of dates to a Poisson process, and validate the hypotheses of 

independence. 

 

2.3. Trends 

The details for trend identification are given in appendix 1 and discussed hereafter. 
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As stated earlier, the notion of trend in our analysis is subtle and we will now discuss its 

definition and interpretation.  

The POT model clearly shows the problem that we have to face. We have two stochastically 

independent objects: the Poisson process and the sequence of exceedances over the 

threshold. If we suppose the shape parameter of the GPD constant, we have two 

parameters characterizing extreme climate. First, the intensity ( )I t of the Poisson process of 

the dates of exceedances accounts for the frequency of extreme events. Then, from the 

GPD, the mean ( )t /(1-) of these peaks, describes their magnitude (let us note that   is 

also proportional to the square root of the variance of the Pareto distribution which makes the 

interpretations more difficult). From the stochastic independence, the evolution of these two 

functions has no reason to be linked, for instance I (t) may increase when  (t) decreases, 

increases or remains constant. If  (t) decreases while I(t) increases, the occurrence of rare 

events changes and becomes more frequent, but their strength is less intense.  

A very natural question concerns the relation between the change in the distribution of the 

whole data set and the evolution of extremes. In the case of the total observation period, 

trends will describe the alteration of the mean and sometimes of the variance of some 

distribution F, often specified as Gaussian. For example, Schar et al. (Schar 2004) attempt to 

explain the 2003 very high temperature in Western Europe by the increase in the variance of 

a Gaussian model. In their analyses, trend in extremes is implicitly explained by the trend in 

the central part of the distribution but for mean values which are of course “more Gaussian”. 

We try in appendix 4 to show how trends depend on the distribution of the observations, 

especially when the shape parameter is fixed and strictly negative for high temperatures thus 

depicting non-gaussian distributions. 

In fact, there do not exist any mathematical theory to deduce trends for extremes from trends 

for the whole distribution. In appendix 4 we try to explain why. The main reason is the 

following: the knowledge of this transfer function implies a precise knowledge of the 
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distribution of the observations, and the knowledge of trends in mean and variance and of 

the shape parameter, which characterizes the distribution of extremes, is not sufficient. 

However, even in the stationary case, extreme theory is often used without any attempt to 

extract all the information contained in the observations.  Working without this extreme value 

theory, in making direct and explicit computations on distributions, implies the estimation of 

the probability distribution with a large precision. This is impossible in the stationary case, 

then even more in a non stationary context. 

3. Results 

3.1. Period of observation: effect on trend choice 

 
It is clear that the estimated trend in the statistical model will be highly dependent on the 

period of observation. But does the parameter depend on the period or is it a physical 

characteristic of extreme temperatures at a given station?  The long Paris-Montsouris time 

series can help us examine the question and explore the parameter in detail.  

In order to analyze it, we consider 6 nested periods (noted as P) as follows: 

P10: [1873 2002] (the whole series) P21: [1873 1937] (the first half)  

P22: [1938 2002] (the second half) P31: [1873 1915] (the first third)   

P32: [1916 1958] (the second third) P33: [1959 2002] (the last third) 

When examining the trend, we obtain the best polynomial degrees of fitted models for the 

two considered parameters: the Poisson intensity I(t) and the Pareto parameter (t) (see 

Table 1). Presented results are the same for the two confidence levels 0.1 and 0.05, these 

tests are performed using two methods detailed in appendix 1. 

 

Period P10 P21 P22 P31 P32 P33 

I(t) degree 5 0 2 0 0 2 
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(t) degree 1 0 0 0 4 0 

Table 1. The best degrees of polynomial models for I(t) and (t) for each sub-period of time P. 

The optimal polynomial fitted depends strongly on the observation period. We can thus 

conclude that our analyzed data is highly non stationary. The degree 5 of the I(t) function for 

the whole period is not surprising, it allows to capture smooth oscillations of the Poisson 

intensity already detected by a non parametric analysis (splines or wavelets, Green and 

Silverman, 1994) without any use of arbitrary choice of polynomial model. 

Figure 2 shows the evolution of I(t), the intensity of the Poisson process, with time, for the 

whole period and for the optimal models found. The optimal CPL model obtained consists of 

four linear fragments, thus depending on 8 parameters against 6 for the optimal polynomial. 

A direct comparison with the optimal polynomial model is, as we said previously, difficult. For 

shorter periods the degree for amplitudes of exceedances is smaller. The quartic observed in 

the (t) parameter Pareto distribution of period P31 has to be considered as an expression of 

an important variability ( is proportional to the quadratic mean) fitted on a short period rather 

than an evidence of a trend on values above the threshold.  

A notable result is that there is no significant dependence of the  parameter on the period, 

nor on the family of models chosen (for the optimal model). Thus, this parameter seems 

invariant in time, at least when the time series is long enough to obtain an appropriate 

precision for the estimation, i.e. around 40 years. Thus, we can do some physically coherent 

classification with interesting physical features of the stations using this parameter. 
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Figure 2: Paris-Montsouris station (130 years, 13000 days in the hot seasons, 260 points over 
the threshold): Poisson intensity models: optimal polynomial degree 5, optimal CPL 4 

fragments, and a non optimal model with 2 fragments. The x-axis represents the concatenated 
time (days in the hot seasons). 

 

 

3.2.  Results for the 47 stations 

We now give results for the 47 stations in France mapped on Figure 1. For all these stations, 

we have at least 22 and at most 55 years of observations. Each individual threshold is 

chosen to issue 70 exceedances after declusterization for the 19 first years (until 2000) of the 

22-year series. This threshold is chosen removing the years 2001-2003 because they add 

too many points, which leads, for short observation periods (22 years), to an under-

representation of the beginning of the period. Then we add 3 points for each supplementary 

year. This empirical procedure has been compared to the use of plots which are difficult to 

handle in a non stationary context. It shows to give better results for tests of fit of models. 

3.2.1. Threshold and clusters 
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Figure 3 shows the geographical repartition of the threshold values. France is divided into 

three parts: a hot south part (south of 45°) with a threshold about 31 to 32°C, an intermediate 

part about 30°C and a North part with a level between 23°C and 28°C. 

 

Figure 3: threshold value (°C) for each station on its whole period 

To apply the theory of POT models without corrections, we have to be sure that the 

observations are provided by a weakly dependent stochastic process (see Leadbetter et al. 

1983 for precisions on “weakly”). The first step in order to discuss this point is to estimate the 

clustering coefficient . We use the simplest estimator already defined; it gives here =0.5± 

0.1. This is roughly equivalent to say that the mean cluster length is 2 days. When  is clearly 

less than 1 (in practice less than 0.2) then it can happen that the temporal dependence is so 

strong that one has to modify the theoretical results used here. This is not the case for hot air 

temperatures. There is an important loss of information for 2003 and similar episodes. In this 

cases, the clusters are very long (this is due to the high difference between the maximal 

temperature inside the cluster and the threshold temperature). We shall discuss this point in 

a forthcoming paper. In fact, declusterization forces the independence between 
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exceedances. However, it has the deep drawback not to take into account another kind of 

non stationarity: the increase of the cluster length. A non stationary threshold could be 

thought as an alternative method, but this is not true because a suitable threshold varies too 

slowly to solve this problem. 

3.2.2. Shape values and extreme values amplitude trend 

 
We identify an optimal polynomial model for the Poisson process intensities associated with 

the days of occurrence of temperature over the threshold and for the parameter (t) of the 

Pareto distribution. We also describe an optimal CPL (continuous piecewise linear) model. 

This has been done for the whole observation periods for each station, and the main results 

are described in this section.  

As it is well known, the shape parameter  is difficult to estimate, which is confirmed with our 

obtained confidence intervals. First result: the shape coefficient is negative in France with the 

following values: 

- between -0.1 and -0.5 for periods shorter than 25 years with a standard error (SE) 

between 0.1 and 0.2 

- between -0.20 and -0.35 for observation periods of more than 40 years with a SE of 

0.08. 

This result can be checked on non stationary Pareto models as well as on stationary ones. 

So the distribution of temperatures is not a Gaussian one for which =0. Of course a highly 

non stationary Gaussian process could break this result (see appendix 1 and 4) but we 

dispose of a sufficient number of POT stationary models (for a large number of stations) to 

reject this possibility. This result is crucial since the “central part” of the distribution is often 

considered to be Gaussian! In fact, the distribution of extremes always has a finite upper 

bound B given by B=u-(t)/ and for the observed values of , the density of the Pareto 

distribution has a zero derivative at the upper bound. We give in the following table examples 

of such bounds for stationary and non stationary optimal models. In the second case, the 
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optimal maximum bound (max) will be obtained for the last date of observation (given by a 

0.95 confidence interval), whereas the minimal one refers to the first date (min). 

Upper bound  Rouen Bordeaux Marignane 

Stationary  41.97 44.10 46.21 

Optimal 

min 40.21 41.93 42.94 

max 50.37 46.44 61.24 

Table 2: upper bounds of the distribution 

 

Estimated values of such as >-0.05 or <-0.4 have to be looked with suspicion on the data 

quality or on the statistical model fit. The absolute value of the parameter  generally 

increases with the degree of the Pareto model. Furthermore, the estimators of the 

parameters  and  are not asymptotically independent, so the precision of  estimation 

diminishes strongly when the degree of  increases because there are more parameters to 

estimate. There doesn’t seem to be any evident spatial or climatological classification of the  

parameter.  

We have investigated optimality for two classes of models: polynomial and CPL functions. 

Results are very similar. The main advantage of CPL models is to avoid unstable choices for 

Pareto distributions when the degree is 3 or more. Then the dependence between the 

estimators of the different parameters leads to very large variances. For instance in the case 

of Dunkerque with only 22 years of observation the matrix of variance-covariance of the 

estimated parameters is almost infinite and the result on optimality has no statistical 

meaning. High Pareto degrees with <-0.4 lead to very large confidence intervals and cannot 

be considered as reasonable results. This only happens for observations of length less than 

25 years. 

Figure 4 shows the spatial distribution for polynomial degree of trend of the mean of the 

extreme values which is proportional to (t). The previously described phenomenon is 
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observed in two stations in extreme North but for very short observation length and is thus 

doubtful. 

 

Figure 4 : degree of the polynomial trend for (t) or for the mean of exceedances for the 

maximal length of observation  

We obtain degrees larger than 3 mainly in the south east part of France, specifically in the 

Alps, the Massif Central and the Rhodanian corridor and in the Alsatian region, which are hot 

summer regions, either mountains or valleys between two mountain blocks. For short 

observation periods in other parts of France  the parameter remains constant, for longer than 

40 years it is linear or quadratic. So the mean of exceedances is highly unstable in hot 

stations for short periods; this can be seen as a “year effect” and this result disappears for a 

longer observation for almost all stations. Hot stations often show a quadratic , and the 

other ones a constant . It is worth noticing that the degree of the (t) function divides the 

country in significant regions – different for Poisson intensity and for the threshold. 

3.2.3.  Poisson models and spatio-temporal analysis 
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Figure 5 shows the optimal model degree for the intensity I(t) of the Poisson process which 

gives the description of the trend for the frequency of exceedances over the threshold. 

 

Figure 5: optimal degree of the polynomial trend for the Poisson process Intensity I(t) 

For more than 40 years of observation, the intensity is very often increasing in a quadratic 

way, causing an increase in occurrences of extreme events. An exception is the 

Mediterranean coast with a cubic evolution. Between 40 and 25 years of observation the 

degree falls to a linear or null dependence in the north near the Channel.  

In summary, trends classify climate variation of extremely high temperatures in the following 

way: the South and the Alps have strong increase of both probability of exceedances and 

mean over the threshold; Central part has only a quadratic trend for amplitudes of extremes; 

Channel and Atlantic coasts have a weaker increasing trend. A strong confidence on these 

results requires at least 30 years (these is an order of magnitude) of observations. 

3.2.4. Polynomials versus Continuous Piecewise Linear (CPL) functions 

 
Let us now discuss the choice of the model class between polynomials or CPL models. The 

advantage of CPL models is to capture more details. Statistical tests allow more parameters 
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for these models (we will not give mathematical reasons in this paper). For instance for long 

periods, instead of a quadratic trend (3 parameters) for the Poisson intensity we generally 

find a model with three pieces (6 parameters) which is much more informative. Furthermore, 

the problems related to polynomials of higher degrees estimated on short observation 

periods fade in some cases but remains if exceptional data are in an exceptional position as 

it is the case for 2003 (end of the observation). Confidence intervals of 3-piece linear models 

are more acute than for a quartic polynomial. Still, statistical optimization is harder for CPL 

functions than for polynomials and the mathematical theory for model choice and estimation 

is more difficult (see Dacunha-Castelle et al 1997 for details on this point). It thus seems a 

practical advantage to benefit from both classes of functions and to avoid statistical artifacts.  

 

4. Discussion on period length and 2003 effects 

 
The effect of the period length is highly relevant in the case of non stationary process. 

Similarly, the year 2003 will have an impact on our estimations, considering its critical 

characteristic: it is the strongest and the last value of the time series. The most important 

results are given here on selected stations with 54 years of observation. 

We can see that the year 2003 changes dramatically the highest extreme. Table 3 shows the 

record for the 7 longest series until 2002, and then until 2003.  

 

 
threshold 
 3% points 

Records for  period 
1950-2002 

Records for period 
1950-2003 

BORDEAUX 31.99 08/09/98 38.30 08/04/03 40.01 

LYON 31.96 07/22/83 39.30 08/13/03 40.49 

METZ 29.48 08/11/98 37.86 08/07/03 38.79 

MONTELIMAR 33.21 07/06/82 39.49 08/05/03 40.49 

ORLEANS 29.98 09/04/52 37.85 08/06/03 39.30 

POITIERS 30.69 07/22/90 37.09 08/05/03 39.10 

REIMS 29.11 08/11/98 37.07 08/12/03 38.90 

Table 3: record for the series until 2002, and then until 2003 
 

Table 4 shows the ten largest values for the whole period for Poitiers (after declusterization,) 

(1950-2003) 

POITIERS TEMPERATURE 
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08/05/03 39.1 

06/22/03 37.7 

07/22/90 37.1 

08/04/90 36.9 

08/10/98 36.8 

08/04/75 36.8 

08/29/61 36.4 

06/30/52 36.4 

08/15/74 36.0 

08/25/01 36.0 

Table 4 : 10 largest values for Poitiers between 1950 and 2003 

The 2003 record is larger than the previous one (when the ten largest values occur before 

2002) by more than 1 degree or even by 2 degrees. If we look at the ten largest values until 

2002, they are approximately separated by 0.1 to 0.4 degree. Such a jump in the record has 

a negligible probability if the distribution is the non stationary Pareto fitted on data until 2002. 

So we have to conclude that 2003 temperatures had a very weak probability to be 

“explained” by the trend in the last 30 years (perhaps using 3 centuries of observation the 

situation would not be the same). In Poitiers the observed value in 2003 is larger than the 

theoretical upper bound of the distribution estimated for 2002!  

Adding years 2001 to 2003 to the sample leads to much more threshold exceedances, but 

more are lost during declusterization, because these exceedances occur in a consecutive 

way. Table 5 illustrates this behaviour for the same series as previously but considering a 25 

years period (1976-2000) and then the same period with years 2001, 2002 and 2003. 

 
Station Period 1976 – 2000 

3.4% exceedances 
Period 1976 – 2003 
3.4% exceedances 

 Total number of 
values > 
threshold 

Number of values lost 
during declusterization 

Total number of 
values > 
threshold 

Number of values lost 
during declusterization 

BORDEAUX 162 77 284 190 

LYON 197 112 355 261 

METZ 199 114 372 278 

MONTELIMAR 206 121 374 280 

ORLEANS 167 82 326 232 

POITIERS 177 92 313 219 

REIMS 205 120 353 259 

Table 5: number of threshold exceedances and number of values lost during declusterization 

for 2 periods: 1976-2000 and 1976-2003 in 7 stations 
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For a fixed desired number of independent extreme values, this quantity is multiplied by 1.2 

to 2.5 times after the addition of the year 2001 to 2003. Still, recent observed years lead to 

increase clusterization and episode length. The clusterization coefficient  is estimated at 

0.45 until 2000 (with a SE of 0.05) and at 0.26 until 2003. 

The effect of a record year as 2003 is notable, especially for short observation periods : 

details will be given later on, but let us remark here that the estimation of  can highly 

depend on a fraction of values in the sample. This point emphasizes our previous remark: 

does not depend on the period if its length is sufficient. In general, 2003 changes 

dramatically the absolute record, and the model fit is very sensitive to a single very high 

value. In particular, it increases the degree of the polynomial giving the optimal model. 

Pareto models depend on the observation period but the position in the sample of a record 

year is also very important. If we permute years 2003 and 1995 (located in the middle part of 

the observed period) the effect of the record year on trends is now less meaningful. 

2003 effect is strong even for a long period as illustrated for Caen in figure 6 below. 

 

Figure 6: optimal degree for polynomial trend of Pareto  (t) parameter for station Caen on 

periods 1982-2002, 1982-2003 and 1950-2003. (the abscissa scale is not the same for all graphs 

which corresponds to different period lengths)  
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Regarding the Poisson process intensity trend, we can see that for short periods, we 

generally do not capture the increasing trend if year 2003 is not included. Otherwise, a linear 

temporal dependence is the prevailing result with two important exceptions: in the south of 

France or near the Alps, where the degree is at least 3, and on the Atlantic Ocean or 

Channel coasts where the frequency of extremes remains constant, as shown on figure 7 

below.  

 
Figure 7: geographical repartition of optimal degree of polynomial trend for Poisson process 

intensity I(t) on period 1982-2002 (left) and 1982-2003 (right) 

 

 

5. Return levels 

 

5.1.   A suitable definition for the non stationary case  

In the stationary case, the return level za for a years is the level for which the probability of 

exceedance every year is equal to 1/a. In the non-stationary case, knowing the identified 

trend, we need to re-define za as the unique level such that the expectation of the number of 

exceedances over za in the next a years will be 1. We shall define the return level az  for a  

years starting from the date 0t , so the return level has to be thought as a function of the initial 

date and of the number of years taken into account to make the prediction. 
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Let 0( , )D t a  be the set of all days that belong to 0 0[ , 365 ]t t a . For instance 0( , )D t a  are all 

the hot season days from 14 June to 21 September. Then, return level za is such that: 
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I(t) is the mathematical expectation of the number of exceedances at date t and the Pareto 

term 
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a  is the mathematical expectation that the exceedance is larger than 

the level za. 

The definition for the stationary case is a particular case of this one.  

 

5.2. Influence of non monotonous model choice 

 
This extension of the return levels to the non stationary case is a very important point for the 

use of statistical tools to make predictions on extreme values. In this paper, the prediction is 

done using an extrapolation of the trends of the chosen model in order to estimate a return 

level for the future in a changing climate.  

Prediction in extremes as well as in the whole observation distribution cannot only be based 

on statistical tools if extra information can be given by physical simulation models or by 

scenario based not only on physical considerations but also on sociological and political 

ones, associated with energy consumption. Our concern here was to evaluate return levels 

valid for the near future (the next 20-30 years) taking climate evolution into account. Climate 

simulations do not yet provide spatially refined information at that time scale, thus, we 

choose to use statistical extrapolations.  

 

It is reminded that the optimal model has been identified using statistical tests in order to fit a 

model to the data. We apply the so-called principle of parsimony that chooses the model with 

the largest number of parameters allowed by the mathematical theory. What about this 
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choice for extrapolation? If the estimated parameter function is neither monotonous nor 

periodic, there is no natural way to define this extrapolation (of course this point remains a 

problem every time the explicative covariate is not given by extra statistical information). 

Therefore, even if the model choice leads to a non-monotonous polynomial of high degree, 

we will have (for instance, but this is a quite arbitrary decision) to decrease the degree to 

obtain a monotonous polynomial. Moreover, we have to check that extrapolation will always 

provide positive Poisson intensity I(t) and (t) functions, so decreasing functions are not 

admissible estimates for long return levels computation.  

Even so, extrapolation using high-degree polynomial functions is risky. For instance it is clear 

that if the increasing trend for Poisson intensity or for the Pareto mean relies on polynomial 

models of cubic degree or higher, extrapolation over 50 years will be reduced to the cubic 

term and will have neither reasonable physical nor mathematical significance. Thus, the 

model choice is physically not realistic for the Pareto distributions as soon as the degree is 

larger than 2 and the period larger than the observation one.  

To solve this problem, we can work with sub-optimal models with an upper limit of quadratic 

polynomials, or perform computations with CPL models, which will avoid the artificial effect of 

the high degree of polynomials.  

This constraint is still not sufficient. The weakness of CPL models is that prediction is done 

extrapolating the last linear piece. The slope of this linear fragment may be too dependant on 

the distribution of the last observed values in the last period, for instance on the “2003 effect” 

if the prediction is done in 2004!  We define a specific statistical procedure in order to control 

these edge effects (see appendix 3). 

 The detected change in temperatures since the seventies (most certainly due to 

anthropogenic influence) implies a careful choice of the length of data considered to compute 

return levels. 
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5.3. Results 

 
We present the results of computed return levels for maximum observation period featured 

for each station (as described in section 2), with comparison between stationary and sub-

optimal polynomial model (i.e with a quadratic limit to the Pareto (t) parameter function) for 

30-, 50- and 100-year return periods. Figure 8 shows results for 30-year return levels for the 

stations with more than 40 years of available observations. 

 

Figure 8 : 30-year return levels considering the series as stationary (left) or taking trends into 

account (right) for series longer than 40 years 

For a 30-year return period, optimal (or sub-optimal) models generally increase the return 

level by 1 to 2 degrees (1.5 is exceeded near the Atlantic and Channel coasts). For shorter 

observation periods (for instance 22 years) this difference is less marked, with only a 0.5 to 1 

degree increase in RLs.  

When the optimal Pareto model is of higher degree than 3, considering CPLs doesn’t 

improve the results. 

To assess statistical significance of obtained return levels, we need to compute their 

confidence intervals. We noticed that more than 90% of the variance is connected to errors in 

the fit of the Pareto distribution. Thus, the contribution of the Poisson error is insignificant. In 

particular, for high optimal degrees of the Pareto model, the mean square error on the RL 

reaches 0.5 degrees for a 30-year return period and 50 years of available data. Since 
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asymptotic hypotheses are not valid for almost all non stationary models we have considered 

(see Malek 2004), we need to estimate confidence intervals through simulations. Of course, 

the simulation is a heavy procedure; we give in appendix 1 some methodological procedures.  

6. Conclusion 

 
We studied very high and very low (not shown) temperatures for a large set of stations over 

France. Depending on the location, different observation length were available, from 22 to 55 

years (year 2003 inclusive), and 130 years for 1 station.  

Complex statistical analysis allows us to draw several relevant conclusions. First, the shape 

parameter  of the Pareto distribution is negative (-0.4<<-0.1) thus implying a non-Gaussian 

and short-tailed distribution of temperatures with physically sensible upper bounds. The 

value of  can vary but only slightly with the observation period, its variation can be neglected 

in first approximation allowing to restrict non stationarity characterization to the other 

parameters, more easy to interpret physically. We then choose the order of polynomial 

models of parameters to look for a physically sensible classification of stations; this was only 

possible from this property of . The shape parameter will change significantly for an 

erroneous choice of the (t) function since the estimation of these coefficients are linked, so 

we always work with statistically optimal models. 

 The intensity I(t) of Poisson processes gives informative results on the frequency of 

exceedances over a high threshold. It allows a clear classification of stations (and it can be 

closely related to the mean parameter of a GEV model). We determined two kinds of trend of 

I(t): a general, soft aperiodic oscillation with duration of 20 to 40 years for long observation, 

and a clear increasing drift during the last decades of the 20th century. From the analysis of 

the longest time series of 130 years, we can infer that this last increase lies in the last 25±10 

years. This trend is mainly quadratic for polynomial models and presents 3 or 2 fragments 

when considering CPL functions. Probably, this method gives intuitive partitions of the 

observation periods. These two families of models give similar results. 
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 The (t) function describes the non-stationarity of the magnitude but also the variability of 

extreme events and its behavior is station-dependent. Still, the interpretation of this 

parameter is difficult since it accounts for both the mean and the variance of extremes. (t) 

tends to increase in hottest and elevated regions in France. Additional studies are needed in 

order to analyze events as the 2003 heat wave. We discussed the sensitivity of a very hot 

year placed at the end of the observation period – the year 2003. For short observation 

periods (<25 years), this particular data modifies trends significantly. From a purely statistical 

point of view, 2003 cannot be considered as a “product” of the recent trend. Even taking into 

account the increasing trends for temperature, including a possible increase of variability, the 

observed value is predicted with a very small probability, as an extreme between extremes. 

The jump in records sequence is between twice and four times the observed and regular 

jumps of more or less 0.4 degrees in past observations. 2003 observation could also be 

explained with a not so small probability by an acceleration of the increasing trend. However, 

even using sophisticated CPL models, there is not enough observations to prove or 

invalidate this hypothesis. 

Estimation of  is one of the main technical difficulties for the computation of return levels. 

Results are more given in this part in order to illustrate a methodology than for their intrinsic 

value. A 30-year return level for very hot temperatures (above the 99th percentile for the 

whole year, and above the 97th percentile for the hot periods), will be more realistic for the 

CPL models, where extrapolation is more justified for long observation periods. For 

polynomial optimal non-stationary models, the increase for the 30-year return level varies 

from 1 to 2 degrees, with a 0.5 degree precision. This result is similar to the mean trend of 

the observation period.  

This complex but exploratory analysis is meant to be exploited in advanced studies of 

extreme events or for different meteorological variables. It can also be used with other 

varying variables than time, alone or jointly with time.  
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7. Perspective : Spatial qualitative aspects 

 
Till now, we applied our procedure independently for a set of S stations. To avoid local 

fluctuations, we could try to compute a global trend for the whole set or sub-set of stations. 

This problem, for flood predictions, was brought by Katz et al. (2002), and is well-known in 

classical statistics with Gaussian models. In the framework of rare events, correlations 

between stations are insufficient to summarize dependencies. Furthermore, a multivariate 

model is not available for extremes as is it in the Gaussian case to study average fields. The 

accessible copula theory of multivariate extremes is an efficient tool in probability theory to 

analyze spatial dependencies, but these complex models require a large amount of data. 

Pairwise exploratory studies confirm that correlation is not a good dependency measure and 

that the agreement of extreme events is strongly dependent on the geographical proximity.  

 

Acknowledgments We would like to express our particular gratitude to one of the reviewer 

and the editor for their accurate remarks, suggestions and important references.  

 

8. Appendix 1 : trend model choice 

 

8.1. Threshold selection 

 
Many methods can be used to select a threshold. One of the most popular is to use 

properties of Pareto distribution. Let’s consider the threshold u such that exceedances over u 

have a Pareto distribution with parameter  and, the dates are the trajectory of a non 

stationary Poisson process. For another threshold v>u, exceedances over v will have the 

same properties. Furthermore, the mean of the exceedances over v is a linear function of v.  

Graphical translations of these properties (see Coles 2001) could be used for control 

purposes once adapted to non-stationary cases but they are hard to apply when dealing with 

a large set of stations. Our method consists in selecting an adaptive threshold u according to 
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a fixed, desired number of exceedances N (e.g. N=150). In fact, we choose a number 

depending on the length of the observation period following the empirical law N=10+3A 

where A is the observation length in years. We always check this rule verifying first the 

stability: the model parameters have to be stable when the number of declusterized 

exceedances is modified by a number of 10.  

Then we have to check the model adequacy. To perform classical tests of fitting, we have (it 

is a fastidious but obliged way) to transform the models into stationary models, by change of 

clock for the Poisson process and change of scale for the Pareto one. 

Therefore, we are now able to use the classical graphical rules with a correct mathematical 

basis. 

We have made this verification for all stations in order to verify that our threshold is correct 

for the stationary process obtained after transformation. It has always been the case except 

for 4 stations.  

8.2. Rough trend research, choice of model into a given class and confidence 

intervals. 

 
To deal with a possible trend, we use the POT model with I(t) (intensity parameter of the 

Poisson process) and t) (of the Pareto distribution) as functions of time t. The 

independence of those two parameters allows separate partial likelihoods. The parameter  

gives the shape of the Pareto density and is the most difficult to estimate. As we already 

detailed, we have verified that a generally admitted use of time-independent is reasonable.  

A first, non parametric study suggests a proper choice of classes of model functions for the 

parameters I(t) and (t). This is done using the method of penalized likelihood and cross 

validation giving cubic splines estimates or a wavelet method (Green and Silverman 1994). 

The behavior of I(t) and (t) provided by the non parametric study allows choosing a 

parameterized class of functions. Thus, a polynomial of degree at most 5 is a reasonable 
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choice for time dependence of those functions. Alternatively, piece-wise linear functions have 

been applied and provide interesting results. We address the problem of the choice of the 

best polynomial function, the estimation of its coefficients and the evaluation of the variance 

of the estimators.  

The detailed procedure concerns the simplest case of the Poisson intensity I(t) or the (t) 

function, but can be applied to any parametric nested model (like CPL functions). 

For every integer d ( 1d  ), we compute the set of coefficients which maximizes the log-

likelihood for data Xi with a Poisson intensity I depending on time as a polynomial of degree d 

with these coefficients (see appendix 2 for the expression of log-likelihood). 

To choose the optimal model for I(t), we test the best model for d  against the best model for 

1d   using a likelihood test (see for instance Coles 2001) and an associated level of 

confidence of the test, for instance 0.05  or 0.10 . We decide to choose degree 1d   if the 

test rejects degree d  at level .  

Confidence intervals (CI) for the estimators are critical to determine parameter significance. 

The classical methods, i.e the global asymptotic method, with variances of estimators 

estimated from the observed information matrix, and the profiled likelihood method (see 

Coles (2001) for Pareto models and Dacunha-Castelle (1986) for general results) are based 

on asymptotic hypotheses. 

But in our case, asymptotic hypotheses are not always satisfied. For Poisson non stationary 

process estimation, asymptotic theory can be irrelevant and very inappropriate in some 

cases (see Malek (2004)). Therefore, to be cautious, we prefer to control classical methods 

by simulation procedures to perform tests (for example, we do not want to apply without 

control chi-square approximations to the test of likelihood ratios) and to compute confidence 

intervals (reasonable confidence level is chosen as 0.05 or 0.1). We start from the optimal 

estimated model. We simulate 10000 trajectories of the POT model. On every trajectory, we 

estimate the optimal model and his parameters. Thus, we obtain an estimate of their 
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distribution, a confidence interval and confidence volumes. Now, we can check the 

coherence of the initial choice with  the value of the percentage of trajectories which give this 

choice. For the return level, we compute its value for every trajectory and then we compute 

the confidence interval from the estimated distribution of the return level. The agreement 

between classical methods modified as previously explained and the simulation results are 

good enough. As confidence intervals, we choose the longer of the two estimates. 

 

8.3. Model validation 

Following the above procedure, the optimal model in the class of all polynomial or CPL 

models is chosen, and validated through Kolmogorov or chi-square goodness of fit tests. To 

check the Poisson character, we test if the distribution of intervals between dates of events is 

exponential. In this validation, non stationarity implies to perform a change of clock and adapt 

the test. Similarly, we test for adjustment of the Pareto distribution and the independence 

between the two processes. These tests are performed on the “best candidate” in the class. 

 

9. Appendix 2 : log-likelihood expression 

 
Let u be the chosen threshold, a the number of years of observation, L the hot season length 

and N the number of observed values 1,... NX X  over the threshold at dates 1,... Nt t  (after 

declusterization) among the aL observed values. The log-likelihood is given by 
1 2

N N NL L L  , 

where NL  is the sum of two independent terms: 
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     the log-likelihood of the Poisson process of dates 

whose intensity is ( )I t . 

 

10. Appendix 3 : Technical problems with CPL models 

 
The main difficulty of CPL functions lies on their non identifiability, i.e the same model can be 

defined by different sets of parameters. The classical theory of likelihood is not valid anymore 

and one has to use a specific theory similar to that given for mixture models  by Dacunha-

Castelle and Gassiat (1996). This issue results in problems of estimation of parameters that 

can have no consistent estimators. This can be avoided under the constraint of separation of 

angular nodes, e.g. by 10 years. 

11.  Appendix 4 : Trend on all observations and trend on 
extremes 

 
We don't try to expose a complete mathematical theory (which does not exist as we explain). 

We just give some ideas of what can happen for climate variable, considering simpler 

situations than the one considered in this paper.  

First, suppose we have to deal with gaussian variables. Daily maximum temperature is then 

Tt with distribution N(m(t) ,(t)). What is a trend in this case? For constant, the trend is the 

function m(t). It can be estimated by some smoothing procedures as moving averages, 

kernels or wavelets.  

If  is not constant, the notion of trend is more sophisticated and perhaps rather arbitrary 

because a variation of the mean (thought physically as a signal) is only significant if it is large 

enough compared to  (level of noise). Even if we have a good estimate of m and , there 

can exist significant trends on some time intervals and not on other ones. 

Let us look now at extremes. Suppose =1 and m(t)=+β t with β >0. Let MN=max (T1,...TN). 

Then, MN is equivalent to β N! There isn’t any random effect for the behaviour. 
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This can be seen as follows : if Yt=Tt - m(t)  , it can be proved that ZN=max(Y1,.....YN) 

increases very slowly and that 0
N

ZN  . ZN is equivalent to 

)N(loga)Nlog(G)Nlog( 2   for large N, where a is some constant and G a Gumbel 

centered random variable with variance 1. For large t, Prob(G <  +β t) < ce-βt  for some  c>0. 

Then from elementary probability result, for all N large enough (see later what ''enough'' 

means), ZN < +β N. 

Now if we take K disjoint blocks of large size N, say N=K=200,  and look at the behaviour of 

the maximum into the K blocks of size N, there is not a GEV model and maxima in the block 

J; J=1,...K, is given by the general mean trend and so equivalent to β NJ! Block size is only 

an amplifier. 

Of course this analysis is only valid in an asymptotic situation and it can be extended to POT 

models.  

For temperature data, there is a trend on mean more or less linear, (in fact in some cases 

there exists a significant quadratic term). We observe a linear trend (or a quadratic one) for 

the mean parameter of GEV. It is in general stronger than the previous one. This can be a 

consequence of many kinds of changes in the distributions. For instance, if the tail moves 

slowly from a gaussian behaviour ex2 to an exponential behaviour e-ax , then we can observe 

the previous qualitative phenomena without any change for the popular shape coefficient  

which always remains equal to 0. 

Before giving a practical and perhaps methodological conclusion, let us go to another simple 

example. 

Let now Tt have an exponential distribution depending on the sample size N given by its 

density  Nexp-N(x-N) for x>N and  0 for x<N.  

Let MN be defined as the maximum of observations as previously and let us look at the 

behaviour of MN. 
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As usually, we look to some sequences of real numbers AN and BN with evident physical 

meaning such that  (MN-BN)/AN has a non zero limit distribution. 

 From   
N)BxA(

NNN )e1()BxAM(P NNNN 
  we get immediately that the unique 

solution up to constants is given by:  
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  and a Gumbel limit distribution. 

Suppose now that we have as previously K blocks of size N, in block J the parameters are J 

and J. Then trends are as follows: 
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From these formulas, one can see that for the mean trend, the  variation effect is multiplied 

by log(N) and not the  effect. Of course for other distributions the factor log(N) changes 

drastically. 

Practically, the interpretation depends on the size N by the way of the distribution: the 

transfer function associated to the following correspondence trends of all sample  trends of 

extremes is quite complicated. 

One has to be convinced that in order to be able to understand the previous arrow, it should 

be necessary to estimate with an extreme precision the distribution of the observed 

temperatures including the tail and not only the shape parameter. This is quite impossible 

and in fact it is the reason why even in the stationary case, the use of GEV-POT theory is 

very general, precisely to avoid the previous, quite impossible, estimation. 
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