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Introduction

We fix N ≥ 2 and consider a N -dimensional Hadamard manifold X of negative, pinched curvature -B 2 ≤ K X ≤ -A 2 < 0. Without loss of generality, we may assume A ≤ 1 ≤ B. Let Γ be a Kleinian group of X, i.e. a discrete, torsionless group of isometries of X, with quotient X = Γ\X.

This paper is concerned with the fine asymptotic properties of the orbital function :

v Γ (x, y; R) := ♯{γ ∈ Γ/d(x, γ • y) ≤ R} for x, y ∈ X, which has been the subject of many investigations since Margulis' [START_REF] Margulis | Certain applications of ergodic theory to the investigation of manifolds of negative curvature[END_REF] (see also Roblin's book [START_REF] Th | Ergodicité et équidistribution en courbure négative[END_REF]). First, a simple invariant is its exponential growth rate

δ Γ = lim sup R→∞ 1 R log(v Γ (x, y; R)).
The exponent δ Γ coincides also with the exponent of convergence of the Poincaré series associated with Γ : P Γ (x, y, s) := γ∈Γ e -sd(x,γ•y) , x, y ∈ X.

Thus, it is called the Poincaré exponent of Γ δ Γ . It coincides with the topological entropy of the geodesic flow (φ t ) t∈R on the unit tangent bundle of X, restricted to its non-wandering set. It equals also the Hausdorff dimension of the radial limit set Λ(Γ) rad of Γ with respect to some natural metric on the boundary at infinity ∂X of X. Recall that any orbit Γ • x accumulates on a closed subset Λ(Γ) of the geometric boundary ∂X of X, called the limit set of Γ; this set contains 1, 2 or infinitely many points and one says that Γ is non elementary when Λ Γ is infinite. A point x ∈ Λ Γ is said to be radial when it is approached by orbit points in some M -neighborhood of any given ray issued from x, for some M > 0). The group Γ is said to be convergent if P Γ (x, y, δ Γ ) < ∞, and divergent otherwise. Divergence can also be understood in terms of dynamics as, by Hopf-Tsuju-Sullivan theorem, it is equivalent to ergodicity and total conservativity of the geodesic flow with respect to the Bowen-Margulis measure m Γ on the non wandering set of (φ t ) t∈R in the unit tangent bundle T 1 X (see again [START_REF] Th | Ergodicité et équidistribution en courbure négative[END_REF] for a complete account and a definition of m Γ and for a proof of this equivalence).

The more general statement concerning the asymptotic behavior of v Γ (x, y; R) is due to Th. Roblin: if Γ is a non elementary, discrete subgroup of isometries of X with non-arithmetic length spectrum 4 , then δ Γ is a true limit and it holds, as R → +∞,

(i) if m Γ || = ∞ then v Γ (x, y; R) = o(e δΓR ), (ii) if m Γ < ∞, then v Γ (x, y; R) ∼ ||µx||.||µy||
δΓ mΓ|| e δΓR , where (µ x ) x∈X denotes the family of Patterson δ Γ -conformal densities of Γ, and m Γ the Bowen-Margulis measure on T 1 X. Let us emphasize that in the second case, the group Γ is always divergent while in the first one it can be convergent.

In this paper, we aim to investigate, for a particular class of groups Γ, the asymptotic behavior of the function v Γ (x, y; R) when Γ is convergent. As far as we know, the only precise asymptotic for the orbital function of convergent groups holds for groups Γ which are normal subgroups Γ ¡ Γ 0 of a co-compact group Γ 0 for which the quotient Γ 0 /Γ is isometric up to a finite factor to the lattice Z k for some k ≥ 3 [START_REF] Pollicott | Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature[END_REF]. The corresponding quotient manifold has infinite Bowen-Margulis measure; in fact, m Γ is invariant under the action of the group of isometries of X which contains subgroups ≃ Z k .

The finiteness of m Γ is not easy to establish excepted in the case of geometrically finite groups where there exists a precise criteria. Recall that Γ (or the quotient manifold X) is said to be geometrically finite if its limit set Λ(Γ) decomposes in the radial limit set and the Γ-orbit of finitely many bounded parabolic points x 1 , . . . , x ℓ , fixed respectively by some parabolic subgroups P i , 1 ≤ i ≤ ℓ, acting co-compactly on ∂X \ {x i }; for a complete description of geometrical finiteness in variable negative curvature see [START_REF] Bowditch | Geometrical finiteness with variable negative curvature[END_REF]. Finite-volume manifolds X (possibly non compact) are particular cases of geometrically finite manifolds; in contrast, the manifolds considered in [START_REF] Pollicott | Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature[END_REF] are not geometrically finite.

For geometrically finite groups, the orbital functions v Pi of the parabolic subgroups P i , 1 ≤ i ≤ ℓ, contain the relevant information about the metric inside the cusps, which in turn may imply m Γ to be finite or infinite. On the one hand, it is proved in [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF] that the divergence of the parabolic subgroups P ⊂ Γ implies δ P < δ Γ , which in turn yields that Γ is divergent and m Γ || < ∞. On the other hand there exist geometrically finite groups with parabolic subgroups P satisfying δ P = δ Γ : we call such groups exotic and say that the parabolic subgroup P (or the corresponding cusps C) is dominant when δ P = δ Γ . Let us emphasize that dominant parabolic subgroups of exotic geometrically finite groups Γ are necessarily convergent. However, the group Γ itself may as well be convergent or divergent; we refer to [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF] and [START_REF] Peigné | On some exotic Schottky groups[END_REF] for explicit constructions of such groups.

In this paper, we consider a Schottky product Γ of elementary subgroups Γ 1 , . . . , Γ p+q , of isometries of X (see §3 for the definition) with p + q ≥ 3. Such a group is geometrically finite. We assume that Γ is convergent; thus, by [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF], it is exotic and possesses factors (say Γ 1 , . . . , Γ p , p ≥ 1) which are dominant parabolic subgroups of Γ. We assume that, up to the dominant factor e δΓR , the orbital functions v Γj (x, y, •) of these groups satisfy some asymptotic condition of polynomial decay at infinity. More precisely we have the Theorem 1.1 Fix p, q ∈ N such that p ≥ 1, p + q ≥ 2 and let Γ be a Schottky product of elementary subgroups Γ 1 , Γ 2 . . . , Γ p+q of isometries of a pinched negatively curved manifold X. Assume that the metric g on X satisfies the following assumptions.

H 1 . The group Γ is convergent with Poincaré exponent δ Γ = δ.
H 2 . There exist α ∈]1, 2[, a slowly varying function L (5) and strictly positive constants c 1 , . . . , c p such that, for any 1 ≤ j ≤ p and ∆ > 0,

lim R→+∞ R α L(R) γ∈Γ j R≤d(o,γ•o)<R+∆ e -δd(o,γ•o) = c j ∆.
(1)

H 3 . For any p + 1 ≤ j ≤ p + q and ∆ > 0, lim R→+∞ R α L(R) γ∈Γ j R≤d(o,γ•o)<R+∆ e -δd(o,γ•o) = 0.
Then, there exists a constant C Γ > 0 such that, as R → +∞,

♯{γ ∈ Γ | d(o, γ • o) ≤ R} ∼ C Γ L(R) R α e δR .
The importance of the convergence hypothesis H 1 in the previous theorem is illustrated by the following result, previous work of one of the authors. Theorem 1.2 ( [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], Theorem C) Let Γ be a Schottky product of p + q ≥ 2 elementary subgroups Γ 1 , Γ 2 . . . , Γ p+q of isometries of a pinched negatively curved manifold X. Assume that p ≥ 1 and

• Γ is divergent and δ Γ = δ, • Hypotheses H 2 , H 3 hold. Then, there exists C Γ > 0 such that, as R → +∞, ♯{γ ∈ Γ | d(o, γ • o) ≤ R} ∼ C Γ e δR R 2-α L(R)
.

The difference with the equivalent of Theorem 1.1 may surprise, since it is possible to vary smoothly the Riemannian metric g α,L from a divergent to a convergent case, preserving hypotheses H 2 and H 3 , cf [START_REF] Peigné | On some exotic Schottky groups[END_REF]. Nevertheless, the proof of our Theorem 1.1 will illustrate the reasons of this difference. For groups Γ = Γ 1 * ... * Γ p+q satisfying H 2 and H 3 , the counting estimate only depends on elements of the form γ = a 1 • • • a k , whith a i ∈ Γ 1 ∪ . . . ∪ Γ p and where a i and a i+1 , 1 ≤ i < k, do not belong to the same Γ j . In the divergent case (see the proof of Theorem C in [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF]), the asymptotic of

{γ ∈ Γ | d(o, γ • o) ≤ R} as R → +∞ only depends on the γ = a 1 • • • a k with k >> R.
On the opposite, in the convergent case, the dominant parabolic factors Γ 1 , . . . , Γ p are "heavy" and the asymptotic of the orbital function of Γ comes from the γ = a 1 • • • a k with k bounded independently of R; the number of such isometries γ with

d(o, γ • o) ≤ R is comparable to L(R)
R α e δR . By a straightforward adaptation of Proposition 5.4, this last estimate remains valid in the divergent case; nevertheless, the fact that Γ is divergent implies that the contribution of these isometries is negligible.

Remark 1.3

The condition α > 1 assures that the parabolic groups Γ 1 , . . . , Γ p are convergent. The additive condition α < 2 is used in Proposition 5.3 to obtain a uniform upper bound for the power P k , k ≥ 1 of some operator P introduced in Section 5; the proof of this Proposition relies on a previous work of one of the authors [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF] and is not valid for greater values of α. The analogous of our Theorem 1.1 when α ≥ 2 remains open.

The article is organized as follows. In the next section, we recall some backgrounds on negatively curved manifolds, and we construct examples of metrics for which the hypotheses of Theorem 1.1 are satisfied. In section 3, we present Schottky groups and the coding which we use to express our geometric problem in terms of sub-shift of finite type on a countable alphabet. In section 4, we introduce the Ruelle operator for this sub-shift; this is the key analytical tool which is used. Eventually, section 5 is devoted to the proof of Theorem 1.1.

Geometry of negatively curved manifolds 2.1 Generalities

In the sequel, we fix N ≥ 2 and consider a N -dimensional complete connected Riemannian manifold X with metric g whose sectional curvatures satisfy : -B 2 ≤ K X ≤ -A 2 < 0 for fixed constants A and B; the metric g we consider in this paper be obtained by perturbation of a hyperbolic one and the curvature equal -1 on large subsets of X, thus we assume 0 < A ≤ 1 ≤ B. We denote d the distance on X induced by the metric g.

Let ∂X be the boundary at infinity of X and let us fix an origin o ∈ X. The family of functions (y → d(o, x) -d(x, y)) x∈X converges uniformly on compact sets to the Busemann function B x (o, •) for x → x ∈ ∂X. The horoballs H x and the horospheres ∂H x centered at x are respectively the sup-level sets and the level sets of the function B x (o, •). For any t ∈ R, we set H x (t) := {y/B x (o, y) ≥ t} and ∂H x (t) := {y/B x (o, y) = t}; the parameter t = B x (o, y) -B x (o, x) is the height of y with respect to x. When no confusion is possible, we omit the index x ∈ ∂X denoting the center of the horoball. Recall that the Busemann function satisfies the fundamental cocycle relation: for any x ∈ ∂X and any x, y, z in X

B x (x, z) = B x (x, y) + B x (y, z).
The Gromov product between x, y ∈ ∂X ∼ = ∂X, x = y, is defined as

(x|y) o = B x (o, z) + B y (o, z) 2 
where z is any point on the geodesic (x, y) joining x to y. By [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CAT(-1)-espace[END_REF]), the expression

D(x, y) = e -A(x|y)o
defines a distance on ∂X satisfying the following property: for any γ ∈ Γ

D(γ • x, γ • y) = e -A 2 Bx(γ -1 •o,o) e -A 2 By(γ -1 •o,o) D(x, y).
In other words, the isometry γ acts on (∂X, D) as a conformal transformation with coefficient of conformality |γ ′ (x)| o = e -ABx(γ -1 •o,o) at x and satisfies the following equality

D(γ • x, γ • y) = |γ ′ (x)| o |γ ′ (y)| o D(x, y). (2) 
The function x → B x (γ -1 • o, o) plays a central role to describe the action of the isometry γ on the boundary at infinity ∂X. From now on, we denote it b(γ, •) and notice that it satisfies the following "cocycle property": for any isometries γ 1 , γ 2 of X and any

x ∈ ∂X b(γ 1 γ 2 , x) = b(γ 1 , γ 2 • x) + b(γ 2 , x). (3) 
In order to describe the action on ∂X of the isometries of (X, g), it is useful to control precisely the behavior of the sequences |(γ n ) ′ (x)| o ; the following fact provides a useful estimation of these quantities.

Fact 2.1 (1) For any hyperbolic isometry h with repulsive and attractive fixed point

x - h = lim n→+∞ h -n • o and x + h = lim n→+∞ h n • o respectively, it holds b(h ±n , x) = d(o, h ±n • o) -2(x ± h |x) o + ǫ x (n)
with lim n→+∞ ǫ x (n) = 0, the convergence being uniform on the compact sets of ∂X \ {x ∓ h }. (2) For any parabolic group P with fixed point x P := lim

p∈P p→+∞ p • o, it holds b(p, x) = d(o, p • o) -2(x P |x) o + ǫ x (p)
with lim p∈P p→+∞ ǫ x (p) = 0, the convergence being uniform on the compact sets of ∂X \ {x P }.

On the existence of convergent parabolic groups

In this section, we recall briefly the construction presented in [START_REF] Peigné | On some exotic Schottky groups[END_REF] of convergent parabolic groups satisfying condition (1), up to a bounded term; we refer to [START_REF] Peigné | On some exotic Schottky groups[END_REF] for the details.

We consider on R N -1 × R a Riemannian metric of the form g = T 2 (t)dx 2 + dt 2 at point x = (x, t) where dx 2 is a fixed euclidean metric on R N -1 and T : R → R * + is a C ∞ non-increasing function. The group of isometries of g contains the isometries of R N -1 × R fixing the last coordinate. The sectional

curvature at x = (x, t) equals K g (t) = - T ′′ (t) T (t) on any plane ∂ ∂X i , ∂ ∂t , 1 ≤ i ≤ N -1, and -K 2 g (t)
on any plane

∂ ∂X i , ∂ ∂X j , 1 ≤ i < j ≤ N -1.
Note that g has negative curvature if and only if T is convex; when T (t) = e -t , one obtains a model of the hyperbolic space of constant curvature -1.

It is convenient to consider the non-decreasing function

u : R * + → R s → T -1 ( 1 s ) (4) 
which satisfies the following implicit equation T (u(s)) = 1 s . The hyperbolic metric with constant curvature -1 correspond to the function u(s) = log s. This function u is of interest since it gives precise estimates (up a bounded term) of the distance between points lying on the same horosphere

H t := {(x, t) : x ∈ R N -1 }
where t ∈ R is fixed. Namely, the distance between x t := (x, t) and y t := (y, t) for the metric T 2 (t)dx 2 induced by g on H t is equal to T (t) x -y . Hence, this distance equals 1 when t = u( x -y ) and the union of the 3 segments [x 0 , x t ], [x t , y t ] and [y t , y 0 ] lies at a bounded distance of the hyperbolic geodesic joigning x 0 and y 0 (see [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF], lemme 4) : this readily implies that d(x 0 , y 0 ) -2u( x -y ) is bounded.

The "curvature" function K g may be expressed in term of u as follows:

K g (u(s)) := - T ′′ (u(s)) T (u(s)) = - 2u ′ (s) + su ′′ (s) s 2 (u ′ (s)) 3 . (5) 
For any α ≥ 0, let us consider the non decreasing

C 2 -function u = u α from R * + to R such that (i) u α (s) = log s if 0 < s ≤ 1 and (ii) u α (s) = log s + α log log s if s ≥ s α
for some constant s α > 1 to be chosen in the following way. Using formula (5) and following Lemma 2.2 in [START_REF] Peigné | On some exotic Schottky groups[END_REF], for any A ∈]0, 1[, one may choose s α > 1 in such a way the metric g α = T 2 uα (t)dx 2 + dt 2 on R N -1 × R has pinched negative curvature on X, bounded from above by -A 2 . Let us emphasize that this metric coïncides with the hyperbolic one on the subset R N -1 × R -and that we can enlarge this subset shifting the metric g α along the axis {0} × R as far as we want (see [START_REF] Peigné | On some exotic Schottky groups[END_REF] § 2.2). Now, let P be a discrete group of isometries of R N -1 spanned by k linearly independent translations

p τ1 , • • • , p τ k in R N -1 . For any n = (n 1 , • • • , n k ) ∈ Z k , we set n = n 1 τ 1 + • • • + n k τ k .
The translations p n are also isometries of (R N , g α ) and the corresponding Poincaré series of P is given by, up to finitely many terms,

P P (s) = n >s α,β e -sd(o,p n •o) = n >s α,β e -2su( n )-sO(1) = n >s α,β e -sO(1) n 2s log n 2sα .
Thus, the Poincaré exponent of P equals k/2 and P is convergent if and only if α > 1.

Remark 2.2 We can construct other similar metrics as follows. For α > 1, β > 0, there exists s α,β > 0 and u α,β : (

0, +∞) → R such that (i) u α,β (s) = log s if 0 < s ≤ 1, (ii) u α,β (s) = log s + α log log s + β log log log s if s ≥ s α,β , (iii) K g (u(s)) ≤ -A.
Hence, the Poincaré series of the parabolic subgroup P with respect to the metric g α,β = T 2 u α,β (t) 2 dx 2 +dt 2 is given by, up to finitely many terms,

P P (s) = n >s α,β e -sd(o,p n •o) = n >s α,β e -2su( n )-sO(1) = n >s α,β e -sO(1) n 2s log n 2sα log log n 2sβ .
This implies that P converges as soon as α > 1 but it is not enough to ensure that P satisfy hypothesis (1). In the next paragraph, we present new metrics g α , close to those presented in the present section, for which it holds

d(o, p n • o) = 2 (log n + α log log n ) + C + ǫ(n),
where C ∈ R is a constant and lim n→+∞ ǫ(n) = 0.

On convergent parabolic groups satisfying condition (1)

Let us fix N = 2, α > 1 and a slowly varying function L : [0, +∞[→ R * + . We construct in this section a metric g = g α,L = T 2 (t)dx 2 +dt 2 on R×R such that the group spanned by the translation (x, t) → (x+1, t) satisfies our hypothesis (1). The generalization to higher dimension is immediate. For any real t greater than some a > 0 to be chosen, let us set

T (t) = T α,L (t) = e -t t α L(t) .
Without loss of generalities, we assume that L is C ∞ on R + and its derivates L (k) , k ≥ 1, satisfy

L (k) (t) -→ 0 and L ′ (t) L(t) → 0 as t → +∞ ( [2]
, Section 1.3). Furthermore, for any θ > 0, there exist t θ ≥ 0 and C θ ≥ 1 such that for any

t ≥ t θ 1 C θ t θ ≤ L(t) ≤ C θ t θ . ( 6 
)
Notice that -T ′′ (t)

T (t) = -1 - 2α t + L ′ (t) 2 + α t 2 + L ′′ (t) < 0 for t ≥ a.
We assume that 0 < A < 1 < B and, following Lemma 2.2 in [START_REF] Peigné | On some exotic Schottky groups[END_REF], extend T α,L on R as follows.

Lemma 2.3 There exists a = a α,L > 0 such that the map T = T α,L : R → (0, +∞) defined by

• T (t) = e -t for t ≤ 0, • T (t) = e -t t α L(t)
for t ≥ a α,L , admits a decreasing and 2-times continuously differentiable extension on R satisfying the following inequalities

-B ≤ K(t) = - T ′′ (t) T (t) ≤ -A < 0.
Notice that this property holds for any t ′ ≥ t α,L ; for technical reasons (see Lemma 2.7), we assume that a > 4α. A direct computation yields the following estimate for the function u = u α,L given by the implicit equation (4). We now consider the group P spanned by the translation p of vector i = (1, 0) in R 2 ; the map p is an isometry of (R 2 , g α,L ) which fixes the point x = ∞. By Lemma 2.4, it holds

d(o, p n • o) = 2 log n + α log log n -log L(log n)
up to a bounded term. Hence, the group P has critical exponent 1 2 ; furthermore, it is convergent since α > 1. (6) The following proposition ensures that P satisfies hypothesis [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF]; in other words, the "bounded term" mentioned above tends to 0 as n → +∞.

Proposition 2.5 The parabolic group P = p on (R 2 , g α,L ) satisfies the following property: for any 

n ∈ N, d(o, p n • o) = 2 log n + α log log n -log L(log n) + ǫ(n) with lim n→+∞ ǫ(n) = 0. In particular, if α > 1, then P is convergent with respect to g α . Let H = R × [0, +∞) be the upper half plane {(x, t) | t ≥ 0}
lim n→+∞ d(o, p n • o) -d(a, p n • a) = 2a.
Proposition 2.5 follows from the following lemma.

Lemma 2.7 Assume that a ≥ 4α. Then d(a, p n • a) = 2(log n + α log log n -log L(log n) -a) + ǫ(n) with lim n→+∞ ǫ(n) = 0.
Proof. Throughout this proof, we work on the upper half-plane R × [a, +∞[ whose points are denoted (x, a + t) with x ∈ R and t ≥ 0; we set

T (t) = T α (t + a) = e -a-t (t + a) α L(t + a) .
In these coordinates, the quotient cylinder R × [a, +∞[/P is a surface of revolution endowed with the metric T (t) 

n 2 = T (h n ) hn 0 dt T (t) T 2 (t) -T 2 (h n ) and d n = 2 hn 0 T (t)dt T 2 (t) -T 2 (h n ) .
These identities may be rewritten as

n 2 = 1 T (h n ) hn 0 f 2 n (s)ds 1 -f 2 n (s)
and

d n = 2h n + 2 hn 0 1 1 -f 2 n (s) -1 ds where f n (s) := T (h n ) T (h n -s) 1 [0,hn] (s).
First, for any s ≥ 0, the quantity

f 2 n (s) 1 -f 2 n (s) converges towards e -2s √ 1 -e -2s
as n → +∞. In order to use the dominated convergence theorem, we need the following property. 6 Notice that the group P also converges when α = 1 and n≥1 L(n) n < +∞; this situation is not explore here.

Fact 2.8 There exists n 0 > 0 such that for any n ≥ n 0 and any s ≥ 0,

0 ≤ f n (s) ≤ f (s) := e -s/2 Proof. Assume first h n /2 ≤ s ≤ h n ; taking θ = α/2 in (6) yields 0 ≤ f n (s) = a + h n a + h n -s α L(a + h n -s) L(a + h n ) e -s ≤ C 2 α/2 (a + h n ) 3α/2 (a + h n -s) α/2 e -s ≤ C 2 α/2 a α/2 (a + h n ) 3α/2 e -s ≤ C 2 α/2 a α/2 (a + h n ) 3α/2 e -hn 4 e -s 2 ≤ e -s 2
where the last inequality holds if h n is great enough, only depending on a and α.

Assume now 0 ≤ s ≤ h n /2; it holds 1 2 ≤ a + h n -s a + h n ≤ 1 and 0 ≤ s a+hn ≤ min( 1 2 , s a ).
Recall that L ′ (t)/L(t) → 0 as t → +∞ and 0 ≤ 1 1-v ≤ e 2v for 0 ≤ v ≤ 1 2 ; hence, for any ε > 0 and n great enough (say n ≥ n ε ), there exists s n ∈ (0, s) such that

0 ≤ f n (s) = L(a + h n -s) L(a + h n ) 1 1 -s a+hn α e -s ≤ 1 -s L ′ (a + h n -s n ) L(a + h n ) e -(1-2α a )s ≤ (1 + ǫs)e -(1-2α a )s ≤ e -(1-ε-2α a )s .
Consequently, fixing ǫ > 0 in such a way 2 α

a + ǫ ≤ 1 2
, it yields 0 ≤ f n (s) ≤ e -s/2 for n great enough. P Therefore,

0 ≤ f 2 n (s) 1 -f 2 n (s) ≤ F (s) := f 2 (s) 1 -f 2 (s)
where the function F is integrable on R + . By the dominated convergence theorem, it yields

n 2 = 1 + ǫ(n) T (h n ) +∞ 0 e -2s √ 1 -e -2s ds = 1 + ǫ(n) T (h n ) . Consequently h n = log n + α log log n -log L(log n) -log 2 -a + ǫ(n).
Similarly lim

n→+∞ hn 0 1 1 -f 2 n (s) -1 ds = +∞ 0 1 √ 1 -e -2s
-1 ds = log 2, which yields

d n = 2(log n + α log log n -log L(log n) -a) + ǫ(n).
P The Poincaré exponent of P equals 1/2 and, as R → +∞,

♯{p ∈ P | 0 ≤ d(o, p • o) < R} ∼ e R/2 L(R) (R/2) α .
Hence, for any ∆ > 0,

♯{p ∈ P | R ≤ d(o, p • o) < R + ∆} ∼ 1 2 R+∆ R e t/2 L(t) (t/2) α dt as R → +∞ and lim R→+∞ R α L(R) p∈P R≤d(o,p•o)<R+∆ e -1 2 d(o,p•o) = 2 α-1 ∆
which is precisely Hypothesis 1.

On the existence of non elementary exotic groups

Explicit constructions of exotic groups, i.e. non-elementary groups Γ containing a parabolic P whose Poinacré exponent equals δ Γ , have been detailed in several papers; first in [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF], then in [START_REF] Peigné | On some exotic Schottky groups[END_REF], [START_REF] Dal'bo | Convergence and Counting in Infinite Measure[END_REF] and [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF]. Let us describe them in the context of the metrics g = g α;L presented above.

For any a > 0 and t ∈ R, we write

T α,L,a = e -t if t ≤ a e -a T α,L (t -a) if t ≥ a ,
where T α,L is defined in the previous paragraph. As in [START_REF] Peigné | On some exotic Schottky groups[END_REF], we consider the metric on R 2 given by g α,L,a = T 2 α,L,a (t)dx 2 + dt 2 . It is a complete smooth metric, with pinched negative curvature, and which equals the hyperbolic one on R × (-∞, a). Note that g α,L,0 = g α,L and g α,L,+∞ is the hyperbolic metric on H 2 . Note the previous subsection, for any a ∈ (0, +∞) and any τ ∈ R * , a parabolic group of the form P =< (x, t) → (x + τ, r) > is convergent. This allows to reproduce the construction of a non-elementary group given in [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF] and [START_REF] Peigné | On some exotic Schottky groups[END_REF].

Let h be a hyperbolic isometry of H 2 and p a parabolic isometry in Schottky position with h (cf next section for a precise definition). They generate a free group Γ =< h, p > which acts discretely without fixed point on H 2 . Up to a global conjugacy, we can suppose that p is (x, t) → (x + τ, t) for some τ ∈ R * . The surface S = H 2 /Γ has a cusp, isometric to R/τ Z × (a 0 , +∞) for some a 0 > 0. Therefore, we can replace in the cusp the hyperbolic metric by g α,L,a for any a ≥ a 0 ; we also denote g α,L,a the lift of g α,L,a to R 2 .

For any n ∈ Z * , the group Γ n =< h n , p > acts freely by isometries on (R 2 , g α,L,a ). It is shown in [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF] that, for n > 0 great enough, the group Γ n also converges. This provides a family of examples for Theorem 1.1. By [START_REF] Peigné | On some exotic Schottky groups[END_REF], if Γ n is convergent for some a 0 > 0, then there exists a * > a 0 such that for any a ∈ [a 0 , a * ), the group Γ n acting on (R 2 , g α,L,a ) is convergent, whereas for a > a * , it has finite Bowen-Margulis measure and hence diverges. In some sense, the case a = a * is "critical"; it is proved in [START_REF] Peigné | On some exotic Schottky groups[END_REF] that Γ also diverges in this case. With additive hypotheses on the tail of the Poincaré series associated to the factors Γ j , 1 ≤ j ≤ p of Γ, P. Vidotto has obtained a precise estimate of the orbital function of Γ in the case when its Bowen-Margulis measure is infinite [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF] ; this is the analogous of Theorem 1.1, under slightly more general assumptions.

In [START_REF] Dal'bo | Convergence and Counting in Infinite Measure[END_REF], the authors propose another approach based on a "strong" perturbation of the metric inside the cusp. Starting from a N -dimensional finite volume hyperbolic manifold with cuspidal ends, they modify the metric far inside one end in such a way the corresponding parabolic group is convergent with Poincaré exponent > 1 and turns the fundamental group of the manifold into a convergent group; in this construction, the sectional curvature of the new metric along certain planes is < -4 far inside the modified cusp.

Schottky groups: generalities and coding

From now on, we fix two integers p ≥ 1 and q ≥ 0 such that ℓ := p + q ≥ 2 and consider a Schottky group Γ generated by ℓ elementary groups Γ 1 , . . . , Γ ℓ of isometries of X. These elementary groups are in Schottky position, i.e. there exist disjoint closed sets F j in ∂X such that, for any 1 ≤ j ≤ ℓ

Γ * j (∂X \ F j ) ⊂ F j .
The group Γ spanned by the Γ j , 1 ≤ j ≤ ℓ, is called the Schottky product of the Γ j 's and denoted

Γ = Γ 1 ⋆ Γ 2 ⋆ • • • ⋆ Γ ℓ .
In this section, we present general properties of Γ. In particular, we do not require that conditions H1, H2 and H3 hold; these hypotheses are only needed in the last section of this paper.

By the Klein's tennis table criteria, Γ is the free product of the groups Γ i ; any element in Γ can be uniquely written as the product γ = a 1 . . . a k for some a j ∈ ∪Γ * j with the property that no two consecutive elements a j belong to the same group. The set A = ∪Γ * j is called the alphabet of Γ, and a 1 , . . . , a k the letters of γ. The number k of letters is the symbolic length of γ; let us denote Γ(k) the set of elements of Γ with symbolic length k. The last letter of γ plays a special role, and the index of the group it belongs to be denoted by l γ . Applying Fact 2 one gets Property 3.1 There exists a constant C > 0 such that

d(o, γ.o) -C ≤ B x (γ -1 .o, o) ≤ d(o, γ.o) for any γ ∈ Γ = ⋆ i Γ i and any x ∈ ∪ i =lγ F i .
This fact implies in particular the following crucial contraction property [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF]. Proposition 3.2 There exist a real number r ∈]0, 1[ and C > 0 such that for any γ with symbolic length n ≥ 1 and any x belonging to the closed set ∪ i =i(γ) F i one has

|γ ′ (x)| ≤ Cr n .
The following statement, proved in [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF], provides a coding of the limit set Λ(Γ) but the Γ-orbits of the fixed points of the generators. Proposition 3.3 Denote by Σ + the set of sequences (a n ) n≥1 for which each letter a n belongs to the alphabet A = ∪Γ * i and such that no two consecutive letters belong to the same group (these sequences are called admissible). Fix a point x 0 in ∂X \ F . Then (a) For any a = (a n ) n≥1 ∈ Σ + , the sequence (a 1 . . . a n • x 0 ) n≥1 converges to a point π(a) in the limit set of Γ, independent on the choice of x 0 .

(b) The map π : Σ + → Λ(Γ) is one-to-one and π(Σ + ) is contained in the radial limit set of Γ.

(c) The complement of π(Σ + ) in the limit set of Γ equals the Γ-orbit of the union of the limits sets Λ(Γ i )

From now on, we consider a Schottky product group Γ. Thus, up to a denumerable set of points, the limit set of Γ coincides with π(Σ + ). For any 1 ≤ i ≤ ℓ, let Λ i = Λ ∩ F i be the closure of the set of those limit points with first letter in Γ i (not to be confused with the limit set of Γ i ). The following description of Λ = Λ(Γ) be useful: a) Λ is the finite union of the sets Λ i , b) the closes sets Λ i , 1 ≤ i ≤ ℓ, are pairwise disjoints, c) each of these sets is partitioned into a countable number of subsets with disjoint closures :

Λ i = ∪ a∈Γ * i ∪ j =i a.Λ j
. Now, we enlarge the set Λ in order to take into account the finite admissible words. We fix a point x 0 / ∈ ∪ j F j . There exists a one-to-one correspondence between Γ • x 0 and Γ; furthermore, the point γ • x 0 ∈ F j for any γ ∈ Γ * with first letter in Γ j . We set Σ + = Σ + ∪ Γ and notice that, by the previous Proposition, the natural map π :

Σ + → Λ(Γ) ∪ Γ • x 0 is one-to-one with image π(Σ + ) ∪ Γ • x 0 . Thus we introduce the following notations a) Λ = Λ ∪ Γ • x 0 ; b) Λi = Λ ∩ F i for any 1 ≤ i ≤ ℓ.
The set Λ is the disjoint union of {x 0 } and the sets Λi , 1 ≤ i ≤ ℓ; furthermore, each Λi is partitioned into a countable number of subsets with disjoint closures:

Λi = ∪ a∈Γ * i ∪ j =i a • Λj .
The cocycle b defined in (3) play a central role in the sequel. In order to calculate the distance between two points of the orbit Γ • o, we consider an extension b of this cocycle defined as follow on Λ: for any γ ∈ Γ and

x ∈ Λ, b(γ, x) := b(γ, x) = B x (γ -1 o, o) if x ∈ Λ; d(γ -1 • o, g • o) -d(o, g • o) if x = g • x 0 for some g ∈ Γ.
The cocycle equality ( 3) is still valid for the function b; furthermore, if γ ∈ Γ decomposes as

γ = a 1 • • • a k , then d(o, γ • o) = b(a 1 , γ 2 • x 0 ) + b(a 2 , γ 3 • x 0 ) + • • • + b(a k , x 0 ),
where

γ l = a l • • • a k for 2 ≤ l ≤ k.
4 On the Ruelle operators L s , s ∈ R

In this section, we describe the main properties of the transfer operators L s , s ∈ R, defined formally by: for any function φ : Λ → C and x ∈ Λ, 

L s = γ∈Γ(1)
1 x / ∈ Λlγ e -s b(γ,x) φ(γ • x) = ℓ j=1 γ∈Γ * j 1 x / ∈ Λj e -s b(γ,x) φ(γ • x).
L k s φ(x) = γ∈Γ(k) 1 x / ∈ Λj e -s b(γ,x) φ(γ • x).
It is easy to check that the operator L s , s ≥ δ, act on (C( Λ), | • | ∞ ); we denote ρ s (∞) it spectral radius on this space.

Poincaré series versus Ruelle operators

By the "ping-pong dynamic" between the subgroups Γ j , 1 ≤ j ≤ ℓ, and Property 3.1, we easily check that the difference b(γ, x)

-d(o, γ • o) is bounded uniformly in k ≥ 0, γ ∈ Γ(k) and x / ∈ Λlγ .
Consequently, there exists a constant C > 0 such that, for any x ∈ Λ, any k ≥ 1 and any s ≥ δ,

L k s 1(x) c ≍ γ∈Γ(k) e -sd(o,γ•o)
where

A c ≍ B means A c ≤ B ≤ cA. Hence, P Γ (s) := γ∈Γ e -sd(o,γ•o) = +∞ ⇐⇒ k≥0 L k s 1(x) = +∞. ( 7 
)
In particular

δ Γ = sup{s ≥ δ | ρ s (∞) ≥ 1} = inf{s ≥ δ | ρ s (∞) ≤ 1}. ( 8 
)
It is proved in the next paragraph that Γ is convergent if and only if ρ δ (∞) < 1.

On the spectrum of the operators L s , s ≥ δ

In order to control the spectral radius (and the spectrum) of the transfer operators L s , we study their restriction to the space Lip( Λ) of Lipschitz functions from Λ to C defined by

Lip( Λ) = {φ ∈ C( Λ); φ = |φ| ∞ + [φ] < +∞} where [φ] = sup 0≤i≤p sup x,y∈ Λj x =y |φ(x) -φ(y)| D(x, y)
is the Lipschitz coefficient of φ on (∂X, D).

The space (Lip( Λ), . ) is a Banach space and the identity map from (Lip( Λ), . ) into (C( Λ), |.| ∞ ) is compact. It is proved in [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF] that the operators L s , s ≥ δ, act both on (C(Λ), | • | ∞ ) and (Lip(Λ), • ); P. Vidotto has extended in [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF] this property to the Banach spaces (C( Λ), | • | ∞ ) and (Lip( Λ), • ). We denote ρ s the spectral radius of L s on Lip( Λ); in the following proposition, we state the spectral properties of the L s we need in the present paper. Proposition 4.1 We assume ℓ = p + q ≥ 3 (7) . For any s ≥ δ,

1. ρ s = ρ s (∞);
2. ρ s is a simple eigenvalue of L s acting on Lip( Λ) and the associated eigenfunction h s is non negative on Λ;

3. there exists 0 ≤ r < 1 such that the rest of the spectrum of L s on Lip( Λ) is included in a disc of radius ≤ rρ s .

Sketch of the proof. We refer to [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF] and [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF] for the details. For any s ≥ 0 and γ in Γ * , let w s (γ, .) be the weight function defined on Λ(Γ) by: for any s ≥ δ and γ ∈ Γ

w s (γ, x) := e -s b(γ,x) if x ∈ Λj , j = l γ , 0 otherwise.
Observe that these functions satisfy the following cocycle relation : if γ 1 , γ 2 ∈ A do not belong to the same group Γ j , then

w s (γ 1 γ 2 , x) = w s (γ 1 , γ 2 • x)w s (γ 2 , x).
Due to this cocycle property, we may write, for any k ≥ 1, any bounded function ϕ : Λ → R and any

x ∈ Λ L k s ϕ(x) = γ∈Γ(k) w s (γ, x)ϕ(γ • x).
In [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF], it is proved that the restriction of the functions w s (γ, .) to the set Λ belong to Lip(Λ) and that for any s ≥ δ there exists C = C(s) > 0 such that, for any γ in Γ * w s (γ, .) ≤ Ce -sd(o,γ.o) .

In [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], Proposition 8.5, P. Vidotto has proved that the same inequality holds for the functions w s (γ, .) on Λ. Thus, the operator L s is bounded on Lip( Λ) when s ≥ δ.

In order to describe its spectrum on Lip( Λ), we first write a "contraction property" for the iterated operators L k s ; indeed,

|L k s ϕ(x) -L k s ϕ(y)| ≤ γ∈Γ(k) |w s (γ, x)| |ϕ(γ • x) -ϕ(γ • y)| + γ∈Γ(k) [w s (γ, .)] |ϕ| ∞ D(x, y).
By Proposition 3.2 and the mean value relation (2), there exist C > 0 and 0 ≤ r < 1 such that D(γ • x, γ • y) ≤ Cr k D(x, y) whenever x, y ∈ Λj , j = l γ . This leads to the following inequality

[L k s ϕ] ≤ r k [ϕ] + R k |ϕ| ∞ (9) 
where

r k = Cr k |L k s 1| ∞ and R k = γ∈Γ(k) [w s (γ, .)]. Observe that lim sup k r 1/k k = r lim sup k |L k s 1| 1/k ∞ = rρ s (∞)
where ρ s (∞) is the spectral radius of the positive operator L s on C( Λ(Γ)). Inequality ( 9) is crucial in the Ionescu-Tulcea-Marinescu theorem for quasi-compact operators. By Hennion's work [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF], it implies that the essential spectral radius of L s on Lip( Λ) is less than rρ s (∞) ; in other words, any spectral value of L s with modulus strictly larger than rρ s (∞) is an eigenvalue with finite multiplicity and is isolated in the spectrum of L s . This implies in particular ρ s = ρ s (∞). Indeed, the inequality ρ s ≥ ρ s (∞) is obvious since the function 1 belongs to Lip( Λ). Conversely, the strict inequality would imply the existence of a function φ ∈ Lip( Λ) such that L s φ = λφ for some λ ∈ C of modulus > ρ s (∞) ; this yields |λ||φ| ≤ L s |φ| so that |λ| ≤ ρ s (∞). Contradiction.

It remains to control the value ρ s in the spectrum of L s . By the above, we know that ρ s is an eigenvalue of L s with (at least) one associated eigenfunction h s ≥ 0. This function is strictly positive on Λ: otherwise, there exist 1 ≤ j ≤ p + q and a point y 0 ∈ Λj such that h s (y 0 ) = 0. The equality L s h s (y 0 ) = ρ s h s (y 0 ) implies h s (γ • y 0 ) = 0 for any γ ∈ Γ with last letter = j. The minimality of the action of Γ on Λ and the fact that Γ • x 0 accumulates on Λ implies h s = 0 on Λ. Contradiction.

In order to prove that ρ s is a simple eigenvalue of L s on Lip( Λ), we use a classical argument in probability theory related to the "Doob transform" of a sub-markovian transition operator. For any s ≥ δ, we denote P s the operator defined formally by: for any bounded Borel function φ : Λ → C and x ∈ Λ,

P s φ(x) = 1 ρh s (x) L(h s φ)(x) = 1 ρh s (x) γ∈Γ(1) e -δ b(γ,x) h(γ • x)φ(γ • x).
The iterates of P s are given by: P 0 s = Id and for k ≥ 1

P k s φ(x) = X φ(y)P k s (x, dy) = 1 ρ k s h s (x) γ∈Γ(k) e -δb(γ,x) h(γ • x)φ(γ • x).w (10) 
The operator P s acts on Lip( Λ) as a Markov operator, i.e. P s φ ≥ 0 if φ ≥ 0 and P s 1 = 1. It inherits the spectral properties of L s and is in particular quasi-compact with essential spectral radius < 1. The spectral value 1 is an eigenvalue and it remains to prove that the associated eigenspace is C • 1. Let f ∈ Lip( Λ) such that P s f = f and 1 ≤ j ≤ p + q and y 0 ∈ Λj such that |f (y 0 )| = |f | ∞ . An argument of convexity applied to the inequality P |f | ≤ |f | readily implies |f (y 0 )| = |f (γ • y 0 )| for any γ ∈ Γ with last letter = j; by minimality of the action of Γ on Λ, it follows that the modulus of f is constant on Λ. Applying again an argument of convexity, the minimality of the action of Γ on Λ and the fact that Γ • x 0 accumulates on Λ, one proves that f is in fact constant on Λ. Finally, the eigenspace of L s associated with ρ s equals C • 1.

Similarly, using the fact that ℓ ≥ 3, we may prove that the peripherical spectrum of L s , i.e. the eigenvalues λ with |λ| = ρ s , is reduced to ρ s ; we refer the reader to Proposition III.4 of [START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF] and Proposition 8.6 of [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF]. P Expression (10) yields to the following. Notations 4.2 For any s ≥ δ, any x ∈ Λ, any k ≥ 0 and any γ ∈ Γ(k), set

p s (γ, x) := 1 ρ k s h s (γ • x) h s (x) w s (γ, x). (11) 
As for the w s (γ, •), these "weight functions" are positive and satisfy the cocycle property

p s (γ 1 γ 2 , x) = p s (γ 1 , γ 2 • x) • p s (γ 2 , x)
for any s ≥ δ, x ∈ Λ and γ 1 , γ Proof. If ρ δ = ρ δ (∞) < 1 then ρ s < 1 for any s ≥ δ, since s → ρ s (∞) = ρ s is decreasing on [δ, +∞[. Equality [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF] implies δ Γ ≤ δ and so δ Γ = δ; by [START_REF] Dal'bo | Convergence and Counting in Infinite Measure[END_REF], it follows that Γ is convergent. Assume now ρ δ ≥ 1. When Γ is non exotic, it is divergent by [START_REF] Dal'bo | Peigné Séries de Poincaré des groupes géométriquement finis[END_REF]. Otherwise, δ Γ = δ and since the eigenfunction h δ is non negative on Λ, we have, for any k ≥ 1 and x ∈ Λ

L k δ 1(x) ≍ L k δ h δ (x) = ρ k δ h δ (x) ≍ ρ k δ .
Consequently k≥0 L k δ 1(x) = +∞ and the group Γ is divergent, by [START_REF] Dal'bo | Convergence and Counting in Infinite Measure[END_REF].

P 5 Counting for convergent groups

Throughout this section we assume that Γ is convergent on (X, g); by Corollary 4.3 it is equivalent to the fact that ρ δ < 1.

For any φ ∈ Lip( Λ), any x ∈ Λ and R > 0, let us denote by M (R, φ × • )(x) the measure on R defined by:

M (R, φ ⊗ u)(x) := γ∈Γ e -δ b(γ,x) φ(γ • x)u(-R + b(γ, x)).
It holds 0 ≤ M (R, φ ⊗ u)(x) < +∞ when u has a compact support in R since the group Γ is discrete.

The orbital function of Γ may be decomposed as

N Γ (R) = e δR n≥0 M (R, 1 ⊗ e n )(x 0 )
with e n (t) := e δt 1 ]-(n+1),-n] (t). Hence, Theorem 1.1 is a direct consequence of the following statement.

Proposition 5.1 For any positive function φ ∈ Lip( Λ) and any x ∈ Λ, there exists C φ (x) > 0 such that for any continuous function u : R → R with compact support,

lim R→+∞ R α L(R) M (R, φ ⊗ u)(x) = C φ (x) R u(t)dt.
This section is devoted to the proof of Proposition 5.1. From now on, we fix a positive function φ ∈ Lip( Λ) and a continuous function u : R → R + with compact support. Let us decompose M (R, φ ⊗ u)(x) as

M (R, φ ⊗ u)(x) = k≥0 M k (R, φ ⊗ u)(x) with M k (R, φ ⊗ u)(x) := γ∈Γ(k) e -δ b(γ,x) φ(γ • x)u(-R + b(γ, x)).
Thus, it is natural to associate to P s , s ≥ δ, a new transition operator P s on Λ × R, setting: for any φ ∈ Lip( Λ), any Borel function v : R → R and any (x, s) ∈ Λ) × R,

P s (φ ⊗ v)(x, t) = 1 ρh s (x) γ∈Γ(1) e -s b(γ,x) h s (γ • x)φ(γ • x)u(t + b(γ, x)) = γ∈Γ(1) p s (γ, x)φ(γ • x)u(t + b(γ, x))
Notice that P s is a also a Markov operator on Λ × R; it commutes with the action of translations on R and one usually says that it defines a semi-markovian random walk on Λ × R. Its iterates are given by: P 0 s = Id and, for any k ≥ 1,

P k s (φ ⊗ v)(x, s) = γ∈Γ(k) p s γ, x)φ(γ • x)u(s + b(γ, x)).
From now on, to lighten notations we write P = P δ , P = Pδ , h = h δ , p = p δ and ρ = ρ δ < 1. We rewrite the quantity M k (R, φ ⊗ u)(x) as

M k (R, φ ⊗ u)(x) = ρ k h(x) P k φ h ⊗ u (x, -R),
so that,

M (R, φ ⊗ u)(x) = h(x) k≥0 ρ k P k φ h ⊗ u (x, -R). (12) 
We first control the behavior as R → +∞ of the quantity M 1 (R, φ ⊗ u)(x).

Proposition 5.2 For any continuous function u : R → R with compact support, there exists a constant C u > 0 such that, for any ϕ ∈ Lip( Λ), any x ∈ Λ and R ≥ 1,

P (ϕ ⊗ u)(x, -R) ≤ C u ϕ ∞ × L(R) R α . ( 13 
)
Furthermore,

lim R→+∞ R α L(R) P (ϕ ⊗ u)(x, -R) = p j=1 C j (x)ϕ(x j ) R u(t)dt, (14) 
where C j is defined by: for 1 ≤ j ≤ p,

C j (x) := c j h(x j ) ρh(x) ×        e 2δ(xj|x)o when x ∈ Λ\ Λj ; e Bx j (o,g•o)+d(o,g•o) when x = g • x 0 / ∈ Λj ; 0 otherwise. (15) 
Proof. Let x ∈ Λ be fixed and assume that the support of u is included in the interval [a, b]. For any R ≥ -a, it holds

P (ϕ ⊗ u)(x, -R) = 1 ρh(x) p+q j=1 γ∈Γj e -δ b(γx) 1 x / ∈ Λj h(γ • x)ϕ(γ • x)u(-R + b(γ, x)).
It follows from hypotheses H 2 and H 3 and Fact 2.1 that for any j = 1, ..., p + q, there exists a constant K j > 0 such that for any R ≥ 1,

γ∈Γ j R+a≤ b(γ,x)≤R+b e -δ b(γ,x) ≤ K j (b -a) L(R) R α .
Together with the fact that L has slow variation, this implies [START_REF] Pollicott | Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature[END_REF]. Now, in order to establish [START_REF] Th | Ergodicité et équidistribution en courbure négative[END_REF], it is sufficient to prove that for any j = 1, ..., p + q,

lim R→+∞ R α L(R) γ∈Γj p(γ, x)ϕ(γ • x)u(-R + b(γ, x)) = C j (x)ϕ(x j ) R u(t)dt, (16) 
where C j (x) is given by ( 15) for 1 ≤ j ≤ p and C j (x) = 0 for j = p + 1, ..., q. By a classical approximation argument, we may assume that u is the characteristic function of the interval [a, b]; it yields

γ∈Γj p(γ, x)ϕ(γ • x)u(-R + b(γ, x)) = 1 h(x) γ∈Γ j R+a≤ b(γ,x)≤R+b e -δ b(γx) 1 x / ∈ Λj h(γ • x)ϕ(γ • x).
First, assume that x = g • x 0 belongs to Γ • x 0 . For any j = 1, ..., p and any γ = Id in Γ j , the sequence

(γ n • o) n≥1 tends to x j as n → ±∞; it yields b(γ n , x) -d(o, γ n • o) = d(γ -n • o, g • o) -d(γ -n • o, o) -d(o, g • o) n→±∞ -→ -B xj (o, g • o) -d(o, g • o). When x ∈ Λ, Fact 2.1 yields lim n→±∞ b(γ n , x) -d(o, γ n • o) = -2(x j | x).
Eventually, by hypotheses H 2 and H 3 , for any 1

≤ j ≤ p + q, lim R→+∞ R α L(R) γ∈Γ j R+a≤d(o,γ•o)≤R+b p(γ, x) = C j (x)|b -a|. Hence, lim R→+∞ R α L(R) γ∈Γj p(γ, x)ϕ(γ • x)u(-R + b(γ, x)) = C j (x)ϕ(x j )|b -a|.
P Now, we extend ( 13) and ( 14) to the powers P k , k ≥ 1, of the Markov operator P . Proposition 5.3 For any continuous function u : R → R + with compact support, there exists a constant C u > 0 such that, for any ϕ ∈ Lip( Λ), any x ∈ Λ, any k ≥ 1 and any R ≥ 1,

P k (ϕ ⊗ u) (x, -R) ≤ C u k 2 ϕ ∞ × L(R) R α . (17) 
Proposition 5.4 For any continuous function u : R → R + with compact support, any ϕ ∈ Lip( Λ), any x ∈ Λ and any k ≥ 1,

lim R→+∞ R α L(R) P k (ϕ ⊗ u) (x, -R) = p j=1 k-1 l=0 P l C j (x)P k-1-l ϕ(x j ) R u(t)dt (18) 
where, for any 1 ≤ j ≤ p, the Lipschitz functions is C j : Λ → R is given by (15).

Proposition 5.1 follows immediately from these statements and (12). Indeed, Propositions 5.3 and 5.4 and the dominated convergence theorem yield

lim R→+∞ R α L(R) M (R, φ ⊗ u)(x) =   h(x) k≥1 ρ k p j=1 k-1 l=0 P l C j (x)P k-1-l φ h (x j )   × R u(t)dt.
P Let us now prove Propositions 5.3 and 5.4. For the convenience of the reader, we assume that all subgroups Γ j , 1 ≤ j ≤ p + q, are parabolic. Hence, they have a unique fixed point at infinity x j and for any x ∈ Λ, it holds lim

γ∈Γ j d(o,γ•o)→+∞ γ • x = x j .
Namely, if one of the non-influent elementary group Γ j , p + 1 ≤ j ≤ p + q, was generated by some hyperbolic isometry h j , we would have in the next proofs to distinguish between positive and negative power of h j and this would only overcharge our notations without interest. Proof of Proposition 5.3. We apply here overestimations given in [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], whose proofs follow the approach developed in [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF]. We set α = 1 + β with 0 < β < 1; this restriction on the values of the parameter β is of major importance to get the following estimations. Following [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], we introduce the non negative sequence (a k ) k≥1 defined implicitely by a β k L(a k ) = k for any k ≥ 1. By Propositions A.1 and A.2 in [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], there exists a constant C 1 = C 1 (u) > 0 such that, for any ϕ ∈ Lip( Λ), any x ∈ Λ, any k ≥ 1 and any R ≥ 1,

• if 1 ≤ R ≤ 2a k then P k (ϕ ⊗ u) (x, -R) ≤ C 1 ϕ ∞ × 1 a k ; • if R ≥ 2a k then P k (ϕ ⊗ u) (x, -R) ≤ C 1 k ϕ ∞ × L(R) R 1+β . The definition of the a k yields, for 1 ≤ R ≤ 2a k , 1 a k = k L(a k ) a 1+β k ≤ k 2 1+β × L(R) R 1+β × L(a k ) L(R)
.

By Potter's lemma (see [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF], lemma 3.4), it exists

C 2 > 0 such that 1 a k ≤ C 2 k 2 × L(R) R 1+β for R ≥ 1 great enough. We set C = max(C 1 , C 2 ).
P Proof of Proposition 5.4. We work by induction. By Proposition 5.2, convergence (18) holds for k = 1. Now, we assume that it holds for some k ≥ 1. Let R > 0 and r ∈ [0, R/2] be fixed. Recall that

P k+1 (ϕ ⊗ u) (x, -R) = γ∈Γ(k+1) p(γ, x)ϕ(γ • x)u(-R + b(γ, x)) = γ∈Γ(k) β∈Γ(1) p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) .
We decompose P k+1 (ϕ ⊗ u) (x, -R) as A k (x, r, R) + B k (x, r, R) + C k (x, r, R) where 

Step 2. We prove that there exists ǫ(r) > 0, with lim Step 3. We prove that there exists a constant C > 0 such that, for any R ≥ 2r ≥ 1, Using (17), this yields, for some constant C > 0,

C k (x, r, R) ≤ Ck 2 ϕ ∞ L(R) R α +∞ n=[r] L(n) n α . (23) 
C k,1 (x, r, R) ≤ Ck 2 ϕ ∞ u ∞ [R/2] n=[r] L(R -n) (R -n) α L(n) n α ≤ C k 2 ϕ ∞ u ∞ L(R) R α +∞ n=[r] L(n) n α ,
where the last inequality is based on the facts that R -n ≥ R/2 -1 and L is slowly varying. The same inequality holds for C k,2 (x, r, R), by reversing in the previous argument the role of γ and β. Hence,

lim r→+∞ lim sup R→+∞ R α L(R) C k (x, r, R) = 0. ( 24 
)
Proposition 5.4 follows, combining (20), ( 22) and (24). P

Lemma 2 . 4

 24 Let u = u α,L : (0, +∞) → R be such T α,L (u(s)) = 1 sfor any s > 0. Then u(s) = log s + α log log s -log L(log s) + ǫ(s) with ǫ(s) → 0 as s → +∞.

  and H/P the quotient cylinder endowed with the metric g α,L = T α,L (t) 2 dx 2 + dt 2 . We do not estimate directly the distances d(o, p n • o), since the metric g α,L is not known explicitely for t ∈ [0, a]. Let us introduce the point a = (0, a) ∈ R 2 . The union of the three geodesic segments [o, a], [a, p n • a)] and [p n • a, p n • o] is a quasi-geodesic; more precisely, since d(o, a) = d(p n • o, p n • a) is fixed and d(a, p n • a) → +∞, the following statement holds. Lemma 2.6 Under the previous notations,

For any 1

 1 ≤ j ≤ ℓ, the sequence (γ • o) γ∈Γj accumulates on the fixed point(s) of Γ j . So for any x / ∈ Λj , the sequence b(γ, x) -d(o, γ.o) γ∈Γj is bounded uniformly in x / ∈ Λj . Therefore the quantity L s 1(x) is well defined as soon as s ≥ δ := max{δ Γj | 1 ≤ j ≤ ℓ}. The powers of L s , s ≥ δ, are formally given by: for any k ≥ 1, any function φ : Λ → C and any x ∈ Λ,

AStep 1 .

 1 k (x, r, R) := γ∈Γ(k) β∈Γ(1) d(o,β•o)≤rp(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) , B k (x, r, R) := γ∈Γ(k) d(o,γ•o)≤r β∈Γ(1) d(o,β•o)>r p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) and C k (x, r, R) := γ∈Γ(k) d(o,γ•o)>r β∈Γ(1) d(o,β•o)>r p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) . Let us first prove that lim R→+∞ R α L(R) A k (x, r, R) = β∈Γ(1) d(o,β•o)≤r p(β, x) × lim R→+∞ R α L(R) P k (ϕ ⊗ u) (β • x, -R).(19)Indeed, the set ofβ ∈ Γ(1) such that d(o, β • o) ≤ r is finite and b(β, x) ≤ r for such an isometry β; furthermore, if p(β, x) = 0 then R 2 ≤ R -b(γβ • x) ≤ R + Cwhere C > 0 is the constant which appears in Property 3.1. Using the induction hypothesis, it yields, for anyβ ∈ Γ(1) such that d(o, β • o) ≤ r, β • x)ϕ(γβ • x)u -R + b(β, x) + b(γ, β • x) = p(β, x) × lim R→+∞ R α L(R) P k (ϕ ⊗ u) (β • x, R).Convergence (19) follows, summing over β. It yields lim r→+∞ lim R→+∞ R α L(R) A k (x, r, R) = p j=1 k l=1 P l C j (x)P k-l ϕ(x j ) × R u(t)dt.

≃ b if 1 -ǫ ≤ a b ≤ 1 + 1 for any j = 1 ,

 111 r→+∞ ǫ(r) = 0, such that, for any k ≥ 1, d(o,γ•o)≤r p(γ, x j )ϕ(γ • x j )C j (x) ǫ. Since each Γ j has a unique fixed point, there exists a map ǫ : (0, +∞) → (0, +∞) which tends to 0 as r → +∞, such thatp(γ, β • x) p(γ, x j ) ǫ(r) ≃ ..., p + q, any β ∈ Γ j with d(o, β • o) ≥ r, any x ∈ Λ and any γ ∈ Γ with l γ = j. The set of γ ∈ Γ(k) such that d(o, γ • o) ≤ r is a finite subset of Γ(k); furthermore, for such γ and any β ∈ Γ(1), it holds R 2 ≤ R -b(γ, β • x) ≤ R + C, as above. Therefore, γ∈Γ(k) d(o,γ•o)≤r β∈Γ(1) d(o,β•o)>r p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) ǫ(r) ≃ p+q j=1 γ∈Γ(k) d(o,γ•o)≤r p(γ, x j )ϕ(γ • x j ) β∈Γ j d(o,β•o)>r p(β, x)u -R + b(γ, β • x) + b(β, x)Convergence (21) follows, using (16). In particular, letting r → +∞, it holds lim

By property 3 . 1 , 2 β∈Γ( 1 )[

 3121 the condition u -R + b(γβ • x) + b(β, x) = 0 implies d(o, γ • o) + d(o, β • o) = R ± c and b(γβ • x) + b(β, x) = R ± c(8) for some constant c > 0 which depends on u.We decomposeC k (x, r, R) into C k (x, r, R) = C k,1 (x, r, R) + C k,2 (x, r, R) with C k,1 (x, r, R) := γ∈Γ(k) r<d(o,γ•o)≤R/d(o,β•o)>r p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) . and C k,2 (x, r, R) := γ∈Γ(k) d(o,γ•o)≥R/2 β∈Γ(k) d(o,β•o)>r p(γ, β • x)p(β, x)ϕ(γβ • x)u -R + b(γ, β • x) + b(β, x) . 8 the notation A = B ± c means |A -B| ≤ c.We control the term C k,1 (x, r, R). Assuming c ≥ 1, one may writeC k,1 (x, r, R) ≤ ϕ ∞ u ∞

  2 ∈ Γ. Let us emphasize that The group Γ is convergent if and only if ρ δ < 1.

	Corollary 4.3
	p s (γ, x) = 1; in other words, the
	γ∈Γ(k)
	operator P s is markovian.
	P

It means that the set L( X) = {ℓ(γ) ; γ ∈ Γ} of lengths of closed geodesics of X = Γ\X is not contained in a discrete subgroup of R

A function L(t) is said to be "slowly varying" it is positive, measurable and L(λt)/L(t) → 1 as t → +∞ for every λ > 0.

Recall that ℓ ≥ 2 since Γ is non-elementary. When ℓ = 2, the real -ρs is also a a simple eigenvalue of Ls; a similar statement to Proposition 4.1 holds for the restriction of Ls to each space Lip( Λi ), i = 1, 2[START_REF] Babillot | Asymptotic laws for Geodesic homology on Hyperbolic manifolds with Cusps[END_REF].